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Quantum entanglement in mechanical systems is not only a key signature of macroscopic quantum effects
but has wide applications in quantum technologies. Here we propose an effective approach for creating strong
steady-state entanglement between two directly coupled mechanical oscillators (or a mechanical oscillator and
a microwave resonator) in a modulated optomechanical system. The entanglement is achieved by combining
the processes of a cavity cooling and the two-mode parametric interaction, which can surpass the bound on the
maximal stationary entanglement from the two-mode parametric interaction. In principle, our proposal allows
one to cool the system from an initial thermal state to an entangled state with high purity by a monochromatic
driving laser. Also, the obtained entangled state can be used to implement the continuous-variable teleportation
with high fidelity. Moreover, our proposal is robust against the thermal fluctuations of the mechanical modes
under the condition of strong optical pumping.
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I. INTRODUCTION

Quantum entanglement [1] is a cornerstone of quan-
tum physics and has attracted wide interest in quantum
technologies due to its potential applications in quantum
information science [2,3] and quantum metrology [4]. To
date quantum entanglement has been observed in various
physical systems [5], such as photonic [6], atomic or molecular
systems [7], and superconductor circuits [8], ranging from
microscopic systems to mesoscopic devices. It is desirable
to realize macroscopic mechanical entanglement, because
such entanglement might reveal the macroscopic quantum
effects [9] and then might possibly help us to clarify the
boundary between classical and quantum worlds [10]. Many
methods have been proposed to prepare quantum entanglement
in various mechanical systems [11–21].

Cavity optomechanics, exploring the interaction between
the electromagnetic and mechanical modes, has progressed
enormously in recent years [22–24]. It provides an alternative
avenue to entangle two mechanical oscillators by exploiting the
optomechanical radiation pressure [25–36], using an optome-
chanical interferometer [37–41], or the quantum interference
in optomechanical interfaces [42]. More recently, the method
of reservoir engineering is applied to the optomechanical
systems (OMS), in order to prepare strongly entangled me-
chanical modes in the steady state [43–45]. The main physical
idea is to engineer the dissipation of the mechanical modes
such that its steady state is the desired target state. Usually,
more than two driving lasers are required to obtain the desired
mechanical bath, which increases the difficulty of the practical
implementation of the entanglement proposals.

Here we present a method to generate strong steady-
state entanglement between two mechanical oscillators in
an OMS via a two-mode parametric interaction and cavity
cooling. On one hand, the two-mode parametric interaction
is induced by modulating an oscillator-oscillator coupling
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strength, which has been studied both theoretically [46,47]
and experimentally [48–50]. On the other hand, a red-detuned
monochromatic laser is applied to the cavity, which generates
strong linearized optomechanical coupling between the cavity
and mechanical modes. Interestingly, this monochromatic
laser, when combined with the parametric process, could
cool the mechanical system into a two-mode squeezed state
from an initial thermal state. We find that, near the optimal
detuning points, the entanglement strength can go beyond the
stationary entanglement limit, corresponding to a two-mode
squeezing coupling (i.e., ln2) [43], even at high temperature.
Compared with the previous studies, our proposal only
requires one driving laser and is robust against the thermal
fluctuations by increasing the driving power. The obtained
entangled state has high purity along with high entangled
strength, which ensures the implementation of the standard
continuous variable teleportation protocol with high fidelity.
Our proposal is general and can also be used to achieve the
hybrid entanglement between a mechanical oscillator and a
microwave resonator [see Fig. 1(c)].

This paper is organized as follows: In Sec. II, we introduce
the general aspects of our proposal, which is implemented in
an OMS with two directly coupled mechanical oscillators (or
a mechanical oscillator coupled with a microwave resonator).
Then we derive its effective Hamiltonian under strong optical
driving. In Sec. III, we study the steady-state entanglement
between two mechanical oscillators (or a mechanical oscillator
and a microwave resonator) and identify the optimal parameter
regime for the maximum entanglement strength. In Sec. IV,
we discuss the purity of the obtained entangled state and the
teleportation fidelity when it is used as the entangled resource
(“EPR channel”) in a continuous-variable teleportation proto-
col. Conclusions are given in Sec. V.

II. THE MODEL

We consider a three-mode system of bosons which couple
each other via the modulated interactions with the forms
of radiation pressure and bilinearity, as shown in Fig. 1(a).
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FIG. 1. (a) A three mode boson system for preparing strong
steady-state entanglement between modes b1 and b2. (b,c) The
implementations of the above model in an OMS. A cavity mode a

(driven by a laser with frequency ωd and amplitude εd ) couples to (b)
two interacted mechanical oscillators bj (j = 1,2) or (c) a mechanical
oscillator and a transmission line resonator (TLR) with a modulating
coupling strength λ(t). In panel (b), we assume that the cavity mode
a only couples to the first mechanical oscillator b1 directly because
b1 is totally reflected. Here g(t) indicates the modulated coupling
strength between the optical mode a and the mechanical mode b1.

This general model is applicable to the OMS and can be
used to prepare strong steady-state entanglement between
two mechanical oscillators [see Fig. 1(b)] or a mechanical
oscillator and a microwave resonator [see Fig. 1(c)]. Note that
modulating the optomechanical coupling strength can also be
used to enhance the photon-phonon interactions [51].

Without losing the generality, our model can be considered
as follows. Two mechanical oscillators (with frequencies
ωm1 and ωm2) interact with each other with a bilinear
coupling 2λ0cos(ωλt)(b

†
1 + b1)(b†2 + b2). A cavity mode (with

frequency ωa) is coupled to one of the mechanical modes with
an optomechanical coupling 2g0cos(ωgt)a†a(b†1 + b1). Note
that this assumption is valid when the mechanical oscillator
b1 is totally reflected. Otherwise, the cavity mode a also
will couple to the second mechanical oscillator b2 with the
similar optomechanical coupling formation. However this will
not change our result qualitatively, as shown in Sec. III. In
this paper, we mainly discuss the model only including the
interaction between the cavity mode a and the first mechanical
mode b1. Here ωλ and ωg (λ0 and g0) are the modulating
frequencies (amplitudes). We use a(a†) and bj (b†j ) (j = 1,2)
to denote the annihilation (creation) operators of the cavity
mode and the mechanical modes, respectively. The cavity
mode is driven by a monochromatic laser with frequency ωd

and amplitude εd (εd = √
2κP/�ωd is related to the input

power P and the cavity decay rate κ).
In a rotating frame with respect to the free Hamilto-

nian H0 = ωda
†a + ωgb

†
1b1 + (ωλ − ωg)b†2b2, and consider-

ing the parameters condition ωg, ωλ − ωg � g0,λ0, the system
Hamiltonian under the rotating-wave approximation (RWA)
can be written as (we set � = 1)

Htot = δaa
†a − g0a

†a(b†1 + b1) + εd (a† + a) + �1b
†
1b1

+�2b
†
2b2 + λ0(b†1b

†
2 + b1b2), (1)

where δa = ωa − ωd,�1 = ωm1 − ωg , and �2 = ωm2 +
ωg − ωλ are the corresponding frequency detunings.

Including the dissipation caused by the system-bath cou-
pling, the system dynamics is described by the Markovian
master equation

ρ̇ = −i[Htot,ρ] + κD[a]ρ +
∑
j=1,2

[γj (n̄thj + 1)D[bj ]ρ

+ γj n̄thjD[b†j ]ρ], (2)

where D[o]ρ = oρo† − (o†oρ + ρo†o)/2 (o is a normal anni-
hilation operator) is the standard Lindblad dissipative super-
operator for the damping of the cavity (which is surrounded
by a zero-temperature environment) and mechanical modes.
Here κ and γj are the cavity and the mechanical damping
rates, respectively, and n̄thj is the thermal phonon occupation
number.

Strong red-detuned driving on the cavity generates large
steady-state amplitudes in both the optical and mechanical
modes. Following the standard linearization procedure, we
can shift a and bj with their steady-state mean values
α and βj , i.e., a → α + a, bj → βj + bj . The steady-state
amplitudes α and βj can be derived by solving the following
equations:

�2β2 + λ0β
∗
1 = 0, (3a)

�1β1 − g0|α|2 + λβ∗
2 = 0, (3b)

(�a − iκ/2)α − 2g0αRe(β1) + εd = 0, (3c)

where we have dropped the terms containing γj because
γj � κ,�j ,λ0. With strong optical driving on the cavity, the
amplitudes |α| � 1, as shown in Fig. 2. For example, with a
driving power P = 3.5 × 10−2 μW, α ≈ 102 could ensure the
validity of our assumptions for linearization.

FIG. 2. The steady-state amplitudes |α|, β1, and |β2| vs driv-
ing power P . The parameters are ωd = 2π × 500 THz, κ =
2π × 105 Hz, g/κ = 1 × 10−4, λ0/κ = 30, �1/κ = 30.8, �2/κ =
30.2, �a = ′

1, and γ1/κ = γ2/κ = 1 × 10−5.
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Then the nonlinear optomechanical coupling term a†a(b†1 +
b1) can be ignored and the system dynamics is governed by

ρ̇ = −i[Hli,ρ] + κD[a]ρ +
∑
j=1,2

[γj (n̄thj + 1)D[bj ]ρ

+ γj n̄thjD[b†j ]ρ], (4)

with the linearized Hamiltonian

Hli = �aa
†a +

∑
j=1,2

�jb
†
j bj − G(a† + a)(b†1 + b1)

+ λ0(b†1b
†
2 + b1b2). (5)

Here �a = δa − 2Re(β1)g0 and G = g0|α| are the shifted
detuning and the linearized optomechanical coupling, re-
spectively. The third term of Hli describes a linearized
optomechanical interaction and provides the cooling process.
Combining with the phonon-phonon parametric coupling (the
last term) can cool the mechanical modes b1 and b2 into a
two-mode squeezed state in the steady state. Compared with
the normal OMS, here the relative low driving power can
induce large optical and mechanical amplitudes |α| and |βj |
(see Fig. 2) because of the two-mode parametric amplification
term, i.e., the last term in Eq. (1).

In other words, the parametric-amplification process can
also induce instability. In Fig. 3, we show the numerical
stability condition for the system with |α| = 102. In our
system, the weak cavity-resonator coupling g0/κ = 1 × 10−4

and the resonator-resonator coupling λ0/κ = 30 are used in
the stable regime. Meanwhile, our parameter regimes are well
separated from the bistability threshold for a Duffing oscillator.

FIG. 3. The dependence of the standard of system stability on
g0/κ and λ0/κ . The black dashed line is the zero contour, separating
the stable and the unstable regimes (in order to clearly see the
distribution of the system stability, the values of the stable and
unstable regimes are already diminished by four and six orders of
magnitude, respectively). Here |α| = 102, and other parameters are
the same as that in Fig. 2. And the optimal condition is the detuning
�a = ′

1.

III. MECHANICAL ENTANGLEMENT

We apply the two-mode squeezing transformation S(r) =
exp[r(b1b2 − b

†
1b

†
2)], with squeezing parameter

r = 1

4
ln

(
�1 + �2 + 2λ0

�1 + �2 − 2λ0

)
, (6)

to the Hamiltonian Hli. Using the squeezing transformation
S†(r)aS(r) = a and

S†(r)b1S(r) = b1cosh(r) − b
†
2sinh(r), (7a)

S†(r)b2S(r) = b2cosh(r) − b
†
1sinh(r), (7b)

the Hamiltonian is hence transformed to H ′
li = S†(r)HliS(r),

with

H ′
li = �aa

†a + ′
1b

†
1b1 + ′

2b
†
2b2 − G′

1(a† + a)(b†1 + b1)

+G′
2(a† + a)(b†2 + b2). (8)

Here G′
1 = Gcosh(r) and G′

2 = Gsinh(r) are the transformed
optomechanical couplings. The transformed mechanical fre-
quencies are

′
1 = �1cosh2(r)+�2sinh2(r)−2λ0cosh(r)sinh(r), (9a)

′
2 = �1sinh2(r)+�2cosh2(r)−2λ0cosh(r)sinh(r), (9b)

which are decided by the frequency detunings �j and the
coupling strength λ0. As shown in Fig. 4, large squeezing
parameter r can be obtained in our proposal, which ensures
high entanglement well beyond the limit ln2. At the same
time, the relatively large values of ′

1 and ′
2 obtained here

effectively suppress the quantum backaction noise from the

FIG. 4. (a) The squeezing parameter r and (b) transformed
mechanical frequency ′

j /κ (j = 1,2) (b) vs �1/κ . Parameters are
the same as in Fig. 2.
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optical cavity to the mechanical modes during the cooling
process.

Considering the system-bath coupling, we apply the two-
mode squeezing transformation S(r) to the master equation (4)
and define the transformed density matrix ρ ′ = S†(r)ρS(r).
Under the condition �a,

′
j � G′

j ,γj (n̄th + 1), the counter-

rotating terms in dissipations, G[b12]ρ ′ and G[b†12]ρ ′, are fast
oscillating with factors ∼ e±i(′

1+′
2)t and can be neglected

safely. Here we have used the definition G[b12]ρ = b1ρb2 −
(b1b2ρ + ρb1b2)/2. Then under the RWA, the transformed
master equation for ρ ′ has the same form as Eq. (4), with Hli

replaced by H ′
li; γj and n̄thj by

γ ′
1 = γ1cosh2(r) − γ2sinh2(r), (10a)

γ ′
2 = γ2cosh2(r) − γ1sinh2(r), (10b)

n̄
′
th1 = γ1n̄th1cosh2(r) + γ2(n̄th2 + 1)sinh2(r)

γ1cosh2(r) − γ2sinh2(r)
, (10c)

n̄
′
th2 = γ2n̄th2cosh2(r) + γ1(n̄th1 + 1)sinh2(r)

γ2cosh2(r) − γ1sinh2(r)
. (10d)

This transformed master equation for ρ ′ describes a standard
cavity cooling process for the two mechanical oscillators,
which are decoupled in the transformed representation (see
the Hamiltonian H ′

li).
Qualitatively, the proposed entanglement scheme can be

better understood in the cooling regime ′
j � κ � G′

j which
yields a simple analytical solution. A cooling equation for the
mechanical modes can be derived from the master equation
in the transformed basis by adiabatically eliminating the
cavity mode [52–54]. By defining ρ ′

m = Tra[ρ ′] as the reduced
density matrix of the mechanical modes, the cooling master
equation is

ρ̇ ′
m ≈ −i[H ′

m,ρ ′
m] +

∑
j=1,2

{[γ ′
j (n̄′

thj + 1) + �−
j ]D[bj ]ρ ′

m

+ (γ ′
j n̄

′
thj + �+

j )D[b†j ]ρ ′
m}, (11)

where H ′
m = ̃′

1b
†
1b1 + ̃′

2b
†
2b2, with the effective mechani-

cal frequency ̃′
j (j = 1,2). Under the parameter condition

considered here, ̃′
j ≈ ′

j and the RWA has been applied
during the derivation of the above equation. The cavity induced
cooling and heating rates �∓

j are given by

�∓
j = κ(G′

j )2

κ2/4 + (�̃a ∓ ′
j )2

. (12)

The steady state of Eq. (11) is a two-mode thermal state with
average phonon number

n̄′
effj = γ ′

j n̄
′
thj + �+

j

γ ′
j + �j

, (13)

where �j = �−
j − �+

j is the net cooling rate. It shows that
the minimal n̄′

effj can be obtained by the optimal detuning
�a = ′

j , which corresponds to �−
j = 4(G′

j )2/κ and �+
j ≈

κ[G′
j /(2′

j )]2. Hence the mechanical mode in the original
basis is in a two-mode squeezed thermal state. The entan-
glement degree depends on the squeezed parameter r and

the cooling rate �, which are decided by the driving laser
and the above modulated coupling [see Eq. (6)]. For an ideal
case, ignoring the quantum backaction noise, the mechanical
oscillators can be cooled into a two-mode vacuum state in the
transformed representation |00〉. In the original representation,
this is a two-mode squeezed state S(r)|00〉, the logarithmic
negativity of which is EN = 2r . Then, the entangled degree
is enhanced by adjusting the squeezed parameter r via the
tunable system parameters �j and λ0, as shown in Eq. (6) and
Fig. 4(a).

To support the qualitative discussion, we now calculate
the logarithmic negativity EN quantifying the degree of
mechanical entanglement based on the shifted master equation
(4). Here the logarithmic negativity EN is defined as EN =
max[0, − ln(2η−)] [55], which is decided by the covariance
matrix V according to

η− = 1√
2

√
� − √

� − 4detV (14)

with

� = detB + detB′ − 2detC. (15)

Here V is a 4 × 4 covariance matrix of the two mechanical
modes, defined as Vjk = 1

2 〈�ξj�ξk + �ξk�ξj 〉 with �ξj =
ξj − 〈ξj 〉, ξ = {x1,p1,x2,p2}, where xj = (bj + b

†
j )/

√
2, and

pj = −i(bj − b
†
j )/

√
2. Here B, B′, and C are 2 × 2 matrices

in

V =
(

B C
CT B′

)
. (16)

The numerical results in Figs. 5 and 6(a) clearly demon-
strate that, at a given squeezing parameter r , entanglement is
the strongest at the optimal detuning �a = ′

j (j = 1,2). This
corresponds to the best cooling for the mechanical modes in the
transformed representation. This numerical result is consistent
with our qualitative discussion obtained in the cooling limit.
In Fig. 6(a), we also present the result when the cavity mode

FIG. 5. The entanglement degree EN of two mechanical oscilla-
tors vs �1 and �a . Here, |α| = 102, P = 3.5 × 10−2μW, and other
parameters are the same as in Fig. 2. The dashed lines correspond to
entanglement at the optimal detunings, i.e., �a = ′

j (j = 1,2).
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FIG. 6. The entanglement degree EN vs (a) the cavity detuning
�a , and (b) the coupling strength λ0. In (a), the black dashed and
the black solid curves correspond to the model only including the
coupling between the cavity mode and the first mechanical mode
(case 1). The red dotted and red dot-dashed curves correspond to the
model including the interaction between the cavity mode and two
mechanical modes (case 2). The optimal detuning �a = ′

1 or ′
2 is

chosen in (b). The insets in (b) indicate the average phonon number
n̄′

effj (j = 1,2) corresponding to �a = ′
1 (red lines). The parameters

are the same as in Fig. 2 except for n̄th = 0 and �1 + �2 − 2λ0 = 1.

a couples to two mechanical modes simultaneously (case 2).
It is shown that there is not much difference between our
model (i.e., case 1) and case 2, except for the entanglement
degree decrease a little in case 2. Physically, in our proposal
the entanglement strength is decided by the optical cooling
capacity in the squeezed representation, i.e., the net cooling
rate �j . With similar calculations for deriving Eq. (12), one
can obtain that, in case 2, �j (being proportional to e−2r ) is
smaller than in case 1 (�j being proportional to e2r ) in the same
parameter regime. This leads to the result that the entanglement
degree becomes smaller in case 2 comparing with that in case
1. In Fig. 6(b), we plot EN as a function of the mechanical
coupling strength λ0 under the conditions of �a = ′

j (at
zero temperature n̄th = 0, n̄th1 = n̄th2 = n̄th). Our result shows
that, as the mechanical coupling strength reaches a threshold
value, the entanglement degree can exceed the steady-state
entanglement limit, ln2, from the parametric interaction.
Moreover, there is a minimal value of EN , corresponding
to a maximum value of n̄′

effj, along with increasing λ0. This
originally comes from the competition between the cooling
rate �−

j and the heating rate �+
j , when the optimal detuning

is chosen. Specifically, when increasing λ0, the competition
between the increasing optomechanical coupling G′

j and the
decreasing transformed mechanical frequency ′

j leads to
a minimal net cooling rate �. In Fig. 7, we present the

FIG. 7. The logarithmic negativity EN vs (a) the thermal phonon
number n̄th, and (b) the driving power P when the optimal detuning
is chosen, i.e., �a = ′

1. The system parameters are the same as in
Fig. 2.

influences of the mechanical thermal noise n̄th and the driving
power P on the entanglement degree. It shows that, even at
a high temperature with n̄th = 1 × 102, strong steady-state
entanglement can still be reached by increasing the driving
power. In our proposal, the strong optical driving induces
strong cooling efficiency of the cavity, which suppresses the
influence of the mechanical thermal bath on the entanglement
degree.

Here we would like to emphasize the physical mechanism of
our proposal clearly, which is quite different from the previous
studies. In our proposal, the mechanical modes can be cooled
into a two-mode thermal state in the squeezing representation,
which corresponds to a two-mode squeezed thermal state in
the original basis. Then given a fixed squeezing strength (i.e.,
squeezing parameter r), the better the cooling efficiency the
higher entanglement degree we can get. It is shown from
Eq. (12) that the optimal detuning �a = ′

j corresponds to the
maximal cooling rate. This ultimately leads to the result that
the maximal entanglement between the mechanical oscillators
is at �a = ′

j in our proposal.

IV. DISCUSSIONS

For an efficient application of the entangled state to the
modern quantum technologies, the purity of the steady state
is the foundation. For example, in a continuous-variable
teleportation protocol, the entangled state generated here may
be regarded as the entangled resource (EPR channel), and the
high purity corresponds to a high fidelity [56].

In the sections above, we can get a highly entangled steady
state; however, it does not ensure that the steady state is also
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FIG. 8. The purity of steady-state μ vs (a) the thermal occupation
n̄th and (b) the driving power P . The insets indicate the average
phonon number n̄′

effj (j = 1,2) corresponding to (a) P = 10 μW and
(b) n̄th = 10. Parameters are the same as in Fig. 7.

highly pure. In the cooling limit, the mechanical system in
the original basis is a two-mode squeezed thermal state in the
steady state. Then let us define the purity μ of the steady state
as

μ = tr
(
ρ ′2

m

)
, (17)

where ρ ′
m is the reduced density matrix of the two mechanical

modes after the adiabatic elimination. With the covariance
matrix V defined above, the purity can also be simplified as [45]

μ = 1/(4
√

detV)

= 1

(1 + 2n̄′
eff1)(1 + 2n̄′

eff2)
. (18)

Equation (18) clearly shows that the purity is inversely propor-
tional to the steady-state phonon numbers of the transformed
system, which are determined by the cooling efficiency.
Through the cooling master equation, we numerically calculate
the purity of the obtained entangled state in Fig. 8. It shows
that high purity can be obtained in the considered parameter
regime corresponding to the high entanglement degree. The
purity is also robust against the initial mechanical noise
featured by the thermal occupations n̄th. Physically, in our
proposal, a large squeezing parameter r allows us to obtain the
approximately equal cooling rates for two mechanical modes
(see the definition of �j ). Then, as shown in Eq. (13) and the
insets in Fig. 8, two mechanical oscillators can be cooled down
simultaneously in the transformed system under the condition
of strong optical driving. This ultimately leads to the result
that the steady state of the system will has a high purity after
a strong cavity cooling process.

FIG. 9. (a) The teleportation fidelity F of the two-mode squeezed
state vs (a) the thermal phonon number n̄th, and (b) the driving power
P . The system parameters are the same as in Fig. 2.

Generally, a continuous-variable teleportation protocol
can be implemented with high fidelity when a highly pure
entangled state serves as the EPR channel. Here we actually
obtain a two-mode squeezed thermal state in the steady state
and then the corresponding teleportation fidelity can be written
as [57]

F = 1

e−2r (1 + n̄′
eff1 + n̄′

eff2 + e2r )
. (19)

Clearly, the larger n̄′
effj leads to a lower purity [refer to Eq. (18)]

and a lower teleportation fidelity. The best cooling in the
transformed system occurs at the optimal detuning �a = ′

j .
Hence, Eq. (19) shows that, at a given amount of entanglement,
the teleportation fidelity is highest at the optimal detuning.

Under the best cooling conditions, we present the influences
of the thermal occupation n̄th and the driving power P

on the teleportation fidelity in Fig. 9. Consistent with our
qualitative discussion, in our proposal, high teleportation
fidelity could be obtained when using a strong driving laser
to cool the mechanical modes simultaneously. The effective
thermal phonon number n̄′

effj is close to zero under the optimal
parameters regime, as shown in Fig. 8. Naturally, the fidelity
can reach 0.92 easily. In addition, our results also show
that, even at a high temperature n̄th = 1 × 102, the high
teleportation fidelity can still be achieved by increasing the
driving power.

V. CONCLUSION

We have provided a method to generate strong steady-
state entanglement between two mechanical oscillators (or
a mechanical oscillator and a microwave resonator) that is
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robust against the thermal fluctuations. Our approach utilizes
a modulated phonon-phonon (or phonon-photon) interaction
and a strong driving on the cavity mode in an OMS. The entan-
glement is a consequence of the joint effect of the two-mode
parametric interaction and cavity cooling. We have showed that
strong entanglement can be achieved at the optimal detuning
where the cavity detuning is in resonance with one of the
transformed mechanical frequencies. In a wide range of driving
power and the thermal phonon number, the obtained entangle-
ment degree can surpass the bound on the maximum stationary
entanglement ln2 from the parameter interaction. Moreover,
we have also shown that two mechanical modes can be cooled
down simultaneously by using only one driving laser. This
ensures that the obtained entangled state has high purity, and

can be used to implement continuous-variable teleportation
with high fidelity. This study provides a promising route to
realize strong entanglement between two macroscopic systems
and has potential applications in quantum information science
in the future.
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