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Quantum state reconstruction of an oscillator network in an optomechanical setting
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We introduce a scheme to reconstruct an arbitrary quantum state of a mechanical oscillator network. We assume
that a single element of the network is coupled to a cavity field via a linearized optomechanical interaction, the
time dependence of which is controlled by a classical driving field. By designing a suitable interaction profile,
we show how the statistics of an arbitrary mechanical quadrature can be encoded in the cavity field, which can
then be measured. We discuss the important special case of Gaussian state reconstruction and study numerically
the effectiveness of our scheme for a finite number of measurements. Finally, we speculate on possible routes to
extend our ideas to the regime of single-photon optomechanics.

DOI: 10.1103/PhysRevA.94.053811

I. INTRODUCTION

Quantum optomechanics exploits radiation pressure to
couple photons and mechanical oscillators. The field has
progressed significantly in the last decade and is now entering
a promising stage where the observation of quantum effects
in macroscopic objects appears to be within grasp [1–3].
Substantial theoretical and experimental effort has been
put into the preparation of mechanical systems, typically
consisting of vibrating mirrors or membranes, in interesting
nonclassical states. In such a context, an important question
arises: how can we verify that the mechanical state prepared
in an experiment is indeed the desired one? The design of
successful strategies to achieve such verifications requires
the experimental estimation of the density operator of a
mechanical system. However, it is well known that the full
information encoded in the density operator cannot be accessed
through the measurement of a single observable. One must
instead collect the measurement statistics of several distinct
observables, a task which requires access to many copies of
the quantum system of interest. These could be obtained, for
instance, by repeating the same experiment with the same
initial conditions. By postprocessing the outcomes of such
measurements, an experimentalist can estimate the density
operator via techniques known as quantum tomography and
quantum state reconstruction [4,5]. Perhaps the best known
example in this context is the reconstruction of the Wigner
function of an oscillator (which brings about an amount of
information equivalent to that of the density operator) through
a Radon transform of the quadrature probability densities [6].

In an optomechanical setting various approaches to quan-
tum state reconstruction have been explored in the literature
[2,7,8], in particular employing weak or quantum nondemoli-
tion measurements of mechanical quadratures [7,9–11]. Other
techniques that have been put forward include the use of
short laser pulses to prepare and read out the mechanical
state [12–14], the exploitation of a detuned driving field [15],
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and the measurement of the phonon-number operator [16].
The possibility of a precise readout has also opened the way
towards feedback cooling of a mechanical oscillator [17].
Very recently, high-efficiency state estimation of a mechanical
oscillator through techniques based on Kalman filtering have
been implemented experimentally, paving the way to the real-
time reconstruction of mechanical state-space configurations,
and their quantum-limited control [18].

Besides optomechanical systems comprising a single me-
chanical oscillator, one can envisage situations in which
multiple mechanical oscillators interact in a small network
and operate close to the quantum regime [19–21] (Fig. 1). The
latter would implement systems of interacting bosons which
are of paramount interest in a variety of contexts—including
quantum thermodynamics [22] and quantum simulators [23],
where they represent an ideal playground to test fundamental
issues like equilibration [24], heat transport [25–29], the
definition of temperature [30–32], and the universal scaling
of ground-state entanglement [33,34]. In addition, interacting
quantum oscillators have been proposed as a valid route
towards quantum computation [35–38]. Quantum state re-
construction is instrumental in all these settings. Outside the
optomechanical domain, the reconstruction of an oscillator
network can be accomplished using a two-level system
interacting with one node of the network—provided the
coupling constant is time-dependent and can be controlled by
the experimenter [39,40]. However, apart from measuring each
oscillator individually, to the best of our knowledge no method
has been proposed for the efficient readout of the quantum state
of an oscillator network in an optomechanical setting.

In this paper we propose a protocol of quantum state
reconstruction for the mechanical portion of a generalized
optomechanical system, featuring a single high-quality cavity
mode coupled to a network of mechanical oscillators (see
Fig. 1). Our protocol relies on the so-called linearized
radiation pressure interaction, and exploits measurements on
the accessible output modes of the optical cavity (rather than
the mechanical modes of the oscillator network, which are
typically challenging to measure directly). By controlling in
time the interaction strength, we show that it is possible to
encode information about any mechanical quadrature in the
cavity light, which can then be measured through the output
fields leaking out of the system. Specifically, we discuss how an
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FIG. 1. Sketch of the system under consideration: a is the annihi-
lation operator of the single intracavity mode, whereas b1, . . . ,bN

refer to the mechanical oscillators composing the network. Only
the mechanical mode b1 is directly coupled to the radiation field.
The driving field (red arrow) can be modulated in order to realize
the time-varying linearized radiation-pressure coupling needed to
reconstruct a selected quadrature of the oscillator network. Only the
field aout leaking from the cavity is eventually measured via homodyne
detection. Repeating the protocol for a sufficient set of quadratures,
the state of the entire mechanical network can be reconstructed.

arbitrary moment of the selected quadrature can be estimated
via appropriate light-quadrature measurements, followed by
the inversion of a linear system of equations. Our scheme
shares an important advantage with [40]: it requires minimal
access to the oscillator network, in that it can be probed through
interaction with just one of its elements.

The paper is organized as follows. In Sec. II we present our
state reconstruction scheme applied to a single mechanical os-
cillator, a simple example which provides a gentle introduction
to the more technical case of a network. We start by showing
how the dynamics of interest can be solved analytically, then
discuss how the interaction profile can be designed to encode
a chosen mechanical quadrature in the cavity light mode.
Finally, we conclude the section by explaining how to measure
indirectly the light mode through collection of the cavity
output field. Section III presents the main results of this paper,
and generalizes our reconstruction procedure to a network
of mechanical oscillators. We provide sufficient conditions
under which the quantum state of the entire network can
be reconstructed, as well as an explicit analytical procedure
to design the interaction profile. Section IV deals with the
important special case of Gaussian states, and provides a
numerical simulation of our scheme for the realistic case of
a finite number of measurements. In Sec. V we present some
ideas about extending our state reconstruction scheme to the
single-photon regime of optomechanics. Finally, we draw our
conclusions in Sec. VI.

II. A SINGLE OSCILLATOR

A. Optomechanical model

Our starting point is the so-called linearized optomechani-
cal interaction, which involves a cavity mode with annihilation

operator a and an oscillating mirror whose excitations are
described via a second annihilation operator b. The cavity is
pumped by a resonant classical field, and in a frame rotating
with the cavity frequency the Hamiltonian reads

H = ωmb†b + g(t)X(b + b†), (1)

where ωm is the mechanical oscillator frequency, g(t) is a
time-dependent coupling constant controlled via the amplitude
of the classical driving field, and X = (a + a†)/

√
2 is a

cavity quadrature operator. Notice that an alternative scheme
to generate Hamiltonian (1) with tunable coupling has been
recently reported in [41]. Moving to an interaction picture
defined by H0 = ωmb†b, the Hamiltonian becomes

HI = g(t)X(be−iωmt + b†eiωmt ). (2)

The latter satisfies the Schrödinger equation U̇ = −iHIU ,
which can be solved via the ansatz U = eiφD(Xβ) [with
D(α) ≡ eαb†−α∗b the displacement operator of the mechanical
mode], where φ is assumed to be a time-dependent opera-
tor that commutes with the mechanical degree of freedom
(namely, [φ,b] = [φ,b†] = 0), whereas β is a time-dependent
complex number. Then

U̇ = iφ̇U − X(β̇β∗ + ββ̇∗)U − Xβ̇∗Ub. (3)

Using the unitarity of U and the Baker-Campbell-Hausdorff
formula, note that

U̇U † = iφ̇ − X2(β̇β∗ + ββ̇∗) − Xβ̇∗UbU †, (4)

UbU † = b − Xβ∗. (5)

Then the Schrödinger equation implies

iφ̇ + iX2Im(ββ̇∗) + Xb†β̇ − bβ̇∗

= −ig(t)Xbe−iωmt + b†eiωmt . (6)

Matching coefficients produces a set of simultaneous equa-
tions:

β̇ = −ig(t)eiωmt , φ̇ = −X2Im(ββ̇∗). (7)

For an interaction time τ , one has the solutions

β = −i

∫ τ

0
g(s)eiωmsds, (8)

φ = −X2
∫ τ

0
Im(ββ̇∗)ds. (9)

Finally one can rewrite U = eiψX2
D(Xβ) with

ψ =−
∫ τ

0
Im(ββ̇∗)ds. (10)

Therefore, the dynamics is described by a mechanical dis-
placement operator whose amplitude depends on the in-
phase quadrature operator of the optical mode modified by
a quadratic term on the optical mode.

For the purposes of this reconstruction strategy, the dynam-
ics can be greatly simplified by constructing the interaction
profile in such a way as to eliminate the quadratic term (i.e.,
setting ψ = 0) [57].
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B. State reconstruction of a single oscillator

We will now show that a link can be established between
the cavity quadrature operator P = i(a† − a)/

√
2 (namely, the

canonical momentum operator conjugated to X—momentum
for brevity) and an arbitrary mechanical quadrature. Then, we
will use these results to illustrate how the full reconstruction
of the oscillator state can be carried out. Let the initial state of
light and mechanics be ρ = |0〉 〈0| ⊗ ρ0 with |0〉 the vacuum
state of the optical mode (in the displaced frame of reference)
and ρ0 the mechanical state to be reconstructed. For the scope
of the present discussion it is convenient to switch to the
Heisenberg picture. After an interaction time τ , the cavity
field’s momentum evolves into

P (τ ) ≡ U †PU = P −
√

2|β|Qθ, (11)

where Qθ ≡ (be−iθ + b†eiθ )/
√

2 is the arbitrarily chosen
mechanical quadrature. The phase of Qθ is controlled by the
parameter β, as per θ = arg(β) + π

2 . We rescale the observable
as

Qr ≡ − P (τ )√
2|β| = Qθ − P√

2|β| , (12)

from which we can easily deduce a relationship betweenPr(q),
the (measurable) probability distribution of Qr, and Pθ (q), the
probability distribution of Qθ in the state ρ0. Such distributions
are related by the convolution integral

Pr(q) =
∫ ∞

−∞
dq ′ Pθ (q ′)

√
2

π
|β|e−2|β|2(q−q ′)2

, (13)

where the Gaussian factor is due to the second term in Eq. (12)
(recall that P exhibits vacuum statistics on our initial state).
As the displacement parameter |β| increases, the measured
distribution Pr(q) provides a better approximation to Pθ (q).
In the limit |β| → ∞ one would have Pr(q) → Pθ (q). Note,
however, that the magnitude of |β| will be limited by physical
constraints such as the maximum achievable coupling strength
maxt |g(t)| and the requirement to keep interaction times
short enough to avoid decoherence. For finite |β| it is in
principle possible to recover Pθ (q) from Pr(q) via standard
deconvolution techniques, due to the fact that the Gaussian
distribution in Eq. (13) is fully known.

As an alternative to the deconvolution approach, one may
also exploit Eq. (12) to establish a relation between the
statistical moments of the measured operator Qr and the
mechanical moments 〈Qk

θ 〉,
〈
Qn

r

〉 =
n∑

k=0

(
n

k

) 〈
Qn−k

θ

〉 ( −1√
2|β|

)k

Vk, (14)

where Vk indicates the statistical moments of P in the vacuum
state, Vk ≡ 〈0| P k |0〉, and

Vk =
{

0 k odd
1√
π
�

(
k+1

2

)
k even

, (15)

where � is the Euler-Gamma function. Equation (14) tells us
that, having experimentally determined 〈Qj

r 〉 (j = 1, . . . ,n),
we may calculate 〈Qj

θ 〉 (j = 1, . . . ,n) from the data by
inverting an n × n linear system of equations. As discussed
in Sec. IV, this second approach is particularly convenient

when ρ0 is a Gaussian state, in which case the knowledge of
first and second moments of Qθ (for several values of θ ) is
sufficient for full state reconstruction.

Let us now illustrate the quantum state reconstruction
protocol. First, the user selects a quadrature Qθ to reconstruct.
This choice determines the value of arg(β) as shown above.
The modulus of β along with the coupling g(t) and interaction
time τ are chosen such that ψ = 0. This can be accomplished
by setting

g(t) = ωm

2π
(Ae−iωmt + A∗eiωmt + Be−2iωmt + B∗e2iωmt )

(16)

and using Eqs. (8) and (9) along with the choice of arg(β)
and the condition ψ = 0 to solve for the coefficients A and
B. After an interaction time τ , the cavity field has assimilated
the information from the mechanical mode and is ready to
be measured. At this point the coupling is switched off, the
measurement is performed, and the result is recorded. The
system must be reset and the procedure repeated sufficiently
many times such that the sampling of the measurement
results is reliable. The probability distribution Pr(q) and/or the
associated moments may then be estimated from the collected
data. Subsequently one may proceed to the deconvolution of
Pr(q), [or the inversion of Eqs. (14)] in order to estimate the
distribution Pθ (q) (or a finite number of its moments). The
procedure must then be repeated for a sufficient number of
different quadratures (i.e., different values of θ ), such that the
state ρ0 may be recovered via the standard inversion techniques
of quantum tomography [4–6,42].

C. Measuring the cavity through its output field

Note that the scheme presented so far relies on the
measurement of the intracavity field, which is typically not
directly accessible. However, by making use of the small
but inevitable transmittance of the cavity mirrors, one may
measure the associated output fields and infer the intracavity
field properties via input-output theory [43]. For the case under
consideration, assume that the emission rate of the cavity κ is
small enough as to be negligible during the reconstruction
protocol described so far (i.e., κτ � 1). It is also convenient
to assume that such emission occurs through only one of the
two cavity mirrors, so that it may be more easily collected. At
time τ , we assume that the optomechanical coupling has been
switched off, and that the cavity obeys the standard quantum
Langevin equation [43]

ȧ − κ

2
a = −√

κaout, (17)

the formal solution of which can be arranged as

a(τ ) = e− κ
2 (tf −τ )a(tf ) + √

κ

∫ tf

τ

e− κ
2 (t ′−τ )aout(t

′)dt ′. (18)

This is a Heisenberg-picture relation indicating that the full
information about the cavity field (at the time τ of interest)
is shared between the output field modes and the cavity field
at the later time tf . Observe that for tf � κ−1 the desired
information is fully encoded in the output field. Formally, this
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amounts to the expression

a(τ ) = √
κ

∫ ∞

τ

e− κ
2 (t ′−τ )aout(t

′)dt ′ ≡ fout, (19)

where the bosonic operator fout represents an appropriate
combination of output field modes that can be measured
directly. Note that, so far, we have considered an idealized
cavity in which all internal losses are associated with emission
into detectable modes. In the presence of genuine optical
losses, which irreversibly deteriorate the amount of accessible
information, Eq. (19) must be modified as follows [44,45]:

fout = √
1 − ε a(τ ) + √

ε avac, (20)

where 0 < ε < 1 is the probability of single-photon loss,
while avac is a bosonic mode accounting for the associated
added noise: it commutes with fout and is assumed to display
vacuum statistics. Constructing the usual quadrature operators
we obtain the relation Pout = √

1 − ε P (τ ) + √
ε Pvac, which

can be exploited to obtain relationships analogous to Eqs. (13)
and (14), linking the measurement statistics of Pout to those of
P (τ ). In particular, the measured moments read

〈
P n

out

〉 =
n∑

k=0

(
n

k

)
(1 − ε)

n−k
2 ε

k
2 Vk 〈P n−k(τ )〉 . (21)

The moments 〈P n
out〉 can be estimated via homodyne detection,

so that an inversion of the equations above allows one to
retrieve the moments 〈P n(τ )〉. As outlined in Sec. II B, the
latter can then be rescaled to obtain the moments of Qr, which
in turn allows one to retrieve the desired mechanical quadra-
tures. Alternatively, the measured probability distribution of
Pout may be deconvoluted to obtain that of P (τ ), if the noise
parameter ε is known. Appendix A details examples of the
reconstruction when the noise parameter is significant. The
primary effect is to increase the number of measurements
required for a good representation of 〈P n

out〉.
The next significant noise factor is that of damping of the

mechanical oscillator at rate �. In the regime in which the
reconstruction protocol takes place the mechanical damping
rate is very small compared to the cavity decay rate. To clarify,
we operate in the resolved sideband regime which requires
that � � κ � ωm. We thus conclude that the effect of the
mechanical damping over the time scale of the interaction
with the cavity field is negligible. Furthermore, the explored
examples of g(s) (Figs. 4 and 5) required for reconstruction
show that the reconstruction is effective over the course of a
few mechanical periods.

III. A NETWORK OF OSCILLATORS

A. Hamiltonian and time evolution

The protocol described above can be generalized to the
case of a network of N harmonically coupled oscillators,
the mechanical excitations of which are described by a
set of bosonic operators b1,...,bN , with [bi,b

†
j ] = δij . Only

one mechanical oscillator, say b1, is coupled to the optical
mode a (see Fig. 1). The Hamiltonian for such a system

reads H = H0 + Hint,

H0 =
∑

n

ωnb
†
nbn +

∑
n<m

Jnm(bnb
†
m + b†nbm)

+
∑
n<m

Knm(bnbm + b†nb
†
m), (22)

Hint = g(t)X(b1 + b
†
1), (23)

where ωn, Jnm, and Knm are the bare frequencies and coupling
constants characterizing the network—which are assumed to
be known in advance [46,47]. By Williamson’s theorem, the
mechanical portion of our system can be brought into diagonal
form by a symplectic transformation S, which has the general
structure

S =
(

S1 S2

S∗
2 S∗

1

)
. (24)

In terms of the mechanical normal modes defined by S, the
Hamiltonian reads

H0 =
∑

n

νnd
†
ndn, (25)

Hint = g(t)X
∑

n

(Gndn + G∗
nd

†
n), (26)

where Gn = (S1 − S2)∗n1, dn are the annihilation operators for
the normal modes ([dn,d

†
m] = δnm), and νn are the associated

eigenfrequencies. Moving to the interaction picture defined by
H0, one has

HI = g(t)X
∑

j

hj (t), (27)

where hj = Gjdje
−iνj t + G∗

j d
†
j e

iνj t . These operators have
the property that [hj (t),hj ′(t ′)] = 0 ∀j �= j ′. This allows the
unitary for the system to be written as U = ⊗juj (t), with each
uj satisfying the equation

u̇j = −ihj (t)uj (t), (28)

with the initial condition uj (0) = I. Following Sec. II, these
equations can be solved by the ansatz

uj = eiφj D(Xβj ), (29)

with φj commuting with all involved mechanical modes. There
are two coupled equations associated with each j ,

φ̇j = −iX2Im(β̇jβ
∗
j ), β̇j = −ig(t)G∗

j e
iνj t , (30)

which have solutions

βj = −iG∗
j

∫ t

0
g(s)eiνj sds, (31)

φj = −iX2
∫ t

0
Im(βj β̇

∗
j )ds. (32)

Then

U = ei�X2
D(Xβ), (33)

where � = ∑
j ψj , β = (β1β2 . . . βN )� and

ψj =−
∫ t

0
Im(βj β̇

∗
j )ds. (34)

053811-4



QUANTUM STATE RECONSTRUCTION OF AN OSCILLATOR . . . PHYSICAL REVIEW A 94, 053811 (2016)

The evolution of this more general system bears a clear
resemblance to the single oscillator case. First, it comprises a
quadratic term on the optical mode that depends on the global
phase �. We will set this to zero, extending the method used
for the reconstruction of one oscillator (see below). Second,
we can recognize an X-conditioned multimode displacement
on the mechanical modes. In order to proceed with the state
reconstruction, it is necessary to introduce two assumptions
on the properties of the network. These are that (1) Gn �= 0 ∀n

and (2) the spectrum of normal modes {νj } is nondegenerate.
These assumptions embody the ability of the cavity field
to interact with, and distinguish, all the normal modes of
the network [see Eq. (26)]. A further practical requirement
is that the interaction time should be sufficiently long to
allow the resolution of modes that vibrate with similar
frequencies. The dynamics described here is reminiscent of
the one derived in [40], where an oscillator network is probed
with an auxiliary two-level system rather than with a cavity
field.

B. Quantum state reconstruction

Similarly to the single oscillator case, let the initial state
of the system be the factorized state ρ = |0〉 〈0| ⊗ ρ0 where
ρ0 now indicates an arbitrary state of the oscillator network.
Reconstruction proceeds as before, with the following modifi-
cation: there are now multiple mechanical quadratures, defined
by Qθj

= (dj e
−iθj + d

†
j e

iθj )/
√

2. Note that these quadratures
are defined in terms of the normal mode operators, so that the
state is reconstructed in the normal-mode basis. However, a
representation in terms of the original modes b1,...,bN can
be obtained through the inverse symplectic transformation
S−1, corresponding to a reshaping of the reconstructed Wigner
function. As before, let us work in the Heisenberg picture, and
let us indicate by τ the interaction time in which the controlled
displacement is implemented. After the interaction, the cavity
quadrature P evolves into

P (τ ) = P −
√

2
∑

j

|βj |Qθj
, (35)

where θj = arg(βj ) + π
2 . By proceeding as for the case of

a single mechanical oscillator, one may write a convolution
integral connecting the probability distribution of P (τ ) to
that of the mechanical quadratures. Since the choice of
each quadrature Qθj

is determined only by the phase of
βj , by varying |βj | in Eq. (35) it is possible to measure
a sufficient number of linearly independent observables to
enable a deconvolution, and hence estimate the multivariate
probability distribution of (Qθ1 ,...,QθN

). As we will be
primarily interested in Gaussian states, however, here we focus
on the reconstruction of arbitrary moments of the mechanical
quadratures, rather than their probability distribution. From
Eq. (35), it follows that the moments of P are linked to the
mechanical quadrature moments by

〈P n〉 =
∑
{kj }

(
n

k0,k1,...kN

)
Vk0

〈 ∏
1�j�N

(−√
2|βj |Qθj

)kj

〉

(36)

with the sum over all permutations of integers (k1,...,kN )
such that k1 + k2 + · · · + kN = n, and we recall that Vk0 ≡
〈0| P k0 |0〉 is given in Eq. (15). This system of simultaneous
equations is underdetermined; however, we can exploit the
freedom in |βj | to generate as many independent extra equa-
tions as necessary, involving the same variables but different
coefficients. This results in a linear system of equations that,
once inverted, provides an arbitrary moment of the mechanical
network quadratures. For Gaussian states, we recall that first
and second moments will suffice to fully characterize the
mechanical quantum state.

As in Sec. II B, in order to (i) reconstruct an arbitrary
quadrature 〈Qθj

〉 and (ii) reduce the dynamics to a multimode
displacement (i.e., set � = 0) [58], it is crucial to properly
select the interaction profile g(s). Let us define the latter
as

g(s) = i

t

[∑
k

(
gk

G∗
k

e−iνks − g∗
k

Gk

eiνks

)
+ he−iωs − h∗eiωs

]

(37)

where the additional term outside the sum does not depend
on any frequency of the system (i.e., ω is arbitrary). From
Eq (31), it follows that(

β

β∗

)
= R

(
G
G∗

)
+ S

(
h

h∗

)
, (38)

where

R =
(

N M

M∗ N∗

)
, (39)

with matrix elements

Nnm = G∗
n

tG∗
m

∫ t

0
ei(νn−νm)sds, (40)

Mnm = G∗
n

tGm

∫ t

0
ei(νn+νm)sds, (41)

G is the vector of interaction profile coefficients

G = (g1, g2, . . . , gN )�, (42)

and

S =
(

P Q

P ∗ Q∗

)
, (43)

where

Pn = G∗
n

t

∫ t

0
ei(νn−ω)sds, (44)

Qn = G∗
n

t

∫ t

0
ei(νn+ω)sds, (45)

with S being a rectangular matrix. For long interaction times
the matrix R is invertible. It can be shown that

lim
t→∞ R = I ⇒ lim

t→∞ det(R) = 1. (46)

This implies that there exists an interaction time such that
det(R) > 0 and hence R is invertible. Then, as β is chosen, the
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coefficients G are determined via(
G
G∗

)
= R−1

[(
β

β∗

)
− S

(
h

h∗

)]
. (47)

Equations (37) and (47) set the interaction profile as a function
of β and h. The additional constraint to be taken into account
is that the quadratic parameter � should vanish. As shown in
Appendix B, this amounts to a quadratic equation in {h,h∗}
which can be solved numerically.

IV. GAUSSIAN STATE RECONSTRUCTION

A special case of the reconstruction strategy applies when
the state ρ0 to be reconstructed is Gaussian. Such states
are characterized completely by the first- and second-order
moments of two conjugate quadratures (per mode) and the
correlations between them. The collection of these terms is
directly accessible to the reconstruction scheme outlined here.
In other words, if one knows already that the state is Gaussian,
one does not have to reconstruct higher-order moments.

These relevant cases give the opportunity to show explicitly
the functioning of the protocol here introduced and to
exemplify its requirements. In particular, we will provide
examples of the required time-dependent coupling g(t) in
units of the mechanical frequency (or smallest eigenfrequency
as appropriate), together with estimates of the protocol’s
performance in terms of fidelity and of the number of
measurements necessary to determine the moments associated
with each mechanical quadrature.

Figures 2 and 3 show the behavior of the fidelity between
the reconstructed state and the original state ρ0. In order to
obtain these plots we proceeded as follows. For the single mode
case of Fig. 2, we considered squeezed thermal states with
temperature T and squeezing parameter r [48]. We set the total
interaction time τ = 2π/ωm and fixed the mechanical quadra-
tures to be reconstructed (Qθ with θ = 0,±π/4,π/2 suffice in
this case). The generic interaction profile is given by Eq. (16).
The selection of the mechanical quadrature—together with the
additional requirement of deleting the quadratic term eiψX2

—
determine as per Eqs. (8) and (10) the specific interaction
profile g(t). The latter is reported in Fig. 4 for the four cases of

0 1 2 3 4 5
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0.98

102
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FIG. 2. The fidelity F of a single mode thermal state (T = 1)
(left) and a single mode squeezed thermal state (T = 1, r = 0.2)
(right) against the number of measurements N in each collection of
measurement results determining 〈P n〉. The fidelities are calculated
by comparing the reconstructed covariance matrix with the one of ρ0

(see text). In order to exemplify the performance of the reconstruction
method, we evaluated the fidelity several times for a fixed N . The
points represent the average fidelity thus obtained, whereas the error
bars give the respective standard deviation.
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FIG. 3. The fidelity F of a two mode thermal state (T = 1.5)
(left) and a two mode squeezed thermal state (T = 1.5, r = 0.2)
(right) of the normal modes of a network interacting with a springlike
coupling against the number of measurementsN in each collection of
measurement results determining 〈P n〉. The fidelities are calculated
and illustrated as in Fig. 2

interest θ = 0,±π/4,π/2. Notice that the required tunability
in time is of the order of the mechanical frequency [see also
Eq. (16)] and that the profiles are clearly distinguishable, thus
indicating robustness against small perturbations. This range
of interaction strengths is typically available experimentally.
However, due to experimental limitations, it is also possible
that, given a fixed β, the required magnitude of g(s) is too high.
This obstacle can be circumvented by allowing for a longer
interaction time, given that the magnitude of g(s) is inversely
proportional to it [see Eq. (37)]

For a fixed number of measurements N , we numerically
sampled 〈Qm〉 and 〈Q2

m〉 for the four choices of Qθ . Then,
an inversion of Eq. (14) allowed for the reconstruction of the
first and second moments of Qθ from which the covariance
matrix of the original state can be reconstructed. We then used
the latter and the covariance matrix of ρ0 in order to obtain
the fidelity F between the reconstructed state and the original
one [49,50]. Figure 2 shows that, regardless of the state to be
reconstructed, a few hundred measurements N are sufficient
to achieve high fidelity.

For the two mode case, we considered two mode squeezed
thermal states. We considered total interaction times τ >

1/min(νj ) and the mechanical quadratures given by the set of
pairs {(θ1,θ2)} = {(−π/2,−π/2), (0,0), (0,−π/2), (−π/2,0),
(−3π/4,−3π/4), (−π/4,−π/4)}. A corresponding set of
interaction profiles can be derived using the generic interaction
profile of Eq. (37), and calculating the coefficients following

ωmt

FIG. 4. Interaction profiles for the case of a single mode recon-
struction. The various θ suffice to reconstruct a single mode Gaussian
state.
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νt

g
(t

)/
ν

FIG. 5. Interaction profiles for the case of a two mode recon-
struction. The various � suffice to reconstruct a two mode Gaussian
state. Each � corresponds to a pair {(θ1,θ2)} = {(−π/2,−π/2),
(0,0), (0,−π/2), (−π/2,0), (−3π/4,−3π/4), (−π/4,−π/4)}. The
parameters of the interaction profiles depend on the choice of
interaction times τ . These were chosen independently for each profile
� in order to promote their distinguishability. These times were
τ = 5/ν, 15/ν, 3/ν, 25/ν, 25/ν, 3/ν, respectively, where ν is the
smallest eigenfrequency of the two mode network.

Eq. (47). These profiles have features mirroring those of
the single mode case; however, the interaction time is not
identical for each curve, to improve the distinguishability
of each profile (see Fig. 5). The two modes have equal
frequencies ω = 2 (and therefore distinct eigenfrequencies)
and are coupled via a springlike interaction [Eq. (23)] with
coefficients J = K = 0.7.

Again, for a fixed number of measurements N and for
each choice of {(θ1,θ2)}, the quadrature P is sampled in
order to estimate the second-order moments of the mechanical
quadratures. In this case, however, extra equations must be
generated to make the system in Eq. (36) solvable. Each
extra equation costs an additional N measurements. As
can be expected, by increasing the number of oscillators to
reconstruct, the number of required measurements increases.
However, the latter is not significantly affected by the state to
be reconstructed.

Clearly, tests of non-Gaussianity are also possible within
this scheme. In fact, apart from a full reconstruction of the
state as explained in Secs. II and III, one could check the
non-Gaussian character of the state ρ0 by reconstructing only
a few higher-order moments and comparing them with the first
and second moments. This is a general feature of this scheme,
that it allows direct access to partial information of the state
without full tomography.

V. SINGLE PHOTON-PHONON COUPLING

In the previous sections, we have considered a system in
which the radiation-pressure interaction has been treated in the
linearized regime [see Eqs. (1) and (23)]. This is certainly the
situation that has been explored most in experiments to date—
both in the opto- and electro-mechanical settings—giving us
a clear motivation to focus on it. However, it is worthwhile to
briefly outline how our protocol can be modified to the case
in which the radiation-pressure coupling retains its nonlinear
character. Remarkably, the protocol modifies substantially in

this case, and it gives access directly to the characteristic
function of the network, as we will now see.

For brevity, we will only mention here the case of one
nonlinear interacting mechanical resonator b. Equation (1) is
thus changed into

H = ωca
†a + ωmb†b + g0a

†a(b + b†), (48)

which, in an interaction picture defined by the free terms,
becomes

HI = g0a
†a(be−iωmt + b†eiωmt ). (49)

The dynamics is solved using the same techniques as above,
producing a unitary operator

U = eiψN2
D(Nβ), (50)

where ψ and β retain their definitions from before and N =
a†a. We can see that now the dynamics is described by a
number-operator conditioned displacement of the mechanical
mode modified by a Kerr-like term on the optical mode. Given
a factorized initial state, ρ = |α〉 〈α| ⊗ ρ0, where |α〉 denotes
a coherent state, the characteristic function of the mechanical
state, χ (β) = tr{D(β)ρ0}, may be recovered from the first
moments of the cavity position and momentum operators.

Evolving the cavity’s position and momentum operators
for a time τ under this displacement operator produces the
following relations:

X(τ ) ≡ D(Nβ)†XD(Nβ) = X cosh β̂ + iP sinh β̂, (51)

P (τ ) ≡ D(Nβ)†PD(Nβ) = P cosh β̂ − iX sinh β̂ (52)

where β̂ = βb† − β∗b and X and P are defined as before. In
this regime of nonlinear coupling we do not have the tunable
coupling required to set ψ = 0 and therefore the Kerr term
cannot be avoided. Including this term, the first moments of X

and P are

〈X〉 = 〈α| e−iψN2
XeiψN2 |α〉 tr(cosh β̂)

+ i 〈α| e−iψN2
PeiψN2 |α〉 tr(sinh β̂), (53)

〈P 〉 = 〈α| e−iψN2
PeiψN2 |α〉 tr(cosh β̂)

+ i 〈α| e−iψN2
XeiψN2 |α〉 tr(sinh β̂). (54)

Taking the sum of these produces an expression involving
the characteristic function of the mechanical state, χ (β) =
tr{D(β)ρ0}:
〈X〉 + i 〈P 〉 = 〈α| e−iψN2

(X + iP )eiψN2 |α〉 χ (β) (55)

= 2αe−|α|2−iψ

(∑
n

|α|2(n−1)

(n − 1)!
ei2nψ

)
χ (β). (56)

Equation (56) above shows a direct link between the
expectation values of X and P and the value of the mechanical
characteristic function at point β. By exploring enough points
in the phase space it is then in principle possible to reconstruct
directly the characteristic function of the mechanical oscillator,
which in turn gives full information about its state. This feature
is very different with respect to the reconstruction procedure
outlined in the previous sections, and shares a much stricter
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resemblance with the protocol of [39,40]. In general, the
direct reconstruction of the characteristic function entails a
set of useful features which have been already outlined in
the literature. We refer the reader to [39,40] (and references
therein) for a detailed account.

We would like to emphasize here that the freedom to
explore phase space lies in the definition of β [Eq. (8)].
There are two parameters that one could in principle control:
the interaction time τ at which the measurement must be
performed and the optomechanical coupling strength g0. A
functional dependence on time for g0 would grant the greatest
control, but this is difficult to achieve experimentally. Its

definition is g0 = ωc

L

√
�

2mωm
, with m the mass of the oscillator

and L the length of the cavity. Since these parameters are
usually fixed, the only real freedom is in the interaction time.
As is clear from Eq. (8), changing the interaction time allows
exploration of only a ring in phase space, and not the entire
space. However, the partial information on the state from this
ring may still provide valuable details on the mechanical state.

VI. CONCLUSIONS

We have introduced a method to reconstruct an arbitrary
state of a harmonic network of mechanical oscillators. The
reconstruction strategy applies to any setting in which a
distinguished mechanical oscillator of the network is coupled
to a bosonic probe via a linearized interaction. Then, the main
feature of our reconstruction protocol is that by measuring a
single system (the probe) the state of the entire mechanical
network can be recovered. Given that the probe interacts with
one mechanical oscillator only, suitable countermeasures can
in principle be envisaged in order to screen the rest of the
network from sources of noise that are typically unavoidable
whenever a system is coupled to a probe. In this sense,
our method provides a minimally invasive configuration to
monitor a network of oscillators, contrary to a more standard
strategy in which each oscillator of the network is individually
measured. This is reminiscent of the approach reported in [40],
where a finite dimensional probe was considered. However,
in many settings it is more convenient to use an infinite
dimensional probe instead. As said, suitable experimental
platforms include opto- and electro-mechanical settings, where
linearized coupling at the quantum level has recently been
demonstrated between optical or microwave radiation and
a single mechanical oscillator [1–3]. The main feature that
differentiates our setting from the latter is that we consider,
rather than only one oscillator, a network of them. However,
first implementations of such systems have been reported
recently [19–21], thus providing a promising route towards the
realization of small opto- and electro-mechanical networks. In
addition, one can show that our protocol can be adapted to
configurations in which the mechanical oscillators, rather then
being directly coupled, interact only indirectly via a common
cavity mode [51–56].

In order to assess the performance of our method, we have
considered the relevant case in which the state to be recon-
structed is Gaussian. In particular, by giving a detailed analysis
of one and two mode cases, we have shown that the quality of
the method is oblivious to the details of the reconstructed state.

As one could expect, in order for the method to succeed with
high fidelity, the number of required measurements increases
with the number of modes. We have explored this feature
in some detail by numerically evaluating the fidelity for the
realistic case of a finite number of measurements, rather than
the limit of an asymptotically large number of measurements as
per our analytical results. In addition, we have also shown how
the detrimental effect of nonideal measurements can be taken
into account, by considering losses in the coupling between
the radiation probe and the mode that is actually measured.
Other noise mechanisms could certainly be at work in an
actual implementation of our protocol; however, they would
depend specifically on the platform under consideration and
an exhaustive analysis is outside the scope of the present work.

In view of the rapid progress in the development of
opto- and electro-mechanical technologies, we believe that
the method here introduced could prove useful in assessing the
generation of nonclassical states of a network of mechanical
oscillators, as well as its dynamics. This is of importance
in many aspects relevant to the development of quantum
technologies, where the quantumness of a system needs to
be assessed in detail while minimally compromising its state
and its coherent dynamics.
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APPENDIX A: EFFECT OF GENUINE OPTICAL LOSSES
ON SINGLE OSCILLATOR RECONSTRUCTION

In the plots of Fig. 2 it is assumed that all the opti-
cal information leaking from the cavity is measurable, or
equivalently that the intracavity field is accessible to direct
measurement. In a physical scenario, the losses described in
Eq. (20) must be taken into account. If the loss coefficient
ε is known, then the statistical moments of the intracavity
field can be recovered via Eq. (21). However, the effect of the
losses is to increase the number of measurements (sampling
size) required to accurately represent these moments. Figure 6
shows the same reconstruction as in Fig. 2 with additional
curves demonstrating this effect for various values of ε.

APPENDIX B: ELIMINATING THE QUADRATIC
TERM ei�X2

To write down explicitly the constraint � = 0, we start by
recalling

� = Im
∑

j

∫ τ

0
βj β̇j

∗
dt. (B1)
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FIG. 6. The fidelity F of a single mode thermal state (T = 1)
(left) and a single mode squeezed thermal state (T = 1, r = 0.2)
(right) against the number of measurement results determining
〈P n

out〉. The fidelities are calculated and illustrated as in Fig. 2. The
calculation is repeated for various values of the genuine optical losses
ε = 0,0.4,0.8, demonstrating that reconstruction is still possible but
requires a larger sampling of the observable Pout [see Eq. (21)].

Using the notation of Sec. III B, we may perform each integral
explicitly:

∫ τ

0
βj β̇j

∗
dt = (G G∗)

(
Aj Bj

Cj Dj

)(
G
G∗

)

+ (G G∗)

(
E+

j E−
j

G+
j G−

j

)(
h

h∗

)

+ (h h∗)

(
I+
j J−

j

J+
j I−

j

)(
G
G∗

)
+ (h h∗)Oj

(
h

h∗

)

where

Anm = 1

G∗
nG

∗
m

∫ τ

0
e−i(νj +νm)t

∫ t

0
ei(νj −νn)sdsdt, (B2)

Bnm = 1

G∗
nGm

∫ τ

0
e−i(νj −νm)t

∫ t

0
ei(νj −νn)sdsdt, (B3)

Cnm = 1

GnG∗
m

∫ τ

0
e−i(νj +νm)t

∫ t

0
ei(νj +νn)sdsdt, (B4)

Dnm = 1

GnGm

∫ τ

0
e−i(νj −νm)t

∫ t

0
ei(νj +νn)sdsdt, (B5)

E±
n = 1

G∗
n

∫ τ

0
e±i(νj ±ω)t

∫ t

0
ei(νj −νn)sdsdt, (B6)

G±
n = 1

Gn

∫ τ

0
e±i(νj ±ω)t

∫ t

0
ei(νj +νn)sdsdt, (B7)

I±
n = 1

G∗
n

∫ τ

0
e−i(νj ±νn)t

∫ t

0
ei(νj ∓ω)sdsdt, (B8)

J±
n = 1

Gn

∫ τ

0
e−i(νj −νn)t

∫ t

0
ei(νj ±ω)sdsdt, (B9)

and

O =
( ∫ τ

0 ei(νj +ω)t
∫ t

0 ei(νj −ω)sdsdt
∫ τ

0 e−i(νj −ω)t
∫ t

0 ei(νj −ω)sdsdt∫ τ

0 e−i(νj −ω)t
∫ t

0 ei(νj +ω)sdsdt
∫ τ

0 ei(νj +ω)t
∫ t

0 ei(νj +ω)sdsdt

)
. (B10)

Finally, we can exploit Eq. (47) to substitute the explicit expression for G as a linear function of β and h. Thus it is evident that
the constraint � = 0 amounts to a quadratic equation in {h,h∗}. We have not been able to prove that a solution exists in any
instance; however, the freedom in the modulus of βj should provide alternatives in case of possible pathological cases.
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[47] M. Guţă and N. Yamamoto, IEEE Trans. Autom. Control 61,

921 (2016).
[48] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in

Continuous Variable Quantum Information (Bibliopolis, Napoli,
2005).

[49] G.-S. Paraoanu and H. Scutaru, Phys. Rev. A 61, 022306
(2000).

[50] L. Banchi, S. L. Braunstein, and S. Pirandola, Phys. Rev. Lett.
115, 260501 (2015).

[51] M. Bhattacharya, H. Uys, and P. Meystre, Phys. Rev. A 77,
033819 (2008).

[52] G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt,
Phys. Rev. Lett. 107, 043603 (2011).

[53] D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter,
New J. Phys. 13, 023003 (2011).

[54] H. Seok, L. F. Buchmann, S. Singh, and P. Meystre, Phys. Rev.
A 86, 063829 (2012).

[55] A. Tomadin, S. Diehl, M. D. Lukin, P. Rabl, and P. Zoller,
Phys. Rev. A 86, 033821 (2012).

[56] A. Xuereb, C. Genes, G. Pupillo, M. Paternostro, and A. Dantan,
Phys. Rev. Lett. 112, 133604 (2014).

[57] The measurement of the cavity field in this case is the momentum
operator P . If ψ �= 0 the observable depends on this parameter
and is modified to L = −2ψX + P .

[58] If � �= 0 the observable is modified to L = −2�X + P .

053811-10

https://doi.org/10.1073/pnas.1105098108
https://doi.org/10.1073/pnas.1105098108
https://doi.org/10.1073/pnas.1105098108
https://doi.org/10.1073/pnas.1105098108
https://doi.org/10.1038/ncomms3295
https://doi.org/10.1038/ncomms3295
https://doi.org/10.1038/ncomms3295
https://doi.org/10.1038/ncomms3295
https://doi.org/10.1088/1367-2630/8/6/107
https://doi.org/10.1088/1367-2630/8/6/107
https://doi.org/10.1088/1367-2630/8/6/107
https://doi.org/10.1088/1367-2630/8/6/107
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature14672
https://doi.org/10.1038/nature14672
https://doi.org/10.1038/nature14672
https://doi.org/10.1038/nature14672
https://doi.org/10.1103/PhysRevLett.114.223601
https://doi.org/10.1103/PhysRevLett.114.223601
https://doi.org/10.1103/PhysRevLett.114.223601
https://doi.org/10.1103/PhysRevLett.114.223601
https://doi.org/10.1038/ncomms1993
https://doi.org/10.1038/ncomms1993
https://doi.org/10.1038/ncomms1993
https://doi.org/10.1038/ncomms1993
https://doi.org/10.1103/PhysRevLett.112.013602
https://doi.org/10.1103/PhysRevLett.112.013602
https://doi.org/10.1103/PhysRevLett.112.013602
https://doi.org/10.1103/PhysRevLett.112.013602
https://doi.org/10.1088/0953-4075/42/15/154009
https://doi.org/10.1088/0953-4075/42/15/154009
https://doi.org/10.1088/0953-4075/42/15/154009
https://doi.org/10.1088/0953-4075/42/15/154009
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1103/PhysRevLett.95.180602
https://doi.org/10.1103/PhysRevLett.95.180602
https://doi.org/10.1103/PhysRevLett.95.180602
https://doi.org/10.1103/PhysRevLett.95.180602
https://doi.org/10.1103/PhysRevE.87.012109
https://doi.org/10.1103/PhysRevE.87.012109
https://doi.org/10.1103/PhysRevE.87.012109
https://doi.org/10.1103/PhysRevE.87.012109
https://doi.org/10.1103/PhysRevE.91.042116
https://doi.org/10.1103/PhysRevE.91.042116
https://doi.org/10.1103/PhysRevE.91.042116
https://doi.org/10.1103/PhysRevE.91.042116
https://doi.org/10.1088/1367-2630/17/5/055013
https://doi.org/10.1088/1367-2630/17/5/055013
https://doi.org/10.1088/1367-2630/17/5/055013
https://doi.org/10.1088/1367-2630/17/5/055013
https://doi.org/10.1088/1367-2630/18/1/013009
https://doi.org/10.1088/1367-2630/18/1/013009
https://doi.org/10.1088/1367-2630/18/1/013009
https://doi.org/10.1088/1367-2630/18/1/013009
https://doi.org/10.1103/PhysRevLett.93.080402
https://doi.org/10.1103/PhysRevLett.93.080402
https://doi.org/10.1103/PhysRevLett.93.080402
https://doi.org/10.1103/PhysRevLett.93.080402
https://doi.org/10.1209/0295-5075/98/10009
https://doi.org/10.1209/0295-5075/98/10009
https://doi.org/10.1209/0295-5075/98/10009
https://doi.org/10.1209/0295-5075/98/10009
https://doi.org/10.1103/PhysRevX.4.031019
https://doi.org/10.1103/PhysRevX.4.031019
https://doi.org/10.1103/PhysRevX.4.031019
https://doi.org/10.1103/PhysRevX.4.031019
https://doi.org/10.1103/PhysRevLett.94.060503
https://doi.org/10.1103/PhysRevLett.94.060503
https://doi.org/10.1103/PhysRevLett.94.060503
https://doi.org/10.1103/PhysRevLett.94.060503
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevLett.106.090501
https://doi.org/10.1103/PhysRevLett.106.090501
https://doi.org/10.1103/PhysRevLett.106.090501
https://doi.org/10.1103/PhysRevLett.106.090501
https://doi.org/10.1103/PhysRevA.83.042335
https://doi.org/10.1103/PhysRevA.83.042335
https://doi.org/10.1103/PhysRevA.83.042335
https://doi.org/10.1103/PhysRevA.83.042335
https://doi.org/10.1088/1367-2630/14/12/125005
https://doi.org/10.1088/1367-2630/14/12/125005
https://doi.org/10.1088/1367-2630/14/12/125005
https://doi.org/10.1088/1367-2630/14/12/125005
https://doi.org/10.1103/PhysRevA.92.063843
https://doi.org/10.1103/PhysRevA.92.063843
https://doi.org/10.1103/PhysRevA.92.063843
https://doi.org/10.1103/PhysRevA.92.063843
https://doi.org/10.1103/PhysRevA.83.062120
https://doi.org/10.1103/PhysRevA.83.062120
https://doi.org/10.1103/PhysRevA.83.062120
https://doi.org/10.1103/PhysRevA.83.062120
https://doi.org/10.1103/PhysRevA.85.032334
https://doi.org/10.1103/PhysRevA.85.032334
https://doi.org/10.1103/PhysRevA.85.032334
https://doi.org/10.1103/PhysRevA.85.032334
http://arxiv.org/abs/arXiv:1605.08327
https://doi.org/10.1103/PhysRevA.40.2847
https://doi.org/10.1103/PhysRevA.40.2847
https://doi.org/10.1103/PhysRevA.40.2847
https://doi.org/10.1103/PhysRevA.40.2847
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1088/1367-2630/14/9/093046
https://doi.org/10.1088/1367-2630/14/9/093046
https://doi.org/10.1088/1367-2630/14/9/093046
https://doi.org/10.1088/1367-2630/14/9/093046
https://doi.org/10.1103/PhysRevLett.112.133605
https://doi.org/10.1103/PhysRevLett.112.133605
https://doi.org/10.1103/PhysRevLett.112.133605
https://doi.org/10.1103/PhysRevLett.112.133605
https://doi.org/10.1088/1367-2630/13/1/013019
https://doi.org/10.1088/1367-2630/13/1/013019
https://doi.org/10.1088/1367-2630/13/1/013019
https://doi.org/10.1088/1367-2630/13/1/013019
https://doi.org/10.1109/TAC.2015.2448491
https://doi.org/10.1109/TAC.2015.2448491
https://doi.org/10.1109/TAC.2015.2448491
https://doi.org/10.1109/TAC.2015.2448491
https://doi.org/10.1103/PhysRevA.61.022306
https://doi.org/10.1103/PhysRevA.61.022306
https://doi.org/10.1103/PhysRevA.61.022306
https://doi.org/10.1103/PhysRevA.61.022306
https://doi.org/10.1103/PhysRevLett.115.260501
https://doi.org/10.1103/PhysRevLett.115.260501
https://doi.org/10.1103/PhysRevLett.115.260501
https://doi.org/10.1103/PhysRevLett.115.260501
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevLett.107.043603
https://doi.org/10.1103/PhysRevLett.107.043603
https://doi.org/10.1103/PhysRevLett.107.043603
https://doi.org/10.1103/PhysRevLett.107.043603
https://doi.org/10.1088/1367-2630/13/2/023003
https://doi.org/10.1088/1367-2630/13/2/023003
https://doi.org/10.1088/1367-2630/13/2/023003
https://doi.org/10.1088/1367-2630/13/2/023003
https://doi.org/10.1103/PhysRevA.86.063829
https://doi.org/10.1103/PhysRevA.86.063829
https://doi.org/10.1103/PhysRevA.86.063829
https://doi.org/10.1103/PhysRevA.86.063829
https://doi.org/10.1103/PhysRevA.86.033821
https://doi.org/10.1103/PhysRevA.86.033821
https://doi.org/10.1103/PhysRevA.86.033821
https://doi.org/10.1103/PhysRevA.86.033821
https://doi.org/10.1103/PhysRevLett.112.133604
https://doi.org/10.1103/PhysRevLett.112.133604
https://doi.org/10.1103/PhysRevLett.112.133604
https://doi.org/10.1103/PhysRevLett.112.133604



