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Stabilization of vortex beams in Kerr media by nonlinear absorption
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We elaborate a solution for the problem of stable propagation of transversely localized vortex beams in
homogeneous optical media with self-focusing Kerr nonlinearity. Stationary nonlinear Bessel-vortex states are
stabilized against azimuthal breakup and collapse by multiphoton absorption, while the respective power loss is
offset by the radial influx of the power from an intrinsic reservoir. A linear stability analysis and direct numerical
simulations reveal a region of stability of these vortices. Beams with multiple vorticities have their stability
regions too. These beams can then form robust tubular filaments in transparent dielectrics as common as air,
water, and optical glasses at sufficiently high intensities. We also show that the tubular, rotating, and specklelike
filamentation regimes, previously observed in experiments with axicon-generated Bessel beams, can be explained
as manifestations of the stability or instability of a specific nonlinear Bessel-vortex state, which is fully identified.
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I. INTRODUCTION

Self-trapping of two-dimensional (2D) localized modes
(spatial solitons) in nonlinear diffractive media has been one
of central topics in nonlinear optics, with many ramifications
in other areas [1–3]. Belonging to this species of self-trapped
modes is the first example of solitons introduced theoretically
in nonlinear optics, viz., the Townes soliton [4] supported by
the cubic (Kerr) self-focusing nonlinearity. Later, counterparts
of the Townes soliton with embedded vorticity, i.e., tubular
vortical beams, were theoretically introduced [5]. Vorticity-
carrying hollow beams may find applications as conduits
guiding weak optical signals in all-optical data-processing
schemes [2] and as tweezers trapping small particles and
setting them in rotation [6].

Unlike 1D solitons, which are usually stable objects [2,7],
stability is a major issue for their 2D counterparts. The
common cubic self-focusing nonlinearity, which easily sup-
ports formal 2D solitons solutions, gives rise to the critical
collapse [8], which destabilizes the soliton families. For
this reason, the Townes soliton has never been observed in
the experiment. Multidimensional solitons with embedded
vorticity, alias vortex rings, are vulnerable to a still stronger
instability initiated by azimuthal perturbations, which splits
the ring into fragments [1].

Thus, the stabilization of multidimensional solitons is an
issue of great significance to theoretical studies, and creation
of the solitons in the respective physical settings is a challenge
to the experiment. The stabilization of fundamental and vortex
solitons by harmonic-oscillator trapping potentials, which do
not break the underlying spatial isotropy, has been theoretically
elaborated in detail [9,10]. Vortex stabilization was shown
to be possible with specific nonlinear terms, such as cubic
and quintic ones with opposite signs [11,12], or nonlocal
nonlinearities [13,14]. Their practical implementation requires
a careful search for suitable materials, such as liquid CS2

for the cubic-quintic nonlinearity [15] or lead-doped glass for
the thermal nonlocal nonlinearity [16]. On the other hand, a
recently proposed method, applying to binary systems with
spin-orbit coupling between the components, provides the

stabilization of solitons, combining fundamental and vortical
terms in their two components, in both the 2D [17] and 3D [18]
settings. A related topic is the stability of fundamental and
vortex solitons in dissipative media. Most often, complex
Ginzburg-Landau equations (CGLEs) with the cubic-quintic
nonlinearity are used to predict stable dissipative solitons and
spiral vortices [19,20].

A different scenario, closely connected to the phenomenon
of filamentation, was considered in Ref. [21], which addressed
the stationary propagation of nonlinear Bessel beams in media
combining self-focusing Kerr nonlinearity and nonlinear dis-
sipative terms accounting for multiphoton absorption (MPA).
The occurrence of MPA of different orders in usual dielectric
media, such as silica, water, or air, is a well-established fact.
MPA is a collapse-arresting mechanism, which is an essential
ingredient in the filamentation induced by powerful ultrashort
pulses [21–26]. Being weakly localized, these nonlinear beams
carry an unlimited amount of power, playing the role of the
intrinsic reservoir which supports an inward-directed radial
power flux balancing the nonlinear absorption around the
beam’s center. A drastic difference from the CGLE-based
models is that the propagation of these Bessel-like beams in
media with nonlinear losses may persist without any gain. Of
course, in a real experiment the power stored in any beam is
finite, but the propagation distance needed for its depletion
may easily exceed the length of the experimental sample,
thus making the model quite realistic. Nonlinear Bessel beams
play a crucial role in various experiments [25,26], including
filamentation with ultrashort pulsed Bessel beams [23], where
their nonlinear counterparts act as stable or chaotic attrac-
tors [27]. A qualitatively similar situation was demonstrated
in an experiment with an influx of atoms into a dissipative sink
embedded into a quasi-infinite reservoir [28].

More recently, vorticity-carrying nonlinear Bessel modes,
alias Bessel vortex beams (BVBs), with a hollow transverse
structure, were introduced theoretically [29,30]. Similarly to
the fundamental nonlinear Bessel beam [21], and also to
nonlinear Airy beams [31], stationarity is supported by an
inward-directed power flux balancing the losses. Subsequently,
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BVBs were realized experimentally in glass and employed
for laser-powered material processing [32]. Depending on the
input power and geometry, different propagation regimes fea-
turing tubular, rotating, and nonrotating specklelike filaments
were observed within the limits of the so-called Bessel distance
associated with the depletion of the reservoir [30,32].

In this paper we first show that BVBs may be completely
stable against the azimuthal breakup and collapse alike, in the
medium combining the focusing Kerr nonlinearity and MPA.
The stability, which is actually imposed by the MPA effect, is
predicted by the analysis of the linearized equations for small
perturbations and verified in direct numerical simulations.
The stabilizing effect of nonlinear absorption is known in
other contexts, such as the stabilization against radial and
temporal perturbations of zero-vorticity beams [26,27] and
light bullets [33], but not against the azimuthal breaking, to
which nonlinear vortex beams are vulnerable. We focus on the
ubiquitous cubic self-focusing, which, by itself, cannot support
any stable 2D patterns. Similar results can be readily obtained
for more general nonlinearities, since the existence of the
BVBs does not critically depend on the precise nonlinearities,
such as the order of MPA, or the precise from of the
Kerr nonlinearity (cubic, cubic-quintic,. . .) [21,29,30]. Thus,
we predict that stable BVBs can be created in almost any
transparent dielectric at high enough intensities.

In the light of the linear-stability analysis, we perform
diagnostic numerical simulations of axicon-generated vortex
Bessel beams propagating in nonlinear media that allow us
to propose a common explanation of the three observed
dynamical regimes [32]. In all three cases, there exists a
BVB that determines the dynamics in the Bessel zone after
the axicon. This BVB is specified unambiguously as one
preserving three characteristics of the linear Bessel beam that
would be formed about the middle of the Bessel zone in linear
propagation, namely, the cone angle, the topological charge,
and the inward radial power flux. The dynamics observed
in the Bessel zone corresponds to that expected from the
development of instability, if any, of that BVB. If this BVB
is stable (according to the linear-stability analysis), or its
instability is weak to develop over the Bessel distance, the
tubular regime is observed in the Bessel zone; otherwise,
the azimuthal symmetry breaking in the development of
instability, leading either to a rotatory or to a specklelike
filament regime, is observed in the Bessel zone.

II. NONLINEAR BESSEL VORTEX BEAMS IN KERR
MEDIA WITH MULTIPHOTON ABSORPTION

We consider the transmission of a paraxial light beam whose
electric field is E = Re{A exp[i(kz − ωt)]}, with complex
envelope A, carrier frequency ω, and propagation constant
k = nω/c (n is the linear refractive index and c the speed of
light in vacuum), in the Kerr medium with MPA. The evolution
of the envelope is governed by the nonlinear Schrödinger
equation

∂zA = i

2k
�rA + i

kn2

n
|A|2A − β(M)

2
|A|2M−2A, (1)

where (r,ϕ,z) are cylindrical coordinates, �r ≡ ∂2
r +

(1/r)∂r + (1/r2)∂2
ϕ , n2 > 0 is the nonlinear refractive index,

and β(M) > 0 is the M-photon-absorption coefficient. The
multiphoton order M is determined by the medium and the
light wavelength [34]. In air, for instance, M ranges from 3 to
8 in the wavelength range of 248–800 nm [23,35].

Nonlinear BVBs are solutions to Eq. (1) of the
form [29,30] As = a(r) exp [iφ(r) + isϕ + iδz], where real
amplitude a(r) > 0 vanishes at r → ∞, s = 0,±1,±2, . . . is
the vorticity, and, on the contrary to the usual vortex solitons [1]
(which do not exist in this model), the axial wave number shift
δ ≡ −kθ2/2 is negative, being associated with the conical
structure of the paraxial beam with the half-apex angle θ . We
define the scaled radial coordinate, propagation distance, and
envelope as

ρ ≡ kθr =
√

2k|δ|r, ζ ≡ |δ|z, Ã ≡
(

β(M)

2|δ|
) 1

2M−2

A, (2)

to rewrite Eq. (1) as

∂ζ Ã = i�ρÃ + iα|Ã|2Ã − |Ã|2M−2Ã, (3)

where

α ≡
(

2|δ|
β(M)

)1/(M−1)
kn2

n|δ| > 0 (4)

is determined by the medium properties at the light wavelength
and the cone angle. For example, in water at 527 nm,
with values n = 1.33, n2 = 2.7 × 10−16 cm2/W, M = 4, and
β(4) = 2.4 × 10−36 cm5/W3 [26], and with cone angles θ =
3◦, 2◦, 1◦, and 0.5◦, we obtain the respective values α � 0.76,
1.31, 3.30, and 8.31. Similar values of α are obtained for
other media at other wavelengths and are therefore considered
below. As follows from Eq. (3), the amplitude and phase of the
BVB’s field, Ãs = ã(ρ)eiφ(ρ)eisϕe−iζ , satisfy the equations

d2ã

dρ2
+ 1

ρ

dã

dρ
−

(
dφ

dρ

)2

ã + ã + αã3 − s2

ρ2
ã = 0, (5)

d2φ

dρ2
+ 1

ρ

φ

dρ
+ 2

ã

dφ

dρ

dã

dρ
+ ã2M−2 = 0. (6)

In the absence of nonlinearities, these equations give rise to the
linear Bessel beam ã(ρ)eiφ(ρ) = b0Js(ρ) with arbitrary b0 > 0.
In the presence of the nonlinear terms, nonlinear BVBs with
the same vortex core, i.e., ã(ρ)eiφ(ρ) � b0Js(ρ) at ρ small
enough, exist up to a maximum value of b0, 0 < b0 < b0,max,
where b0,max depends on α, as shown in Fig. 1(a). Thus, for
the given MPA order, M , and topological charge s, the BVB is
specified by the two parameters α and b0. A typical nonlinear
BVB intensity profile is shown in Fig. 1(b). Compared to the
linear Bessel vortex with the same b0, the rings increasingly
compress with the increase of α and feature a reducing contrast
as b0 approaches b0,max. The parameter b0 also controls the
peak intensity of the first ring, which is a growing function
of b0 for fixed α. Values of b0 of the order of unity describe
typical intensities in experiments where the interplay between
self-focusing and nonlinear absorption was observed to play an
essential role [26]. For example, with M = 4, s = 1, and α =
3.30, values b0 = 1.2 and 1.6 pertain, respectively, to BVBs
with cone angle θ = 1◦ and peak intensities 0.77 TW/cm2 and
1.16 TW/cm2 in water at 527 nm.
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FIG. 1. (a) For M = 4, BVBs with s = 0, 1, and 2 exist at b0 <

b0, max. The dependence of b0, max on α defined in Eq. (4), and relating
Kerr nonlinearity, nonlinear absorption, and cone angle, is shown in
the plot. (b) The dimensionless intensity profile |Ã|2 of the nonlinear
BVB with s = 1, α = 1, and b0 = 2 (solid curve), compared to the
intensity profile b2

0J
2
s (ρ) of the linear Bessel vortex with the same

radial profile at ρ → 0 (dashed curve).

Asymptotically at large radius ρ, a nonlinear BVB behaves
as a superposition of two Hänkel beams of different ampli-
tudes:

Ãs � 1
2

[
boutH

(1)
s (ρ) + binH

(2)
s (ρ)

]
eisϕe−iζ , (7)

where the amplitudes of the outward and inward Hänkel beams
satisfy |bin|2 − |bout|2 = 2π

∫ ∞
0 dρρã2M (ρ) to maintain the

equality of the net inward-directed power flux, |bin|2 − |bout|2,
and the power-loss rate in the beam’s core. The values of
the amplitudes |bin| and |bout| for each BVB can easily be
extracted from an analysis of its transversal intensity profile,
as explained in detail in Ref. [29].

We point out that the existence of these BVBs and their
properties do not critically depend on the optical properties of
the medium, such as the MPA order M , the coefficient β(M),
and the nonlinear index n2. These beams are also supported
in self-defocusing media, as well as in those with the cubic-
quintic nonlinearity [29]. Only details of the transversal profile,
the range of existence b0,max, and amplitudes of the Hänkel
components differ from case to case.

III. STABILITY ANALYSIS FOR SINGLE AND MULTIPLE
VORTICES, AND NUMERICAL VERIFICATION

Following the usual approach to the linear-stability anal-
ysis [1], we take a perturbed nonlinear BVB as Ã = Ãs +
ε[um(ρ)eiκζ+imϕ + v�

m(ρ)e−iκ�ζ−imϕ]eisϕ−iζ , where ε is an
infinitesimal amplitude of perturbations with eigenmodes
[um(ρ),vm(ρ)] and integer winding number m. The instability
takes place if there exists at least one eigenvalue with κI ≡
Im{κ} < 0. The linearized equations obtained by substituting
this ansatz in Eq. (3) are

(
H+ f

−f � −H�
−

)(
um

vm

)
= κ

(
um

vm

)
, (8)

where f ≡ [αã2 + i(M − 1)ã2M−2]e2iφ , and

H± ≡ d2

dρ2
+ 1

ρ

d

dρ
− (s ± m)2

ρ2
+ 1 + (2αã2 + iMã2M−2).

(9)

FIG. 2. (a,b) Dimensionless growth rates of unstable perturbation
modes versus α, for values of s, b0, and m indicated in the panels.
(c,d) The largest growth rate computed with step size h = 0.2
and increasing numbers of points in the numerical grid, N = 1000
(circles), 2000 (squares), 4000 (up triangles), 8000 (down triangles),
and 16 000 (rhombuses), for values of α at which the computed growth
rates significantly depend on N . For all perturbation winding numbers
m, the growth rates at large α quickly converge to positive values as
N increases, thus representing a genuine instability of the underlying
BVB. Instead, for smaller values of α the growth rates approach zero
as N increases, implying that the BVBs are stable in this case. The
insets additionally display the growth rates as functions of N for
particular values of α, indicating a decay of ∼1/N .

Solutions for um(ρ) and vm(ρ) must vanish at ρ → ∞,
being subject to the usual boundary conditions at ρ → 0:
um ∼ ρ|s+m| and vm ∼ ρ|s−m|. In the case of instability, the
brightest ring, and possibly the secondary one too, of a weakly
perturbed BVB is expected to break into fragments, the number
of which is equal to winding number m of the mode with the
largest growth rate [1].

The numerical procedure for solving Eq. (8) is more
difficult for BVBs than for familiar vortex solitons in
CGLEs [19,20] due to the weaker localization. Figures 2(a)
and 2(b) show the instability growth rates for the BVBs
with s = 1, two different values of b0, and varying α.
Figures 2(c) and 2(d) illustrate how these results are obtained
from the eigenvalue spectrum of Eq. (8) with radial derivatives
discretized on a radial mesh of N points of step size h and a
zero boundary condition at the truncation radius, ρtrun = Nh,
in the limit of h → 0 and N → ∞. No substantial difference
between the eigenvalues for different small values of h

was found at fixed Nh provided that the BVB profile was
adequately sampled. In Figs. 2(c) and 2(d) we then focus on
the effects of increasing Nh by fixing h and increasing N .
We note that weakly unstable modes produced by Eq. (8)
feature the slow exponential decay u,v ∼ eκI ρ/2 [26]; hence
they can be suitably reproduced by the truncated system if
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FIG. 3. For M = 4, s = 1, and b0 = 1.6, the transverse intensity
distributions, |Ã|2, of the initially perturbed vortex with (a) α = 1.6
at propagation distance ζ = 300, (b) α = 2.2 at ζ = 100, (c) α =
2.8 at ζ = 61.25, and (d) α = 4 at ζ = 15. The scaled coordinates
are (ξ,η) = √

2k|δ|(x,y). The numbers of fragments into which the
unstable vortices split are exactly predicted by the linear-stability
analysis.

Nh 	 1/|κI |. In other words, the smallest reliable growth
rate produced by the truncated system is estimated as ∼1/Nh.
To improve the accuracy for these small growth rates, we used
special routines to obtain eigenvalues of sparse matrices up to
32 000 × 32 000 for N = 16 000. The results of this analysis,
shown in Figs. 2(a) and 2(b), allow us to conclude that there
exist BVBs that are truly stable against small perturbations
(e.g., for M = 4 and s = 1 these are the BVBs with α � 1.1
for b0 = 1.2 and α � 1 for b0 = 1.6).

We have further checked these predictions in direct simu-
lations of Eq. (3) with the nonlinear BVBs initially perturbed
by random noise [using up to 3200 × 48 points in the (ρ,ϕ)
plane]. In all the cases, rings of unstable BVBs tend to
break into fragments moving along circular trajectories, whose
number is exactly equal to the winding number m of the largest
instability growth rate, as can be seen by comparing Fig. 3 to
Fig. 2(b). The larger the instability growth rate, the sooner the
BVB breaks. The mode competition observed in Fig. 3(c), with
the main ring splitting into two fragments and the outer ones
into four, implies that there are two perturbation eigenmodes
which are nearly equally unstable.

In contrast to the instability of the usual vortex solitons [1],
the number of circulating fragments in the small-perturbation
regime does not necessarily determine the outcome of the
instability development for large perturbations. For example,
the single [as predicted by Fig. 2(a)] circulating fragment in
Fig. 4(a) breaks into two in Fig. 4(b), and the two [also as
predicted by Fig. 2(a)] circulating fragments in Fig. 4(c) decay
into numerous randomly placed splinters, which appear and
disappear in the course of the propagation [see Fig. 4(d)].

FIG. 4. For M = 4, s = 1, and b0 = 1.2, the transverse intensity
distributions, |Ã|2, of the initially perturbed BVB with α = 3 at
propagation distances (a) ζ = 41.25 and (b) ζ = 91.25, and with
α = 6 at (c) ζ = 15 and (d) z = 100. These results demonstrate the
secondary breakup of fragments produced by the primary instability
of the vortices.

When the stability is predicted, the BVB absorbs the random
perturbation and propagates, keeping its shape, as long as the
simulations are run (up to ζ = 400).

Figure 5 summarizes the results of the stability analysis
for BVBs with s = 2 and s = 3, thus proving the existence
of stable nonlinear BVBs with multiple vorticities. A similar
situation is expected to take place at s > 3. Note that the previ-
ously elaborated settings, such as those in Refs. [9,10,17,18],
could not stabilize vortices with s > 1.

The mechanism that renders the vortices stable in the
present system can be understood from the results in Fig. 5,
where we have also plotted the instability growth rates for
nonlinear BVBs in the fully transparent medium, obtained by

FIG. 5. For M = 4, dimensionless growth rates of the most
unstable azimuthal modes of BVBs (solid curves) and of their
counterparts with the same parameters in the absence of absorption
(dashed curves). Panels (a) and (b) display the results for s = 2 and 3,
respectively. Inset in panel (a): Dimensionless radial intensity profiles
of the indicated stable (black curve) and unstable (gray dashed curve)
BVBs in media with and without absorption, respectively.
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setting artificially to zero all dissipative terms in the equations.
Naturally, the BVBs are always unstable in this case case. At
s = 2, b0 = 1.2, and α = 1, for instance, the BVB intensity
profiles obtained in the models without and with MPA are
almost identical [they cannot be distinguished on the scale of
the inset in Fig. 5 (a)], although the former vortex is unstable,
while the latter one is stabilized by the MPA.

In Refs. [30] and [32], stabilization is reported to occur
when the cone angle is increased, i.e., α is diminished, and this
observation is qualitatively explained as suppressed growth
of the modulation instability or nonlinear wave mixing at
these cone angles. The results of the linear-stability analysis in
Fig. 5 quantify the stabilizing effect of using large cone angles,
both with and without MPA. However, as seen in Fig. 5, the
stabilization by increasing the cone angle is never complete
if MPA is not considered, or, in other words, increasing the
cone angle cannot, by itself, produce completely stable BVBs
without MPA.

IV. INTERPRETATION OF THE TUBULAR, ROTATING,
AND SPECKLELIKE FILAMENT REGIMES IN
AXICON-GENERATED NONLINEAR BESSEL

VORTEX BEAMS

Finally, we analyze the experimental implications of these
results. We consider the usual arrangement in which a
Gaussian beam with embedded vorticity s is passed through
an axicon [23,27,30] or equivalent device to produce a conical
beam [32]. The optical field at the entrance of the nonlinear
medium, placed immediately after the axicon, is assumed
to be A = √

IG exp(−r2/w2
0) exp(−ikθr) exp(isϕ) [23,36],

where
√

IG is the amplitude of the Gaussian beam, w0

its width, and θ the cone angle imprinted by the axicon.
In our dimensionless variables, this field reads as ÃG =
bG exp(−ρ2/ρ2

0 ) exp(−iρ) exp(isϕ), where amplitudes and
lengths scale as in Eqs. (2). If the propagation after the axicon
were linear, a finite-power version of the linear Bessel beam
ÃB � bBJs(ρ) exp(isϕ) of intensity b2

B = πρ0e
−1/2b2

G [23,37]
would be formed at the axicon focus placed at w0/2θ from the
axicon or, in our dimensionless axial coordinate, at ρ0/4, half
of the Bessel distance ρ0/2.

For the zero-vorticity configuration (s = 0), it has been
recently shown [27] that, in the course of the nonlinear
propagation after the axicon, the zero-vorticity nonlinear
Bessel beam with the same cone angle as its linear counterpart,
and with amplitude b0 such that |bin| = bB , determines the
dynamics in the Bessel zone: If the nonlinear Bessel beam is
stable, a steady regime is observed, characterized by smooth
formation of the nonlinear beam and its decay afterwards; if it
is unstable, an unsteady regime is observed in the Bessel zone,
where the signatures of the development of the instability of the
unstable nonlinear Bessel beam are clearly identifiable [27].

Extensive numerical simulations allow us to conclude that
similar phenomenology is valid for vortex beams (s 
= 0). The
nonlinear BVB with the same cone angle and vorticity as
its linear counterpart, and with b0 such that the amplitude of
the inward Hänkel component is |bin| = bB , determines the
dynamics in the Bessel zone. This is demonstrated by the fact
that the azimuthal-symmetry-breaking dynamics in the Bessel
zone reproduces what is expected to follow from the stability or

FIG. 6. Transverse intensity distributions, |Ã|2, at the indicated
propagation distances for α = 1 (left), α = 3 (center), and α = 6
(right), in the presence of the four-photon absorption, produced
by axicons illuminated by vortex-carrying Gaussian beams with
ρ0 = 400 and s = 1, but different amplitudes: bG = 0.0402 (left),
0.0341 (center), and 0.030 (right), yielding Bessel amplitudes bB =
1.11, 0.94, and 0.829, respectively. The three nonlinear BVBs with
s = 1 and |bin|, matching these values of bB in samples with the
corresponding values of α and M , have the same parameter b0 = 1.2,
which can be identified using the method of Ref. [29].

instability of that specific BVB. Three representative examples
are shown in Fig. 6, and further details are reported in the
Supplemental Material [38]. The three illuminating Gaussian
beams, with embedded single vortex s = 1, ρ0 = 400, and
bG = 0.0402 (left), 0.0341 (center), and 0.030 (right), would
yield linear-Bessel amplitudes bB = 1.11, 0.94, and 0.829,
respectively, in linear propagation. These values have been
chosen such that, in media with M = 4 and α = 1, 3, and 6,
the nonlinear BVBs with |bin| = bB all three have b0 = 1.2, as
in Figs. 2(a) and 4. According to these figures, the BVB with
α = 1 is stable, while ones with α = 3 and 6 are unstable. In
the two latter cases, the inverse growth rates, or characteristic
length of development of the instability, are much shorter
than the length of the Bessel zone, ρ0/2. In the case of
the stability (left panels in Fig. 6 and more details in the
Supplemental Material [38]), the BVB with b0 = 1.2 and
α = 1 is smoothly formed at the axicon focus, corresponding
to distance ρ0/4 = 100, which is followed by its smooth decay.
In the unstable cases (central and right panels in Fig. 6,
see additional details in the Supplemental Material [38]),
the dynamics within the Bessel distance reproduces that of
the development of the instability leading to the azimuthal
breakup, starting from the small-perturbation regime predicted
by the linear-stability analysis in Fig. 2(a) and proceeding to
the large-perturbation regime displayed in Fig. 4. At α = 3,
a rotatory regime with one spot, further breaking into two, is
observed, as also seen in Figs. 4(a) and 4(b). At α = 6, the
instability is stronger, and the two rotating fragments quickly
convert themselves into randomly placed nonrotating spots, as
seen in Figs. 4(c) and 4(d).

These three situations closely resemble the quasistationary
and rotary regimes described numerically in Ref. [30] and
the quasistationary, rotary and specklelike regimes observed
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experimentally in Ref. [32]. In those works, the regime which
is associated with the formation of a BVB is supposed to
correspond to a stable BVB, and in Ref. [30] the rotary regime
is conjectured to be associated with either an unstable BVB
or the nonexistence of a BVB in the specific experimental
configuration. The respective BVB was not identified in either
case; therefore its stability cannot be studied to verify these
conjectures. The abovementioned representative examples, in
the light of the linear-stability analysis, reveal that all three
regimes admit a common explanation in terms of the stability
and instability of a specific nonlinear BVB, which is identified
as one preserving the cone angle and topological charge and
the amplitude b0 such that |bin| = bB . Since for the linear
Bessel beam bin = bout = bB , relation |bin| = bB states that the
amplitude of the inward Hänkel component is a third preserved
quantity in the nonlinear dynamics. We also note from Ref. [29]
that, for given M , α, and s, |bin| is a strictly growing function
of b0, from |bin| = 0 at low b0 up to |bin| = ∞ for b0,max [29].
Thus, there always exists a single nonlinear BVB satisfying
condition |bin| = bB .

For example, in the experimental observation of the
quasistationary, rotating, and specklelike regimes reported in
Fig. 4 of Ref. [32], the material constants, the cone angle,
and the three pulse energies allows us to identify the three
BVBs as those defined by M = 5, s = 3, α = 14.89, and
b0 = 0.368, 0.822, and 1.644. The stability analysis gives the
respective largest dimensionless growth rates 0.026, 0.245,
and 0.784 or, multiplying by |δ|, the growth rates 2.48, 23.4,
and 74.9 cm−1 in physical units. Comparing the associated
characteristic lengths of the instability development, 0.402,
0.043, and 0.013 cm, with the length of ∼0.072 cm of the
Bessel zone explains the nonoccurrence of the azimuthal
breakup as a lack of development of the BVB instability in the
first case, the rotating filaments in the second case as a primary
manifestation of the breakup of the BVB, and the random
filaments in the third case as full development of the instability.

Finally, the existence of truly stable nonlinear BVBs implies
that a tubular-beam propagation regime for beams passing the
axicon exists, being limited solely by the finite amount of
power stored in the reservoir, the depletion of which defines
the edge of the Bessel zone. Thus, the stable vortex tubules
may be extended indefinitely long by increasing the power
stock (e.g., by dint of the increase of ρ0).

V. CONCLUSIONS

We have proposed a new setting for the stabilization of
localized vortex beams in self-focusing Kerr media. The
inclusion of the nonlinear dissipative term accounting for

the MPA makes the nonlinear Bessel vortex beams stable.
As described earlier for the zero-vorticity situation [21], for
Airy beams [31], and, recently, for nonlinear Bessel vortex
beams [29,30], the concomitant MPA-induced power loss
is balanced by the radial flux from their intrinsic reservoir.
Stability regions for the nonlinear Bessel vortex beams have
been predicted by the linear-stability analysis and corroborated
by direct simulations. Stable states with multiple vorticities
have been found too.

Differently from preceding works, these stable vortices do
not require materials with “tailored” nonlinearities. They may
be common dielectrics, such as air, water, or standard optical
glasses, all featuring the ubiquitous Kerr nonlinearity and MPA
at sufficiently high intensities (tens of TW/cm2 in gases or a
fraction of TW/cm2 in condensed matter). This is probably the
reason why, on the contrary to previous proposals, the practical
implementation of BVBs precedes the demonstration of their
stability. Axicon-generated BVBs with finite power were
observed in Ref. [32] to propagate steadily within the Bessel
zone. The proof of the stability has important consequences for
these experiments and subsequent applications. The stability
implies, for example, that the steady regime can be extended
indefinitely long by simply enlarging the Bessel zone.

The stability analysis and diagnostic numerical simulations
also allow us to interpret the two other propagation regimes
observed in these experiments. We have concluded that the
nonlinear dynamics is always governed by a specific nonlinear
BVB, which we have fully specified. The quasistationary
regime in the Bessel zone is observed when this nonlinear
BVB is found to be stable in our linear-stability analysis or
is effectively stable over the finite length of the Bessel zone.
The rotary and specklelike regimes are observed when this
nonlinear BVB is found to be unstable, and the instability can
develop, depending on its growth rate and the length of the
Bessel zone. The azimuthal-symmetry-breaking dynamics in
the Bessel zone is just a manifestation of the evolution of the
unstable BVB. As an extension of this analysis, it may be of
interest to study the interaction between spatially separated
stable vortices in the same model, as well as the stability
of the tubular vortices against spatiotemporal (longitudinal)
perturbations.
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filaments in condensed media, Phys. Rev. A 74, 043813 (2006);
A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, and J. Solis,
Transverse nonlinear optics in heavy-metal-oxide glass, ibid.
77, 043808 (2008); S. D. Jenkins, F. Prati, L. A. Lugiato, L.
Columbo, and M. Brambilla, Cavity light bullets in a dispersive
Kerr medium, ibid. 80, 033832 (2009).

[25] P. Polesana, P. Faccio, D. Di Trapani, A. Dubietis, A. Piskarskas,
A. Couairon, and M. Porras, High localization, focal depth and
contrast by means of nonlinear Bessel beams, Opt. Express
13, 6160 (2005); P. Polesana, A. Dubietis, M. A. Porras, E.
Kucinskas, D. Faccio, A. Couairon, and P. Di Trapani, Near-field
dynamics of ultrashort pulsed Bessel beams in media with Kerr
nonlinearity, Phys. Rev. E 73, 056612 (2006).

[26] P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras,
A. Dubietis, A. Piskarskas, and P. Di Trapani, Observation of
Conical Waves in Focusing, Dispersive, and Dissipative Kerr
Media, Phys. Rev. Lett. 99, 223902 (2007).
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