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A two-level system interacting with an electromagnetic mode experiences inversion collapses and revivals.
They are an indirect signature of the field quantization and also hold information about the mode. Thus, they may
be harnessed for quantum-state reconstruction. In this work, we investigate the inversion via the characteristic
function of the field mode photon-number distribution. The characteristic function is the spectral representation
of the photon-number probability distribution. Exploiting the characteristic function periodicity, we find that the
inversion can be understood as the result of interference between a set of structures akin to a free quantum-
mechanical wave packet, with each structure corresponding to a snapshot of this packet for different degrees of
dispersion. The Fourier representation of each packet Fourier determines the photon-number distribution. We
also derive an integral equation whose solution yields the underlying packets. This approach allows the retrieval
of the field photon-number distribution directly from the inversion under fairly general conditions and paves the
way for a partial tomography technique.
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I. INTRODUCTION

Experiments in quantum optics have unequivocally estab-
lished the granular and quantum nature of the electromagnetic
(EM) field [1–4]. Since then, technology has improved to the
point that many sorts of quantum states of the field can be
synthesized [5–9]. They can also be studied in much more
controllable environments, such as cavities, giving rise to a
field called cavity electrodynamics (cavity QED) [10–13]. In
a typical cavity experiment, an atom traverses a cavity and
interacts with an electromagnetic field mode. A more recent
setup consists of a superconducting qubit, such as a transmon,
playing the role of the atom [14], and a superconducting
transmission line resonator acting as the cavity [15]. In this
context, the field is called circuit QED [16].

Understanding the dynamics of the atom-field interaction
enables further probing of the predictions of quantum mechan-
ics and its exploitation for various applications [17–19]. In the
context of cavity and circuit QED, an important model is the
Rabi model [20,21], which describes a single electromagnetic
mode coupled to a two-level atom. Though it can be solved
exactly [22], this model affords a much simpler picture when
the field-atom coupling is weak. Then the model may be
approximated by the paradigmatic Jaynes-Cummings model
(JCM) [23,24]. Despite its simplicity, the JCM has remarkable
features associated with the granular nature of photons. Some
of the most striking of these features are the inversion collapses
and revivals [24,25].

The collapses and revivals are a result of interference
between inversion oscillations with different frequencies, each
corresponding to a possible number of photons n. The revivals,
in particular, are only possible because the number of photons
is discrete. Therefore, they are an indirect signature of the
EM field quantization. Moreover, the revivals’ quasiperi-
odicity provides evidence for the JCM anharmonic energy
ladder (which has been observed through population measure-
ments [26] and, more directly, through spectroscopy [27]).
Inversion revivals have been extensively investigated in the
literature [25,28–33].

Besides their historical relevance, the revivals also hold
potential for characterizing the field state, since the inversion

profile is directly dictated by the field photon-number ampli-
tudes. Determining the field quantum state from experimental
data is the aim of quantum-state reconstruction [34,35]. In the
more traditional approach, we represent a quantum state by a
density matrix, the elements of which are to be determined by
repeated measurements of a set of observables [36]. For ex-
ample, in the context of a two-level system, these observables
may be the ones associated to the Pauli matrices [37].

A mode of the electromagnetic field, however, is more
complicated. First, since it is a quantum harmonic oscillator,
there are infinitely many matrix elements to be determined.
Moreover, when its density operator is represented in the
basis of Fock states, population measurements require photon-
number-resolving techniques, which have become available
only much more recently [38,39].

For this reason, historically, tomography for the field took a
different path, by exploring representations of the state in terms
of phase space quasiprobability distributions [40,41]. One of
the most popular distributions is the Wigner function [42].
It contains information about the generalized field quadrature
probability distributions [34]. By measuring these distributions
through balanced homodyne detection, it is possible to
reconstruct the Wigner function [43–45]. Later proposals use
the same data to obtain the density matrix directly [46,47].
Unbalanced homodyning is also a possibility [48,49].

Yet another tomographic approach consists of coupling the
field to a simpler auxiliary system from which information
about the field is retrieved indirectly. It is in this context
that cavity or circuit QED and the JCM revivals fit. It has
been shown that when an inversion revival may be isolated, it
may be used to retrieve photon-number distributions [50]. A
phase-sensitive scheme that uses inversion curves for different
atomic coherent superpositions for reconstruction has also
been proposed [51]. An alternative that avoids the coherent
superposition technicalities consists of displacing the field
state instead [52]. Moreover, atomic population measurements
may also be used to probe the Wigner function [53,54].

With the goal of unveiling alternative approaches for
quantum harmonic oscillators tomography, we investigate the
Jaynes-Cummings inversion via the characteristic function
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of the field mode photon-number distribution. Characteristic
functions are the Fourier representation of a distribution [55].
In this paper, we use their properties to decompose the
inversion into much simpler packets, localized in time, with
shape dictated by the photon-number characteristic function.
We show that each packet is akin to a snapshot of a free
quantum-mechanical wave packet at a different effective time.
Hence, just as in quantum mechanics, knowledge of a single
packet is enough to generate every other packet and, therefore,
the whole inversion.

The advantages of this approach are as follows. First, it
shows that the inversion contains highly redundant information
(besides being an awkward function for analytical and numer-
ical manipulations due to its slowly decreasing behaviour). By
contrast, a single one of the packets we introduce in this work
contains the complete physics of the inversion. We also argue
that, when they do not overlap, each may be identified with a
single revival, in which case the photon-number distribution
may be retrieved immediately [50].

Second, even when revivals cannot be resolved, the under-
lying picture of a superposition of packet persists. It is then
that the snapshot decomposition is the most advantageous:
We use it to cast aside the limitation of nonoverlapping
revivals and retrieve the photon-number distribution under
much more general conditions. The key idea is that the
snapshot to be retrieved is usually concealed behind an overly
complex inversion profile. However, within a properly chosen
time window, the inversion is simply this snapshot, albeit
contaminated by tails of adjacent snapshots.

If different snapshots were all unrelated, this would spell
doom for any attempts at its retrieval. However, due to the
quantum-mechanical analogy, a sum of different snapshots
may be ultimately reduced to an integral equation involving
just a single one of them. Solving this equation yields the
packet with full information about the inversion and, therefore,
the photon-number distribution. In this work, we illustrate
our approach mostly through coherent states due to their
simplicity. However, we emphasize the generality of this
method, which will be explored more meticulously, and for
a larger variety of states, in a future work. The present work
lays the groundwork for another form of partial tomography.

This paper is organized as follows. Section II reviews
the JCM and its inversion quasiperiodic revivals. We also
introduce periodic revivals, because of their simplicity and
also because many of their qualitative features persist in the
quasiperiodic case. Section III considers the periodic and
quasiperiodic revivals in terms of the characteristic function.
We use its properties to split the revivals and reveal the
packets underlying the inversion for a field in a general state.
We consider a coherent state as an example, but reiterate
that generality of this decomposition. Section IV exemplifies
the formalism previously developed for a cat state. Finally,
Sec. V discusses the extraction of the packets and the photon
distribution for a very general inversion profile. Finally, Sec. VI
summarizes our results.

II. COLLAPSES AND REVIVALS

In this section, we review the collapses and revivals in
the JCM. The JCM descends from the Rabi model, which

describes a single electromagnetic mode coupled to a single
two-level atom [20,21]. The Rabi Hamiltonian reads (� = 1)

ĤR = ωâ†â + ω0

2
σ̂z + gσ̂x(â† + â), (1)

where â is the annihilation operator for a photon in an elec-
tromagnetic mode of frequency ω, ω0 is the splitting between
the two atomic levels, and g is field-atom coupling constant.
The two-level atom has been mapped into a pseudospin σ̂ ,
with ground state |g〉 and excited state |e〉 corresponding
to spin down and up in the z direction, respectively. In
this language, σ̂x = σ̂+ + σ̂− represents the atomic dipole
moment. Assuming weak field-atom coupling, i.e., g � ω,ω0,
we neglect terms in the Hamiltonian proportional to âσ̂− and
â†σ̂+. They lead to costly energy transitions (∼ω + ω0) when
compared to those generated by aσ+ and a†σ− (∼ω − ω0).
This leads to

ĤJC = ωâ†â + ω0

2
σ̂z + g(â†σ̂− + âσ̂+), (2)

which is known as the JCM Hamiltonian.
In this small g limit, an atom transitioning away from the

excited state (ground state) is always followed by a photon
emission (absorption). Hence, the state of the system initially
given by |e,n〉, where |n〉 is the Fock state with n photons, will
oscillate between |e,n〉 and |g,n + 1〉 as

Û (t)|e,n〉 = cos

(
�n

2
t

)
|e,n〉 + i sin

(
�n

2
t

)
|g,n + 1〉, (3)

where �n = 2g
√

n + 1.
The atomic populations in the ground and excited states are

then Pg(t) = sin2 (�n

2 t) and Pe(t) = cos2 (�n

2 t), respectively. It
is customary to define the inversion as the difference between
these populations: W (t) ≡ Pe(t) − Pg(t). For |e,n〉 as initial
state, inversion is simply cos(2g

√
n + 1t). However, more

generally, the field state is a superposition of Fock states |n〉
with different photon-number amplitudes cn. Assuming that
atom is still initially excited, the inversion takes the more
general form

W (t) =
+∞∑
n=0

|cn|2 cos(2g
√

n + 1t), (4)

where |cn|2 ≡ Pn is the field photon-number distribution.
A great deal of attention has been given to the inversion

because it provides evidence of the electromagnetic field
quantization through its collapses and revivals [24]. We
illustrate the inversion for a coherent state in Fig. 1. For
short times, W (t) is dominated by Rabi-like oscillations. As
the oscillators of Eq. (4) dephase, they interfere destructively,
causing the collapse. Still, the discreteness of the frequencies,
a direct consequence of the field quantization, allows for
inversion revivals at later times. The revivals are not, however,
periodic, since some frequencies are incommensurable, i.e.,
their ratios are irrational numbers.

The inversion W (t) is interesting also because it holds
information about the field photon-number distribution Pn.
However, the incommensurable frequencies hampers the
distribution retrieval: Eq. (4) looks like a Fourier series, but
it is not, due to the frequencies’ incommensurability. An
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FIG. 1. Atomic inversion of Eq. (4) as a function of time. The
atom is initially excited and the field is in a coherent state with
average photon number of 20. Time is measured in units of τ , where
τ is the time for which the first revival amplitude is maximum. The
dephasing of the oscillators in Eq. (4) lead to inversion collapses. With
discrete yet incommensurable frequencies, the inversion has revivals,
but they are only quasiperiodic. The revival peaks are approximately
equally spaced by τ .

inversion formula is known when a single revival of W (t)
can be isolated [50].

To support the next section discussion, we also present
(exactly) periodic revivals. They may be seen as mathematical
constructs defined by the replacement

√
n + 1 → n in Eq. (4):

Wp(t) =
+∞∑
n=0

|cn|2 cos (2gnt). (5)

The lower index p is a reminder that this inversion is not the
same as the JCM inversion. The frequencies in Eq. (5) are
all commensurable. Therefore, Wp(t) is exactly periodic, the
period given by T = π/g. Unlike Eq. (4), Eq. (5) is an actual
Fourier series and may be inverted immediately. We illustrate
the periodic revivals in Fig. 2 under the same conditions of
Fig. 1. The periodic revivals are very useful for interpreting
the JCM revivals, since both share many qualitative features.
For instance, in both Figs. 1 and 2, the revival peaks seem to
be periodically spaced.

As a side note, there are models for which Eq. (5) in
fact describes the atomic inversion dynamics [56–58]. For
example, Knight proposed a system where the levels |g〉 and
|e〉 are degenerate and connected by two-photon transitions
through a higher-energy virtual level [57]. The Hamiltonian
describing this process is

Ĥ = ωâ†â + gâ†âσ̂x . (6)

With an initially excited atom, the inversion for this model is
precisely Wp(t).

To set the scene for the next section, we introduce the
auxiliary function

Z(t) =
+∞∑
n=0

Pne
i2πf (n)t , (7)

FIG. 2. Inversion as a function of time when the frequencies are
commensurable, as in Eq. (5). The atom is initially excited and the
field is in a coherent state with average photon number of 20. Time
is measured in units of τ , where τ = π is the inversion period. With
only commensurable frequencies, the inversion is exactly periodic.

which is the complex extension of both Eqs. (4) and (5). Setting
f (n) to g

√
n + 1/π or gn/π and taking the real part of Z(t)

yields W (t) or Wp(t), respectively. From now on, we will
simply write f (n) ∝ n or f (n) ∝ √

n + 1. For simplicity, most
of our computations are done with Z(t).

While periodic revivals are very straightforward to under-
stand, quasiperiodic revivals have resisted a simple picture.
Approximation schemes have been developed for specific
photon-number distributions [25], but the incommensurable
frequencies make Eq. (4) quite difficult to treat in general. On
the other hand, the simplicity of periodic revivals lies in that
knowledge of a single revival cycle is enough to generate the
inversion for any time.

The striking result we show in the next section is that a
similar picture actually holds true for the JCM quasiperiodic
revivals: The inversion is composed of underlying packets.
The packets are not perfect replicas of one another, but
knowing just one of them suffices to determines the in-
version completely. However, unlike the whole inversion,
the packets are usually localized in time, which makes
them more more useful for practical applications. We prove
these claims in the next section by introducing characteristic
functions.

III. DECOMPOSING THE INVERSION WITH THE
CHARACTERISTIC FUNCTION

In Sec. II, we briefly reviewed the JCM, its inversion
quasiperiodic revivals, and some corresponding periodic re-
vivals. We introduced the auxiliary function Z(t) in Eq. (7)
to contemplate both kinds of revivals simultaneously. When
f (n) ∝ n or f (n) ∝ √

n + 1, the real part of Z(t) yields W (t)
or Wp(t), respectively. In this section, we investigate Z(t)
further using characteristic functions.
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The characteristic function of a probability distribution Pn

is defined as the expectation value of ei2πkn [55], i.e.,

χ (k) ≡
+∞∑
n=0

Pne
i2πkn. (8)

The function χ (k) is also simply a Fourier series with Pn as
coefficients. It contains just as much physical information as
Pn, which is obtainable from χ (k) by inverting Eq. (8):

Pn =
∫ 1

2

− 1
2

dkχ (k)e−i2πkn. (9)

Due to Pn being a discrete distribution, its characteristic
function, just like Wp(t) in Eq. (4), is a periodic function:
χ (k − 1

2 ) = χ (k + 1
2 ).

It is not a mere coincidence that χ (k) and Wp(t) are both
periodic: with the identification k = gt

π
, Wp(t) is the real part

of χ (k). This follows from realizing that, when f (n) ∝ n, the
inversion complex extension Z(t) is the characteristic function
itself: Z(t) = χ (gt/π ).

When f (n) ∝ √
n + 1, the connection between χ (k) and

Z(t) is not so immediate. That said, we have seen in Fig. 1 that
the quasiperiodic revivals, to some extent, have equally spaced
peaks. This suggests that even after replacing commensurable
frequencies by incommensurable ones, Z(t) seems to still
inherit some properties of χ (k), such as its periodicity, to a
certain degree. Our goal is to put this connection on more
precise grounds by expressing Z(t) in terms of χ (k) for a
general f (n).

With this goal in mind, we introduce the distribution

P (x) ≡
+∞∑
n=0

Pnδ(x − n) (10)

which allows us to rewrite rewrite Z(t) as

Z(t) =
∫ +∞

−∞
dxP (x)ei2πf (x)t , (11)

where f (x) is just the extension of f (n) to real numbers, e.g.,
n → x and

√
n + 1 → √

x + 1. It is easy to check from Eq. (8)
that the distribution P (x) also has χ (k) as its characteristic
function:

P (x) =
∫ +∞

−∞
dkχ (k)e−i2πkx. (12)

Unlike Eq. (9), the integral in Eq. (12) is not bounded, which
will be useful in the next steps.

We now substitute from Eq. (12) into Eq. (11) to express
Z(t) in terms of χ (k):

Z(t) =
∫ +∞

−∞
dkχ (k)

∫ +∞

−∞
dxei2π[f (x)t−kx]. (13)

The integral over x is some distribution dependent on k and t ,
which we will denote K(k,t):

K(k,t) ≡
∫ +∞

−∞
dxei2π[f (x)t−kx]. (14)

It may be interpreted as a propagator that determines Z(t),
given χ (k). Unlike χ (k), the propagator is not necessarily

periodic with respect to k. This ultimately leads to Z(t) not
being exactly periodic in general.

Next, we use the periodicity of χ (k) to split the integral
over k in Eq. (13) into a sum of integrals, each of which
ranging from m − 1

2 to m + 1
2 , with m ∈ Z. Then, for each

interval, we make the change of variables k → k + m, so that
each integral covers the same range [−1/2,1/2). Equation (13)
then simplifies to

Z(t) =
+∞∑

m=−∞
Zm(t), (15)

Zm(t) =
∫ 1

2

− 1
2

dkχ (k)K(k + m,t), (16)

where the periodicity of χ (k) allows us to replace χ (k + m)
by χ (k).

The decomposition in Eq. (15) involves no approximation.
We now specialize Eq. (16) for the cases f (n) ∝ n and f (n) ∝√

n + 1. We show that, in both cases, knowledge of a single
Zm(t) is enough to determine Z(t).

A. The case f (n) ∝ n

When f (n) ∝ n, it is easy to verify that K(k + m,t) is
simply δ(k + m − gt

π
). Since k only ranges from −1/2 to 1/2

in Eq. (16), gt/π must be in the range of m − 1/2 and m + 1/2
for δ(k + m − gt

π
) to contribute. Therefore, for a given t , only

a single Zm(t) is not zero, and happens to be the characteristic
function when we use the δ function to integrate:

Zm(t) = χ

(
gt

π

)
	

(
gt

π
− m

)
, (17)

where 	(x) is the rectangular function, equal to 1 for −1/2 <

x < 1/2 and 0 otherwise.
Hence, each Zm(t) is a replica of every other one, centered

at gtm = mπ . In Fig. 2, each revival corresponds to the real part
of a different Zm(t). We show next that, for f (n) ∝ √

n + 1,
a similar picture also holds true, except that the Zm(t) are not
perfect copies of one another: they also experience dispersion
akin to that of quantum-mechanical wave packets.

B. The case f (n) ∝ √
n + 1

When f (n) ∝ √
n + 1, the propagator K(k,t) is more

complicated, but the decomposition of Z(t) as a sum of Zm(t)
remains exact. The nonperiodicity ofK(k,t) implies that Zm(t)
now actually depends on m. Also, since K(k,t) is not a δ

function, the simple identification k = gt/π found for the case
f (n) ∝ n does not hold.

In spite of such complications, as we continuously deform
f (n) from n to

√
n + 1, we expect periodic revivals such as

the ones in Fig. 2 to gradually yield place to the quasiperiodic
revivals such as the ones in Fig. 1. If these revivals do not
overlap during the process, it is natural to associate each JCM
revival to a single Zm(t). In this scenario, the first collapse, in
particular, would be identified with

Z0(t) =
∫ 1/2

−1/2
dkχ (k)

∫ ∞

−∞
dxei2π[f (x)t−kx]. (18)
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A technical detail worth mentioning is that the definition of
Z0(t) must encompass a portion of the region t < 0. This is
easier to justify through periodic revivals. In Fig. 2, we see that
the region near t = 0 only comprehends half of the structure
replicated at later times, so we must extend Z(t) for t < 0
to capture the missing half. This must, then, also be true for
quasiperiodic revivals. On the other hand, in an experimental
setup, one may measure only W (t) = �{Z(t)}, and only for
t > 0. However, since W (t) is an even function, it can be
readily extended to t < 0.

We now show that a single Zm(t) has complete information
about the whole Z(t). This is more easily seen in Fourier space,
where it will be clear that the Fourier transform of each Zm(t)
differs only by a phase from every other one. We define the
Fourier transform of Zm(t) as

Z̃m(ν) ≡
∫ +∞

−∞
dtei2πνtZm(t). (19)

Then, by Fourier transforming both sides of Eq. (16), it follows
that

Z̃m(ν) =
∫ 1/2

−1/2
dkχ (k)

∫ ∞

−∞
dxδ[f (x) − ν]e−i2π(k+m)x .

(20)
The integral over x can be readily performed by using the

property δ[g(x)] = ∑
i

δ(x−xi )
g′(xi )

, where xi are the roots of g(x).

For f (x) = g
√

x + 1/π , we have a single root, x = (πν
g

)2 − 1,
only if ν > 0. If ν < 0, there is no solution, which implies that
Z̃m(ν) = 0 for ν < 0. This also follows from Z(t) being a sum
of only positive frequencies signals, according to Eq. (7).

Finally, after integrating the right-hand side of Eq. (20) over
x and moving every factor independent of k to the left-hand
side, we get

g2

2π2

Z̃m(ν)

ν
e
i2πm( πν

g
)2

=
∫ 1/2

−1/2
dkχ (k)e−i2πk[( πν

g
)2−1]

, if ν > 0;

0, otherwise. (21)

Intriguingly, only the left-hand side of Eq. (21) depends on m.
This means that each Z̃m(ν) can differ only by a phase from
one another:

Z̃m(ν) = Z̃0(ν)e−i2πm( πν
g

)2

. (22)

This relation is one of the major results of this work, and we
now discuss its implications. The phase we just encountered
depends on ν quadratically. If the dependence were linear, this
phase would simply translate Z0(t) in time. However, it is well
known from quantum dynamics of free particles that quadratic
dependencies lead to an overall translation but also to some
dispersion.

To make this analogy clearer, consider a quantum-
mechanical wave packet in free space ψ(x), and its Fourier
transform ψ̃(p), describing a particle of mass μ = 1/2. The
time-evolved ψ(x,τ ) is obtained by taking the inverse Fourier
transform of ψ̃(p)e−iτp2

. The analogy goes as follows: x, ψ(x),
p, and ψ̃(p) correspond to t , Z0(t), ν, and Z̃0(ν), respectively;

FIG. 3. We consider the revivals for a coherent state with average
photon number of 20 in light of the decomposition of Eq. (15).
In Fig. 3(a), we juxtapose different Wm(t). According to Eq. (22),
they become the same once dispersion is accounted for. The kind of
dispersion is the same experienced by a free wave packet in quantum
mechanics. In Fig. 3(a), we compare the result of adding these replicas
(blue or dark gray curve) and the actual population inversion (red or
light gray curve). There is excellent agreement, which can be further
improved for longer times by adding the subsequent Wm(t).

and Zm(t) corresponds to ψ(x,τ ), with m determining the
effective τ .

In quantum mechanics, a packet propagates over space and
disperses as it moves. Each Zm(t) is analogous to a snapshot
of the wave packet. The inversion is the superposition of the
snapshots. Nonetheless, a single snapshot Zm(t) is enough
to determine every other snapshot, just as knowledge of the
quantum-mechanical wave packet for some instant implies
knowledge of it for any other instant. Hence, a single Zm(t)
determines the inversion completely.

Therefore, while Z(t) and W (t) may, in general, look very
irregular and complicated, it should be possible to distill
them and identify an underlying pattern corresponding to the
juxtaposition of different Zm(t) or Wm(t) ≡ �{Zm(t)}. Next,
we illustrate the distillation for a coherent state with average
photon number of 20. The first step is to identify Z0(t). We
already argued that if the collapse and the first revival do not
overlap, we may associate Z0(t) with the collapse. We then
numerically compute Z̃0(ν) through the fast Fourier transform
(FFT) method [59]. With Eq. (22), we find the subsequent
Z̃m(ν). Finally, the inverse FFT of Z̃m(ν) yields Zm(t).

We present the results of this procedure in Fig. 3, where
we have considered m = 0,1,2,3,4. In Fig. 3(a), we simply
juxtapose (the real part of) each Zm(t). In Fig. 3(b), we
add them up. Here, the blue (dark gray) curve corresponds
to

∑4
m=0 Wm(t) and the red (light gray) curve (visible only

after gt ∼ 110) is the actual W (t), calculated numerically with
Eq. (4). The agreement can be improved for longer times by
adding more Wm(t).

Following the analogy with quantum mechanics, we es-
timate the time at which each Zm(t) is centered. Whereas in
quantum mechanics one linearizes the dispersion relation, here
we linearize the phase in Eq. (22) around some frequency ν̃ at
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which Z̃0(ν) is peaked. With Z0(t) centered at 0, Zm(t) should
be centered at

tm = 2m

(
π

g

)2

ν̃. (23)

There must correspond a photon number to the dominant
frequency ν̃, which we define through 2πν̃ ≡ 2g

√
ñ + 1. In

terms of ñ,

tm = 2π
√

ñ + 1

g
m. (24)

Naturally, these times also correspond to when the terms of
Eq. (4) are approximately in phase [60]. In a loose sense,
τ ≡ 2π

√
ñ+1

g
works as a period, except that Zm(t) also widens as

we increase m. This explains why the revival peaks in Fig. 1 are
approximately equally spaced. Since the Zm(t) are ultimately
are generated by χ (k), it is natural to make the more general
identification

t → 2π
√

ñ + 1

g
k, (25)

so that, when we increment k by one, t also changes by τ .
To finish this section, we discuss how to obtain the

probabilities from a single Zm(t), a relevant task in the context
of quantum tomography. First, we notice that the right-hand
sides of Eqs. (21) and (9) have very similar forms. It follows
that by setting ν = νn, where 2πνn ≡ 2g

√
n + 1, the right-

hand side of Eq. (21) becomes simply Pn. On the left-hand
side of Eq. (21), replacing ν by νn eliminates the phase factor.
We are then left simply with

Pn = g2

2π2

Z̃m(νn)

νn

. (26)

Notice that 2πνn = 2g
√

n + 1 are the oscillation frequencies
of the oscillators in Eq. (4).

It is interesting to rewrite Eq. (26) in terms of the actually
measurable W (t). First, we define Wm(t) = �{Zm(t)}, and
W̃m(ν) as its Fourier transform. Then it is not hard to show
that W̃m(ν) = Z̃m(ν)

2 for ν > 0. Therefore,

Pn = g2

π2

W̃m(νn)

νn

. (27)

A similar relation was previously obtained through a Poisson
sum formula approach under the assumption of nonoverlap-
ping revivals [50]. Equation (27) states that the probability
distribution is codified in the frequencies of Wm(t) present in
Eq. (4).

Nevertheless, the relation between probabilities and Wm(t)
is exact, since it follows from Eqs. (15) and (16). However,
experimentally, only the whole W (t) can be measured. Thus,
having nonoverlapping revivals is a matter of a convenience, as
it allows us to approximately identify the mth revival of W (t) to
Wm(t) immediately. In this regime, our method is equivalent to
that Ref. [50]. However, particularly for a low average photon
number, this approximation breaks down already for m = 0.
It is then that our formalism shines: We use it in Sec. V to cast
away this limitation and retrieve W0(t) even when revivals
overlap.

FIG. 4. Comparison between the photon-number distribution Pn

of a coherent state with average photon number of 20 and the functions
g2

π2
W̃m(ν)

ν
= g2

2π2
�{Z̃m(ν)}

ν
, m = 0,1, showing the validity of Eq. (27). It

is also worth mentioning that the function with m = 1 is enveloped
by the one with m = 0, in agreement with Eq. (22).

We now use W0(t) and W1(t), previously shown in Fig. 3,
to retrieve the photon-number distribution of a coherent state
with 〈a†a〉 = 20. The results are shown in Fig. 4. The red
circle-shaped dots are the theoretical Pn. The dashed curves
are the right-hand side of Eqs. (27) for m = 0 and m = 1.
We convert the argument ν to n through the identification
2πν = 2g

√
n + 1. Equation (27) predicts that, when n is

an integer, the plotted function should match Pn, which is
consistent with the behavior of the dashed curves. Moreover,
the faster-oscillating purple line, which corresponds to m = 1,
has the blue line (m = 0) as its envelope, in agreement with
Eq. (22).

This approach for the photon-number retrieval assumes
Eq. (4) as a starting point, which does not account for
incoherent processes, characterized by the photon and atomic
decay rates κ and γ , respectively. To neglect these processes,
one must work with time scales much shorter than κ−1 and
γ −1. Moreover, for the dynamics described by Eq. (4) to unfold
within this domain, we must also have κ,γ � g, which defines
the strong coupling regime [61,62]. This condition can already
be achieved with current experiments [63].

IV. DISTILLING THE REVIVALS OF A CAT STATE

In the previous section, we have shown that the JCM
inversion revivals are a result of interference between a
set of packets Zm(t), which are akin to snapshots of a
quantum-mechanical wave packet for different times. We
illustrated this decomposition explicitly for a coherent state. Its
distribution being relatively steady, the characteristic function
of a coherent state is peaked around k ∼ m, m ∈ Z. For
periodic revivals, where Z(t) = χ (gt/π ), this translates to
W (t) being peaked around gt = mπ , as shown previously in
Fig. 2. For quasiperiodic revivals, Z(t) and χ (k) are not directly
proportional, but the propagator K(k,t) defined in Eq. (14)
maps χ (k) within one of its periods into one of the Wm(t)
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shown in Fig. 3(a). They are centered at the linearly spaced
intervals dictated by Eq. (24).

This decomposition is not exclusive to coherent states. In
this section, we illustrate it for a cat state. A cat state is usually
defined as

|ξ 〉 ∝ |α〉 + |αeiφ〉√
2

, (28)

where |α〉 is a coherent state with 〈a†a〉 = |α|2. The symbol
∝ indicates that we have not normalized the state properly,
though the missing proportionality factor approaches 1 for
large α. We assume for simplicity that α is real.

The photon-number distribution of |ξ 〉 is

Pn(φ) ≈ c2
n + c2

n cos (nφ), (29)

where c2
n is the photon-number distribution of a coherent

state, and we have assumed large α. The second term on
the right-hand side of Eq. (29) oscillates with frequency
dictated by φ. The oscillations are fastest when φ = π , in
which case Pn alternates between 2c2

n (for even n) and 0
(for odd n). The characteristic function, being essentially a
spectral decomposition of Pn, should be peaked around k ∼ 0
[accounting for the steadier component of χ (k)] and around
k ∼ φ

2π
[accounting for the staggered component of χ (k)]. In

fact, let χα(k) be the characteristic function for |α〉. Then, from
Eq. (29), the characteristic function for |ξ 〉 is

χ (k,φ) = χα(k) + 1

2
χα

(
k − φ

2π

)
+ 1

2
χα

(
k + φ

2π

)
. (30)

In particular, for φ = π , and already using the periodicity of
χ (k,φ),

χ (k,π ) = χα(k) + χα

(
k − 1

2

)
. (31)

Due to the second term on the right-hand side of Eq. (31),
this characteristic function features additional peaks around
k ∼ m + 1/2, m ∈ Z.

Let us now look at the revivals of |ξ 〉 and how they compare
to revivals of |α〉 in Fig. 5. Their initial collapses turn out to
be, to a very good approximation, the same. At first, this is
very unsettling: If we take the collapse as data for W0(t), a
naive application of Eq. (27) will then yield (incorrectly) the
distribution of a coherent state. On the other hand, the revivals
of |ξ 〉 seem to happen earlier. One may numerically check that
using the first revival as data for W1(t) leads to unphysical
(negative) probabilities.

These puzzling features can be understood almost immedi-
ately in the framework of characteristic functions. To shed light
on the matter, we first analyze periodic revivals, then argue
that, as we deform n → √

n + 1, the quasiperiodic revivals
must remain qualitatively similar. When revivals are periodic,
they are proportional to χ (k) itself. On the other hand, we
expect χ (k), according to Eq. (31), to be peaked around m and
m − 1/2, with m an integer. Within a single period window,
this corresponds to two peaks. As we now look at the JCM
revivals, it is natural to still expect two peaks, albeit with
modified shapes. This means that we should interpret the first
collapse and the first revival of |ξ 〉 seen in Fig. 5 as associated
to a single period of χ (k) rather than separate objects.

This picture also explains why the initial collapses of both
cat and coherent states overlap: The initial collapses, being

FIG. 5. Revivals of a coherent state |α〉 and a cat state |ξ〉 ∝
|α〉 + |−α〉, with 〈a†a〉 = |α|2 = 20. Since the characteristic function
of these states is the same for low frequencies, the collapse and some
revivals coincide. However, the high-frequency components exclusive
to |ξ〉 generate intermediate revivals arising from the oscillatory
behavior of the photon-number distribution of a cat state.

associated to the peak of χ (k) centered at k ∼ 0, are the same
for states |α〉 and |ξ 〉 because the steadier components of the
characteristic functions of both states are the same. On the
other hand, the extra revivals of the cat state corresponds to
the staggered components of χ (k,π ), which are absent for a
coherent state.

In conclusion, both the collapse and this early revival
must be interpreted as W0(t). It is only when they are taken
simultaneously into consideration that Eq. (27) yields the
correct probabilities, as shown in Fig. 6. In Fig. 7(a), we show
the W0(t) used to retrieve the probabilities and the other Wm(t)

FIG. 6. Comparison between the photon-number distribution of
a cat state and Eq. (27) for m = 0. When collapse (and its symmetric
extension for t < 0) and the first revival are accounted as W0(t), one
retrieves the correct distribution.
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FIG. 7. (a) Decomposition of the revivals of |ξ〉 as given by
Eq. (28), with φ = π , in terms of Wm(t). Two consecutive revivals are
part of the same Wm(t). In the framework of characteristic functions,
each correspond to the peaks of χ (k) centered around m and m + 1/2.
(b) By adding the Wm(t), we recover the full W (t). The blue (dark
gray) curve represents

∑4
m=0 Wm(t) and the red (light gray) curve

represents the full W (t). The agreement can be improved for even
longer times by adding the subsequent Wm(t).

generated through Eq. (22). In Fig. 7(b), we add them to show
that we recover the full W (t).

A practical task is how to verify when revival is not a
stand-alone Wm(t). In our example we could simply compare
the predicted probabilities, but we do not know the state behind
the inversion profile in general. One approach to tackle this task
is simply through trial and error: Once a distribution has been
predicted, W (t) can be numerically calculated with Eq. (4) and
compared with the experimental data for the inversion at later
times. If comparison shows that the numerically calculated
inversion is missing intermediate revivals, then the time range
for Wm(t) must be reselected, just as we did for a cat state.

Another check is that, since the additional revivals are
not standalone Wm(t), using just the additional revival in
Eq. (27) will, in general, yield negative, hence nonphysical,
probabilities. They only make sense when added to the ones
obtained through the collapse. Their combination should yield
the correct probabilities.

V. OVERLAPPING Wm(t)

In the previous sections, we considered nonoverlapping
revivals so that W0(t) [or any other Wm(t)] can be obtained
straightforwardly from W (t), and Eq. (27) used to retrieve the
field photon-number distribution. We now show that, with the
decomposition presented in Sec. III, it is possible to circumvent
this limitation and extract W0(t) even when revivals overlap.
Therefore, our method allows photon-number distributions to
be retrieved under fairly general conditions.

The key idea is that if we sample W (t) for a sufficiently
long time window [−T ,T ], W0(t) will be completely captured,
albeit tainted with tails of W1(t), W−1(t), and, more generally,
every other Wm(t). Here, we consider the simplest case where
terms with |m| > 1 can be neglected, though the formalism is

easy to accommodate otherwise. Considering the FFT of the
limited window of W (t) leads to the spectrum W̃(ν):

W̃(ν) = W̃0(ν)

+
∫ ∞

−∞
dν ′ sin[π (ν − ν ′)2T ]

π (ν − ν ′)
[W̃1(ν ′) + W̃−1(ν ′)].

(32)

The first term on the right-hand side of Eq. (32) is simply the
spectrum of W0(t). However, W̃(ν) is contaminated by the
second term, which arises from the convolution of W1(t) and
W−1(t) with the window function located between −T and T .

However, from Eq. (22), it may be shown that W̃1(ν) +
W̃−1(ν) = 2 cos [2π (πν

g
)]2W̃0(ν), which means that Eq. (32)

is, in fact, an integral equation for W̃0(ν):

W̃(ν) = W̃0(ν) +
∫ ∞

−∞
dν ′S(ν,ν ′)W̃0(ν ′), (33)

where

S(ν,ν ′) = 2 cos

[
2π

(
πν ′

g

)]2 sin[π (ν − ν ′)2T ]

π (ν − ν ′)
. (34)

This equation has the form of a Fredholm equation of the
second kind, and can be solved numerically for W̃0(ν), given
the observed spectrum W̃(ν) [59]. We consider the retrieval of
W̃0(ν), and the photon-number distribution through Eq. (27),
for a coherent state with n = 1, for which revivals cannot be
resolved. The results are presented in Fig. 8. Equation (33) lays
the foundation for our approach. A more detailed exposition
of this technique will be presented in a later work.

FIG. 8. Inversion profile for a coherent state with 〈a†a〉 = 1 (top)
and photon-number distribution retrieval through Eq. (33) (bottom).
For an average photon number this low, the revivals cannot be clearly
resolved anymore. We tentatively choose a time window running
from −5 to 5. The Fourier transform of W (t) under this window
yields W̃(ν), which we use to construct the (dashed) purple curve.
This curve does not match the theoretical probability (represented by
the red dots) because it is contaminated by the spectra of W1(t) and
W−1(t). We have used Eq. (33) to solve for W̃0(ν), which corresponds
to the (solid) blue curve, yielding the correct probabilities.

053803-8



CHARACTERISTIC-FUNCTION APPROACH TO THE . . . PHYSICAL REVIEW A 94, 053803 (2016)

VI. CONCLUSIONS

In this work, we exploited the characteristic function
periodicity to split the inversion into a superposition of
packets centered at different times. When the inversion
oscillation frequencies are commensurable, the packets are
perfect replicas of one another, and each one represents a
single revival. In the case of the JCM, for which frequencies are
incommensurable, the inversion W (t) can still be split exactly
into a set of packets Wm(t). Knowledge of a single Wm(t)
determines every other Wm(t), but they are now imperfect
replicas, experiencing dispersion akin to that of free particles
in (nonrelativistic) quantum mechanics. Once dispersion is
accounted for, however, they become the same. Hence, it is also
possible to retrieve the photon-number distribution underlying
the revivals through a single Wm(t). When the Wm(t) do not
overlap, each of them can be identified with a single revival of
W (t).

We have illustrated the decomposition and also the distribu-
tion retrieval for a coherent state and a cat state. For a coherent
state, the retrieval is straightforward. We have also shown
how to generate all the subsequent Wm(t) once W0(t) has
been determined. As expected, adding them up yields the full
inversion. This formalism holds for any state (not just coherent
states), but there may be caveats to consider. For example, for a
cat state, care must be taking in identifying W0(t). In this case,
the oscillating distribution leads to additional revivals. We have
learned that they must not be thought of as stand-alone Wm(t):

They are a signature of the high-k components of χ (k) and
must be considered together with the revivals arising from the
low-k components of χ (k) as part of a single Wm(t) in order
for probabilities to be correctly retrieved.

The characteristic function approach provides us with a
new way of interpreting the inversion, but photon-number
distribution retrieval methods through single revivals have
been known for a while. To highlight the practical advantages
of our method, we have at last treated the case where revivals
cannot be resolved. We have outlined how to retrieve Wm(t)
under more general assumptions, and considered a coherent
state with average photon number of 1 as an example. By
casting aside the limitation of nonoverlapping revivals, this
work has set the stage for a different tomographic approach,
which we will investigate thoroughly in an upcoming work.
Other interesting extensions of this work would be applying
the formalism for other atomic properties, such as the atomic
dipole. It would also be worth looking at how different
profiles of χ (k) lead to different shapes of Wm(t) by further
investigating the propagator connecting these objects.
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[49] T. Opatrný and D. G. Welsch, Phys. Rev. A 55, 1462 (1997).
[50] M. Fleischhauer and W. P. Schleich, Phys. Rev. A 47, 4258

(1993).
[51] P. J. Bardroff, E. Mayr, and W. P. Schleich, Phys. Rev. A 51,

4963 (1995).
[52] C. T. Bodendorf, G. Antesberger, M. S. Kim, and H. Walther,

Phys. Rev. A 57, 1371 (1998).
[53] L. G. Lutterbach and L. Davidovich, Phys. Rev. Lett. 78, 2547

(1997).
[54] S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M.

Raimond, and S. Haroche, Nature 455, 510 (2008).
[55] E. Lukacs, Characteristic Functions, 2nd ed. (Griffin, London,

1970).
[56] B. Buck and C. V. Sukumar, Phys. Lett. A 81, 132 (1981).
[57] P. L. Knight, Phys. Scr. T12, 51 (1986).
[58] S. J. D. Phoenix and P. L. Knight, J. Opt. Soc. Am. B 7, 116

(1990).
[59] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in C: The Art of Scientific Computing
(Cambridge University Press, Cambridge, UK, 1992).

[60] H. I. Yoo and J. H. Eberly, Phys. Rep. 118, 239 (1985).
[61] S. Haroche and J. M. Raimond, Exploring the Quantum:

Atoms, Cavities, and Photons, Oxford Graduate Texts (Oxford
University Press, Oxford, UK, 2006).

[62] M. Fox, Quantum Optics: An Introduction (Oxford University
Press, Oxford, UK, (2006).

[63] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,
565 (2001).

053803-10

https://doi.org/10.1103/PhysRevA.49.3046
https://doi.org/10.1103/PhysRevA.49.3046
https://doi.org/10.1103/PhysRevA.49.3046
https://doi.org/10.1103/PhysRevA.49.3046
https://doi.org/10.1080/09500349908231366
https://doi.org/10.1080/09500349908231366
https://doi.org/10.1080/09500349908231366
https://doi.org/10.1080/09500349908231366
https://doi.org/10.1016/0079-6727(94)00007-L
https://doi.org/10.1016/0079-6727(94)00007-L
https://doi.org/10.1016/0079-6727(94)00007-L
https://doi.org/10.1016/0079-6727(94)00007-L
https://doi.org/10.1103/PhysRevA.54.804
https://doi.org/10.1103/PhysRevA.54.804
https://doi.org/10.1103/PhysRevA.54.804
https://doi.org/10.1103/PhysRevA.54.804
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nature06057
https://doi.org/10.1038/nature06057
https://doi.org/10.1038/nature06057
https://doi.org/10.1038/nature06057
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1103/PhysRev.177.1882
https://doi.org/10.1103/PhysRev.177.1882
https://doi.org/10.1103/PhysRev.177.1882
https://doi.org/10.1103/PhysRev.177.1882
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRevA.40.2847
https://doi.org/10.1103/PhysRevA.40.2847
https://doi.org/10.1103/PhysRevA.40.2847
https://doi.org/10.1103/PhysRevA.40.2847
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/PhysRevA.50.4298
https://doi.org/10.1103/PhysRevA.50.4298
https://doi.org/10.1103/PhysRevA.50.4298
https://doi.org/10.1103/PhysRevA.50.4298
https://doi.org/10.1103/PhysRevA.52.R1801
https://doi.org/10.1103/PhysRevA.52.R1801
https://doi.org/10.1103/PhysRevA.52.R1801
https://doi.org/10.1103/PhysRevA.52.R1801
https://doi.org/10.1103/PhysRevA.53.4528
https://doi.org/10.1103/PhysRevA.53.4528
https://doi.org/10.1103/PhysRevA.53.4528
https://doi.org/10.1103/PhysRevA.53.4528
https://doi.org/10.1103/PhysRevA.55.1462
https://doi.org/10.1103/PhysRevA.55.1462
https://doi.org/10.1103/PhysRevA.55.1462
https://doi.org/10.1103/PhysRevA.55.1462
https://doi.org/10.1103/PhysRevA.47.4258
https://doi.org/10.1103/PhysRevA.47.4258
https://doi.org/10.1103/PhysRevA.47.4258
https://doi.org/10.1103/PhysRevA.47.4258
https://doi.org/10.1103/PhysRevA.51.4963
https://doi.org/10.1103/PhysRevA.51.4963
https://doi.org/10.1103/PhysRevA.51.4963
https://doi.org/10.1103/PhysRevA.51.4963
https://doi.org/10.1103/PhysRevA.57.1371
https://doi.org/10.1103/PhysRevA.57.1371
https://doi.org/10.1103/PhysRevA.57.1371
https://doi.org/10.1103/PhysRevA.57.1371
https://doi.org/10.1103/PhysRevLett.78.2547
https://doi.org/10.1103/PhysRevLett.78.2547
https://doi.org/10.1103/PhysRevLett.78.2547
https://doi.org/10.1103/PhysRevLett.78.2547
https://doi.org/10.1038/nature07288
https://doi.org/10.1038/nature07288
https://doi.org/10.1038/nature07288
https://doi.org/10.1038/nature07288
https://doi.org/10.1016/0375-9601(81)90042-6
https://doi.org/10.1016/0375-9601(81)90042-6
https://doi.org/10.1016/0375-9601(81)90042-6
https://doi.org/10.1016/0375-9601(81)90042-6
https://doi.org/10.1088/0031-8949/1986/T12/007
https://doi.org/10.1088/0031-8949/1986/T12/007
https://doi.org/10.1088/0031-8949/1986/T12/007
https://doi.org/10.1088/0031-8949/1986/T12/007
https://doi.org/10.1364/JOSAB.7.000116
https://doi.org/10.1364/JOSAB.7.000116
https://doi.org/10.1364/JOSAB.7.000116
https://doi.org/10.1364/JOSAB.7.000116
https://doi.org/10.1016/0370-1573(85)90015-8
https://doi.org/10.1016/0370-1573(85)90015-8
https://doi.org/10.1016/0370-1573(85)90015-8
https://doi.org/10.1016/0370-1573(85)90015-8
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1103/RevModPhys.73.565



