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Vector nematicons: Coupled spatial solitons in nematic liquid crystals
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Families of soliton pairs, namely vector solitons, are found within the context of a coupled nonlocal nonlinear
Schrödinger system of equations, as appropriate for modeling beam propagation in nematic liquid crystals. In the
focusing case, bright soliton pairs have been found to exist provided their amplitudes satisfy a specific condition.
In our analytical approach, focused on the defocusing regime, we rely on a multiscale expansion methods,
which reveals the existence of dark-dark and antidark-antidark solitons, obeying an effective Korteweg-de Vries
equation, as well as dark-bright solitons, obeying an effective Mel’nikov system. These pairs are discriminated
by the sign of a constant that links all physical parameters of the system to the amplitude of the stable continuous
wave solutions, and, much like the focusing case, the solitons’ amplitudes are linked, leading to mutual guiding.
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I. INTRODUCTION

Solitons, namely robust localized waveforms propagating
in nonlinear dispersive (or diffractive) media, have been stud-
ied extensively in various physical contexts [1]. In nonlinear
optics, solitons appear either as pulses localized in time
(temporal solitons) or as bounded self-guided beams in space
(spatial solitons) [2]. These structures are usually described
by the two main variants of the nonlinear Schrödinger (NLS)
equation, with a local Kerr (cubic) nonlinearity and depend on
the relative sign of dispersion or diffraction and nonlinearity:
the focusing, where dispersion or diffraction and nonlinearity
share the same signs and bright solitons are exhibited and
defocusing where the two effects have opposite signs and
the NLS supports dark solitons. In the case where more
than one-component scalar fields are involved (as in the case
of fields of different frequencies or different polarizations),
their nonlinear interaction leads to vector NLS models, which
support vector solitons of various types, e.g., bright-bright,
dark-dark, dark-bright, and so on, depending again on the
relative signs of dispersion or diffraction, as well as inter-
and intracomponent nonlinearity coefficients [2,3]. Note that a
similar picture, regarding vector NLS models with local cubic
nonlinearities and the types of vector solitons they support,
appear in other physical systems, such as atomic Bose-Einstein
condensates [4,5].

On the other hand, there has been an increased interest in
physical systems (and their corresponding mathematical mod-
els) featuring a spatially nonlocal nonlinear response, where
beam dynamics and solitons are relevant. Pertinent examples
include partially ionized plasmas [6,7], atomic vapors [8], lead
glasses featuring strong thermal nonlinearity [9], as well as
media with a long-range interparticle interaction. The latter
include dipolar bosonic quantum gases [10], and nematic
liquid crystals with long-range molecular reorientational in-
teractions [11]. Nematic liquid crystals are known to support
spatial solitons [12], which are usually called nematicons
[13–15]. These structures, are described by nonlocal NLS
equations which, in general, do not possess exact analytical
solutions with the freedom of various parameters describing
the soliton’s properties (amplitude, velocity, etc.). Thus, vari-
ational techniques are usually employed for the study of either

bright [13,16–18] or dark [19–23] nematicons. More recently,
in the self-defocusing setting, multiscale expansion methods
were used to study dark nematicons in one-dimensional
(1D) [24] and higher-dimensional [25,26] geometries; these
studies, apart from investigating the dynamics of dark solitons,
also predicted the existence of antidark solitons, namely
humps on top of a continuous-wave (cw) background. These
solutions are discriminated from dark solitons by the sign of a
specific parameter, which associates the degree of nonlocality
with the amplitude of the cw wave on top of which these
solutions are formed.

Two-color nematicons, i.e., vectorial nematicon structures
excited at different wavelengths, have also been experimen-
tally realized and studied theoretically as well [17,27–29]. In
the focusing 1D setting, the existence of exact bright-bright
soliton solutions, provided that their amplitudes satisfy a
specific condition, was recently reported [30]. In the same
1D setting, but in the defocusing regime, nonlocal dark-
dark [31] and dark-bright [32] solitons were studied by
means of variational methods, similar to those used in the
one-component problem. Notice that the defocusing regime
is also accessible in the context of nematic liquid crystals:
indeed, as shown in Ref. [20] where dark nematicons were
observed for the first time, azo-doped nematic liquid crystals
exhibit a self-defocusing response for extraordinary waves.
Generally, instead of exploiting a thermo-optic response,
self-defocusing in this setting can be obtained by introducing
dopants [33].

In this work, our aim is to present families of vector
nematicons in the 1D, self-defocusing setting. Our main
findings, as well as the outline of the paper, are as follows.
First, in Sec. II, we present the model, as well as review its
cw solution, its stability, and the derivation of the appropriate
condition for bright solitons to exist. Note that the complete
analysis for this case was presented in Ref. [30], we briefly
summarize these findings for completeness. Then, in Sec. III,
seeking solutions that feature nontrivial boundary conditions
at infinity, we develop a multiscale expansion method that
reduces the nonlocal system to a single Korteweg-de Vries
(KdV) equation; we also obtain an additional equation that
links the amplitudes of the two modes, and thus derive
dark-dark and antidark-antidark soliton pairs. In Sec. IV,
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assuming that one mode decays to zero at infinity, we develop
another multiscale expansion method to reduce the nonlocal
system to the Mel’nikov system [34,35]; this system, which
is completely integrable by means of the inverse scattering
transform [36], allows for the derivation of dark-bright
soliton solutions in the original nonlocal system. In all cases,
our analytical findings are corroborated by direct numerical
simulations. Finally, in Sec. V, we summarize our findings
and suggest further generalizations.

II. THE GOVERNING EQUATIONS

We consider the equations that describe two polarized,
coherent light beams, of two different wavelengths, propa-
gating through a cell filled with a nematic liquid crystal.
These equations are expressed in dimensionless form as
follows [27,37]:

i
∂E1

∂z
+ d1

2

∂2E1

∂x2
+ 2g1θE1 = 0, (1a)

i
∂E2

∂z
+ d2

2

∂2E2

∂x2
+ 2g2θE2 = 0, (1b)

ν
∂2θ

∂x2
− 2qθ = −2(g1|E1|2 + g2|E2|2). (1c)

The variables E1 and E2 are the complex valued, slowly
varying envelopes of the electric fields, and θ is the opti-
cally induced deviation of the director angle. Diffraction is
characterized by the coefficients d1, d2, while nonlinearity by
g1, g2. The nonlocality parameter ν measures the strength of
the response of the nematic in space, with a highly nonlocal
response corresponding to ν large. The parameter q is related to
the square of the applied static field which pretilts the nematic
dielectric [13,15,18]. Note that the above system corresponds
to the nonlocal regime with ν large, where the optically
induced rotation θ is small [13]; in particular, d1, g1, d2, g2, q

are O(1), while ν is O(102) [17,37]. Depending on the
relative signs between diffraction and nonlinearity the relative
system is deemed focusing (d1g1, d2g2 > 0) or defocusing
(d1g1, d2g2 < 0). These equations assume an incoherent inter-
action between the beams and that they only interact through
the nematic. That is, there are no coupling terms between E1

and E2.
The simplest solution of this system is a pair of cw’s of the

form

E1(z)=u0e
2ig1θ0z, E2(z) = v0e

2ig2θ0z, θ0 = g1u
2
0+g2v

2
0

q
,

where u0 and v0 are real constants. By considering small
perturbations to these solutions in Ref. [30], the dispersion
relation

p1(k)ω4 + p2(k)ω2 + p3(k) = 0

was derived, where

p1(k) = 16(k2ν + 2q),

p2(k) = −4ν
(
d2

1 + d2
2

)
k6 − 8q

(
d2

1 + d2
2

)
k4

+ 64
(
d1g

2
1u

2
0 + d2g

2
2v

2
0

)
k2,

p3(k) = d2
1d2

2νk10 + 2d2
1d2

2qk8

− 16d1d2
(
d2g

2
1u

2
0 + d1g

2
2v

2
0

)
k6.

This dispersion relation was shown to have real roots, i.e.,
the system would be modulationally stable, provided the
diffraction and nonlinearity signs are opposite, i.e., the fully
defocusing case. Hereafter, we fix this sign difference into the
nonlocal system and we write

i
∂E1

∂z
+ d1

2

∂2E1

∂x2
− 2g1θE1 = 0, (2a)

i
∂E2

∂z
+ d2

2

∂2E2

∂x2
− 2g2θE2 = 0, (2b)

ν
∂2θ

∂x2
− 2qθ = −2(g1|E1|2 + g2|E2|2), (2c)

where now d1, g1, d2, g2, ν, q are all positive. Bright soliton
pairs of Eqs. (1) have already been discussed in Refs. [30,38]
and will not be considered here where the focus is turned on
the defocusing case.

III. DARK AND ANTIDARK SOLITON PAIRS

Our analysis is now focused on soliton pairs that rely on
the existence of a stable cw background and hence on the
defocusing system where d1g1, d2g2 < 0. As such, we only
consider Eqs. (2). Write the solutions of this system in the
form

E1 = ub(z)u(z,x), (3a)

E2 = vb(z)v(z,x), (3b)

θ = θbw(z,x), (3c)

where the functions ub(z) and vb(z) correspond to the relative
cw backgrounds so that

iu′
b − 2g1θbub = 0

iv′
b − 2g2θbvb = 0

}
⇒

{
ub(z) = u0e

−2ig1θbz+ic1

vb(z) = v0e
−2ig2θbz+ic2

,

where u0,v0,c1,c2 ∈ R and θb = 1
q

(g1u
2
0 + g2v

2
0). Substituting

back to Eqs. (2) gives

i
∂u

∂z
+ d1

2

∂2u

∂x2
− 2g1θb(w − 1)u = 0, (4a)

i
∂v

∂z
+ d2

2

∂2v

∂x2
− 2g2θb(w − 1)v = 0, (4b)

ν
∂2w

∂x2
− 2qw = − 2

θb

(
g1u

2
0|E1|2 + g2v

2
0 |E2|2

)
. (4c)

It is trivial to check that these are also satisfied at the
boundaries where u = v = w = 1, and any evolution of
the boundary conditions has been absorbed by the back-
ground functions. This way, the resulting equations have now
fixed boundary conditions. Next, we employ the Madelung
transformation:

u(x,z) = ρ1(x,z) exp[iφ1(x,z)], (5a)

v(x,z) = ρ2(x,z) exp[iφ2(x,z)], (5b)
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so that

dj

∂2ρj

∂x2
− 2ρj

∂φj

∂z
− djρj

(
∂φj

∂x

)2

− 4gjθbρj (w − 1) = 0,

(6a)

∂ρj

∂z
+ 1

2
djρj

∂2φj

∂x2
+ dj

∂ρj

∂x

∂φj

∂x
= 0, (6b)

ν
∂2w

∂x2
− 2qw = − 2

θb

(
g1u

2
0ρ

2
1 + g2v

2
0ρ

2
2

)
, (6c)

where j = 1,2, and recall that w(z,x) ∈ R.
To analytically study system Eq. (6), and determine the

unknown functions ρj , φj , and w, we now employ the the
reductive perturbation method [39]. We thus introduce the
stretched variables:

Z = ε3z, X = ε(x − Cz), (7)

where C is the speed of sound (to be determined later in
the analysis), namely the velocity of small-amplitude and
long-wavelength waves propagating along the background.
Additionally, we expand amplitudes and phases in powers of
ε as follows:

ρj = ρj0 + ε2ρj2 + ε4ρj4 + . . . , (8a)

φj = εφj1 + ε3φj3 + ε5φj5 + . . . , (8b)

w = 1 + ε2w2 + ε4w4 + . . . , (8c)

where ρj0 = 1 and the rest of the unknown fields depend on
the stretched variables Eq. (7). These values for ρj0 is not only
a result obtained from the perturbation analysis but is also
anticipated from Eqs. (3) and (4). Recall that the background
has been removed, absorbed by the functions ub and vb, which,
in general, are not equal.

Substituting back to Eqs. (6) we obtain the following results
(see details in Appendix). First, in the linear limit, i.e., at
the lowest-order approximation in ε, we derive equations
connecting the unknown fields, namely:

w2 = 2

qθb

(
g1u

2
0ρ21 + g2v

2
0ρ22

)
, φ21 = g2

g1
φ11, (9a)

ρ22 = d2g2

d1g1
ρ21,

dj

2

∂φj2

∂X
= Cρj2, (9b)

as well as the speed of sound,

C2 = 2

q

(
d1g1u

2
0 + d2g2v

2
0

)
. (10)

Obviously, Eqs. (9) suggest that only one equation for one of
these fields will suffice to determine the rest of the unknown
fields ρj2, φj1, and w2. This equation is derived to the next
order of approximation and turns out to be the following
nonlinear equation for the field ρ12:

∂ρ12

∂Z
+ A1

∂3ρ12

∂X3
+ 6A2ρ12

∂ρ12

∂X
= 0, (11)

where coefficients A1 and A2 are given by

A1 = νC4 − (
d3

1g2
1u

2
0 + d3

2g2
2v

2
0

)
4C2q

,

A2 = d2
1g3

1u
2
0 + d2

2g3
2v

2
0

Cd1g1q
.

Equation (11) is the renowned KdV equation, which is
completely integrable by means of the IST [40], and finds
numerous applications in a variety of physical contexts [1,41].
More recently, a KdV equation was derived from the single-
component version of Eqs. (2) and used to describe small-
amplitude nematicons [24]; notice that the KdV model derived
in Ref. [24] is identical with Eq. (11) when the coupling
constants are set to zero. Notably, the same procedure can result
in other integrable forms of the KdV in higher dimensions,
such as the Kadomtsev-Petviashvilli (KP) equation, Johnson’s
equation, and others [25,26].

These asymptotic reductions provide information on the
type of the soliton solutions the original system may exhibit
up to (and including) O(ε2). Indeed, first we note that the
soliton solution of Eq. (11) takes the form (e.g., Ref. [41])

ρ12(Z,X) = 2A1

A2
η2sech2(ηX − 4η3A1Z + X0), (12)

where η and X0 are free parameters, setting the amplitude and
width and initial position of the soliton, respectively. Then, it
is straightforward to retrieve the pertinent phase,

φ11 = −4A1C

A2d1
η tanh(ηX − 4η3A1Z + X0), (13)

so that, finally, the solutions for the two components may be
written as

E1(z,x) ≈ ub(z)(1 + ε2ρ12) exp(iεφ12), (14)

E2(z,x) ≈ vb(z)

(
1 + ε2 d2g2

d1g1
ρ12

)
exp

(
iε

g2

g1
φ12

)
. (15)

It is now important to notice that the type of the soliton
Eqs. (14) and (15) depends crucially on the sign of the ratio
A1/A2; this quantity changes sign according to the critical
value νc, given by

νc = q2
(
d3

1g2
1u

2
0 + d3

2g2
2v

2
0

)
4
(
d1g1u

2
0 + d2g2v

2
0

)2 . (16)

Indeed, if the nonlocality parameter ν is such that ν < νc

(i.e., A1/A2 > 0), the solitons are dark, namely are intensity
dips off of the cw background. On the other hand, if ν > νc

(i.e., A1/A2 < 0) the solitons are antidark, namely intensity
elevations on top of the cw background. Notice that Eqs. (A7)
suggest that the relative signs between the modes are the same
and, as such, the only allowed pairs are solitons of the same
kind. It should also be mentioned that if A1 = 0, modification
of the asymptotic analysis and inclusion of higher-order terms
is needed. This has been addressed, to a certain extent, in
Ref. [42], where, it was found that higher-order dispersive
terms can lead to resonant interactions with radiation, as
expected, for the higher (fifth) order KdV equation.
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FIG. 1. The evolution of a typical dark soliton pair. Left and
right columns depict the two components, while top and bottom
panels show three-dimensional plots, and spatiotemporal contour
plots, respectively.

To demonstrate the validity of our analysis, we perform
direct numerical simulations, and we thus integrate Eqs. (2),
employing a high-accuracy spectral integrator, and use initial
conditions (at z = 0) taken from Eqs. (14) and (15), for
both the dark and the antidark soliton pairs. The results
are shown in Fig. 1, where a typical evolution of a dark
soliton pair is depicted. Here, we choose parameter values
d1 = d2/1.5 = g1 = g2 = 1, u0 = v0 = 1, and q/5 = ν = 1.
Similarly, in Fig. 2, we show a typical evolution of an antidark
soliton pair; all parameters remain the same except q = 1. In
both cases, it is clear that the solitons not only exist but also
propagate undistorted on top of the cw background. It is also
observed that the solitons propagate with constant speed, with
the antidark soliton pair traveling faster than the dark one, as
expected from Eq. (10).

IV. DARK-BRIGHT SOLITON PAIRS

Apart from soliton pairs of the same type, it is also possible
to derive vector soliton solutions composed by different types
of solitons. This can be done upon seeking solutions of the
system of Eqs. (2), such that one of the components decays to
zero at infinity, while the other tends to a constant, as before.

FIG. 2. Similar to Fig. 1, but now for a typical antidark soliton
pair.

In such a case, solutions of Eqs. (2) are again taken to be of
the form of Eqs. (3), but now we assume that the background
functions are given by

ub(x,z) = exp[ikx − i(ω − ε2
)z], (17a)

ω = 1

2q

(
d1k

2q + 4g1g2v
2
0

)
, (17b)

vb(z) = v0exp(−2ig2θbz + iψ1), θb = g2v
2
0

q
. (17c)

Then, the system Eq. (2) is reduced to the form

iuz + d1

2
uxx − 2g1θb(w − 1)u − id1kux = 0, (18)

ivz + d2

2
vxx − 2g2θb(w − 1)v = 0, (19)

νwxx − 2qw = − 2

θb

(
g1|u|2 + g2v

2
0 |v|2). (20)

Then, using the stretched variables Eq. (7) and the asymptotic
expansions Eq. (8), and following the procedure of the
previous section, we obtain the following results. First, at
the leading order, O(1), we get ρ10 = 0 and ρ20 = w0 =
1, while in the linear limit, i.e., at the orders O(ε2) and
O(ε3), we derive equations connecting the unknown fields,
namely,

w2 = 2ρ22, C
∂φ21

∂X
= 4g2

2v
2
0

q
ρ22, (21a)

d2

2

∂2φ21

∂X2
= C

∂ρ22

∂X
, k = C

d1
. (21b)

The above equations suggest that, now, the speed of sound
is given by

C2 = 2g2
2v

2
0d2

q
. (22)

Next, in the nonlinear regime, namely at O(ε4) and O(ε5), we
obtain the following system for the fields ρj2:

8g2
2v

2
0

Cq

∂ρ22

∂Z
−

(
d2q

2 − 4g2
2v

2
0ν

)
2q2

∂3ρ22

∂X3
+ 24g2

2v
2
0

q
ρ22

∂ρ22

∂X

+ 2g1g2

q

∂

∂X

(
ρ2

12

) = 0, (23a)

d1

2

∂2ρ12

∂X2
− 4g1g2v

2
0

q
ρ12ρ22 = 
ρ12, (23b)

as well as equations connecting fields that can be determined
at a higher-order approximation. The system of Eqs. (23) is
the so-called Mel’nikov system [34–36] and is apparently
composed of a KdV equation with a self-consistent source,
which satisfies a stationary Schrödinger equation. This system
has been derived in earlier works to describe dark-bright
solitons in nonlinear optical systems [43] and in Bose-Einstein
condensates [44,45]. The Mel’nikov system is completely
integrable by the inverse scattering transform and possesses
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FIG. 3. Similar to Fig. 1, but now for a typical dark-bright soliton
pair.

a soliton solution of the form [35]

ρ22(Z,X) = − d1q

4g1g2v
2
0

η2sech2(ηX + bZ + X0), (24)

ρ12(Z,X) = Asech(ηX + bZ + X0), (25)

where 
 = (1/2)η2d1, while parameters η, A, and b are
connected through the following equation:

Cd1
(
4νg2

2v
2
0 − d2q

2
)
η4 + 4qd1g

2
2v

2
0bη − 4Cg2

1g
2
2v

2
0A

2 = 0.

(26)

Using the above expressions, we can now express the relevant
approximate [valid up to O(ε2)] solutions of the original
system for the two components E1,2 as follows:

E1(z,x) ≈ ε2ub(z)ρ12 exp(iεφ12) (27)

E2(z,x) ≈ vb(z)(1 + ε2ρ22) exp(iεφ22). (28)

It is clear that the above solution represents a dark-bright
soliton pair, for the components E2 and E1, respectively.

As in the case of the dark and antidark soliton pairs, we
numerically integrate Eqs. (2), using initial conditions (at z =
0) taken from Eqs. (27) and (28). The results are shown in
Fig. 3, where a typical evolution of a dark-bright soliton pair is
depicted. Here we choose all parameters equal to unity, except
v0 = 1/2. In this case, too, the dark-bright soliton not only
exist but also propagates undistorted with constant velocity, in
excellent agreement with our analytical predictions.

V. CONCLUSIONS

Concluding, in this work we have completed the analysis
started in Ref. [30] for the coupled focusing nonlocal NLS sys-
tem. As such we studied vector nematicons in the defocusing
regime using multiscale expansion methods to derive various
types of such vector solitons.

In particular, first we have found dark-dark and antidark-
antidark solitons. These structures, which have the form
of propagating dips or humps on top of a stable vectorial
continuous-wave background, respectively, were found to
obey an effective KdV equation. The existence of the dark
or the antidark soliton pair was connected with the magnitude

of the nonlocality parameter: it was found that below (above)
a certain critical value of this parameter—which depends
on the parameters of the system, as well as the background
amplitudes—the soliton pair is dark (antidark), much like
the single nematicon system [24]. In addition, we have
found dark-bright soliton pairs, namely a dark soliton in
one component, coupled with a bright soliton in the other
component. It was shown that this soliton pair obeys another
completely integrable effective model, namely the so-called
Mel’nikov system. In all cases, we have numerically integrated
the original nonlocal system and verified the existence and
robustness of the vector nematicons, in excellent agreement
with our analytical approach.

It would be interesting to extend our considerations in
higher-dimensional settings and investigate existence, sta-
bility, and dynamics of such vector solitons, as well as
other localized structures, such as vortices, and combinations
thereof. However, the extension of the nematicon equations
from (1 + 1) to (2 + 1) dimensions is a nontrivial extension.
The stability will depend on the value of ν with the solitary
waves or vortices becoming unstable if ν is small enough.
This is because the nematicon equations become the (2 + 1)-
dimensional NLS equation as ν → 0.

APPENDIX: DETAILS ON THE
PERTURBATION METHOD

Substituting Eqs. (7) and (8) into Eqs. (6), we obtain at
O(ε2) the following equations:

C
∂φ11

∂X
= 4g1

q

(
g1u

2
0ρ21 + g2v

2
0ρ22

)
, (A1)

C
∂φ21

∂X
= 4g2

q

(
g1u

2
0ρ21 + g2v

2
0ρ22

)
, (A2)

w2 = 2

qθb

(
g1u

2
0ρ21 + g2v

2
0ρ22

)
, (A3)

which clearly suggest that

g2
∂φ11

∂X
= g1

∂φ21

∂X
⇒ φ21 = g2

g1
φ11. (A4)

Notice that any integrating constants are set to zero in order
for the boundary conditions to be satisfied; recall in this
formulation the boundary conditions are fixed at infinity. In
addition, at O(ε2) we obtain

d1

2

∂2φ11

∂X2
= C

∂ρ12

∂X
, (A5)

d2

2

∂2φ21

∂X2
= C

∂ρ22

∂X
, (A6)

which also suggest that

d2g2
∂ρ21

∂X
= d1g1

∂ρ22

∂X
⇒ ρ22 = d2g2

d1g1
ρ21, (A7)

where again integrating constants have been ignored in order
for the boundary conditions to be satisfied. Obviously, the
compatibility condition of the equations yields the speed
of sound Eq. (10). The same procedure follows for the
higher-order equations. When applying the above, and since
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ρ21 and ρ11 are related, one expects to find a single equation for one of the two. Hence, at O(ε4) we derive the equations

(
d2

1g2
1q

2θb

)
w4 = (

d2
1g3

1qu2
0 + d2

2g3
2qv2

0

)
ρ2

12 + 2d2
1g3

1qu2
0ρ14 + 2d2

1g2
1g2qv2

0ρ24 + d1g1ν
(
d1g

2
1u

2
0 + d2g

2
2v

2
0

)∂2ρ12

∂X2
, (A8)

− 2g1θb(w4 + w2ρ12 − ρ14 + ρ14) + Cρ12
∂φ11

∂X
− 1

2
d1

(
∂φ11

∂X

)2

+ C
∂φ13

∂X
+ 1

2
d1

∂2ρ12

∂X2
− ∂φ11

∂Z
= 0, (A9)

and

∂2φ13

∂X2
= − 2

d1

(
3Cρ12

∂ρ12

∂X
− C

∂ρ14

∂X
+ ∂ρ12

∂Z

)
, (A10)

while at O(ε5) we obtain:

(
8d2

1g2
1g

2
2qv2

0

)
ρ24 = −8d12g13g2qu02ρ14 − 4d1g1g2q

(
d1g

2
1u

2
0 + 2d2g1g2u

2
0 + 3d1g

3
2v

2
0

)
ρ2

12

− d1d2g1g2
(
4d1g

2
1νu2

0 + 4g2
2νv2

0 − d2q
2)∂2ρ12

∂X2
+ 2Cd2

1g2
1q

2 ∂φ23

∂X
− 2d2

1g1g2q
2 ∂φ11

∂Z
, (A11)

2d2
1g2

1q
(
C2q − 2d2g

2
2v

2
0

)
g2

∂2φ23

∂X2
= 8Cd2

1g3
1qu2

0
∂ρ14

∂X
+ 8Cg1q

(
d2

1g2
1u

2
0 + 2d1d2g1g2u

2
0 + 6d2

2g3
2v

2
0

)
ρ12

∂ρ12

∂X

+Cd1g1
(−d2

2q2 + 4d1g
2
1u

2
0ν + 4d2g

2
2v

2
0ν

)∂3ρ12

∂X3
+ 4d1g1q

(
C2q + 2d2g

2
2v

2
0

)∂ρ12

∂Z
. (A12)

To this end, after a tedious but straightforward calculation, we eliminate all phase terms from these systems and derive the KdV
Eq. (11).
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