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Electromagnetic frozen waves with radial, azimuthal, linear, circular, and elliptical polarizations
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Frozen waves (FWs) are a class of diffraction- and attenuation-resistant beams whose intensity pattern along
the direction of propagation can be chosen arbitrarily, thus making them relevant for engineering the spatial
configuration of optical fields. To date, analyses of such beams have been done essentially for the scalar case,
with the vectorial nature of the electromagnetic fields often neglected. Although it is expected that the field
components keep the fundamental properties of the scalar FWs, a deeper understanding of their electromagnetic
counterparts is mandatory in order to exploit their different possible polarization states. The purpose of this
paper is to study the properties of electromagnetic FWs with radial, azimuthal, linear, circular, and elliptical
polarizations under paraxial and nonparaxial regimes in nonabsorbing media. An intensity pattern is chosen for
a scalar FW, and the vectorial solutions are built after it via the use of Maxwell’s equations. The results show
that the field components and the longitudinal component of the time-averaged Poynting vector closely follow
the pattern chosen even under highly nonparaxial conditions, showing the robustness of the FW structure to
parameters variations.
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I. INTRODUCTION

The engineering of the spatial configuration of optical fields
is of great interest in many areas, such as optical tweezers [1,2],
atom guidance [3], and superresolution imaging [4–7]. In these
cases, the transverse concentration and self-healing properties
of Bessel beams (BBs) can be helpful, and frozen waves (FWs)
provide an additional degree of freedom by allowing the mod-
ulation of the field intensity along the direction of propagation.

Currently, the theory of FWs allows the construction of
diffraction- and attenuation-resistant beams with arbitrary
intensity profile along the propagation axis in both nonabsorb-
ing [8–13] and absorbing media [14–16]. Although “standard”
FWs built with ideal BBs have infinite power flux, physically
realizable alternatives can be constructed by truncating the
BBs or by using Bessel-Gauss beams [16]. It has been shown
both theoretically and experimentally that it is also possible to
change the intensity profile of a FW over time [17].

Despite many advances in this field of research, the
studies have generally adopted a scalar treatment, casting
aside the vectorial characteristics of the electromagnetic fields.
Although there are a few considerations for linearly polarized
FWs under paraxial conditions [15], the analyses are far from
being complete in this sense. In order to properly understand
the characteristics of electromagnetic FWs and exploit their
possible polarization states, a deeper study is required.

The goal of this paper is to analyze the properties of
electromagnetic FWs with a variety of polarizations (radial,
azimuthal, linear, circular, and elliptical) under paraxial and
nonparaxial regimes in nonabsorbing media. Since the con-
struction of FWs with finite power flux involves more compli-
cated expressions, the present study focuses on the use of ideal
BBs. Even though it is an idealization, the conclusions derived
should be valid for practical FWs within the range in which
their main composing BBs keep their localization properties.
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II. SCALAR FROZEN WAVES AND MATHEMATICAL
METHODOLOGY

Throughout this paper, a time dependence of the form e−iωt

is assumed for all the fields and, therefore, this factor will not
be shown explicitly. For a summary of the theory of FWs in
nonabsorbing media, the reader is referred to [8,9].

The vectorial solutions are constructed after a scalar
FW (�) of order ν propagating in the positive z direc-
tion. The desired intensity pattern, given by |F (z)|2, is
imprinted on a cylindrical surface of radius ρ0 (for ν �= 0)
or over the propagation axis with a spot radius �ρ0 (for
ν = 0) within the interval 0 � z � L. Mathematically, it
corresponds to |�(ρ = ρ0,φ,z)|2 ≈ |F (z)|2 for ν �= 0 and
|�(ρ = 0,φ,z)|2 ≈ |F (z)|2 for ν = 0. The general form of
� is given by

�(ρ,φ,z) = Nν

N∑
n=−N

AnJν(hnρ)eiνφeiβnz, (1)

where Nν = 1/[Jν(·)]max (for which the same unit of � is
attributed) and [Jν(·)]max denotes the maximum value of the
Bessel function of the first kind Jν(·). The coefficients An are
calculated by

An = 1

L

∫ L

0
F (z)e−i 2π

L
nzdz. (2)

The longitudinal (βn) and transverse (hn) wavenumbers are
related by the expressions

βn = Q + 2π

L
n, hn =

√
k2 − βn

2, (3)

where k = nω/c (with c being the speed of light in vacuum)
and n is the refractive index of the medium. They can also
be expressed in terms of the cone angle of each BB (θn) by
βn = k cos θn and hn = k sin θn. In addition, Q is related to ρ0

via the first solution of ∂
∂ρ

[Jν(h0ρ)]|ρ=ρ0 = 0 (or to �ρ0 via

�ρ0 ≈ 2.4/h0 if ν = 0), where h0 =
√

k2 − Q2 according to
Eq. (3). The maximum allowed value for N is

Nmax =
⌊

L

2π
min {k − Q , Q}

⌋
(4)

so that 0 � βn � k, where �·� is the floor function.
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The general procedure adopted is to choose a scalar FW
as the desired transverse component of the electric field �E
and calculate its z component via Gauss’s law (for source-free
homogeneous media, it is �∇ · �E = 0). The magnetic field is
then obtained using Faraday’s law ( �B = − i

ω
�∇ × �E), and the

time-averaged Poynting vector is calculated from the fields us-
ing �S = 1

2μ
Re[ �E × �B∗], where μ is the magnetic permeability

of the medium and ∗ denotes the complex conjugate.

III. CASES OF INTEREST

In certain cases, it is possible to simplify the expressions
for the fields based on the values of the parameters Q and L.
Let them be expressed by

Q = ak, 0 < a < 1, (5)

L = bλ, b ∈ R>0. (6)

Then, βn can be written as

βn = β0

(
1 + n

ab

)
, (7)

and Nmax becomes Nmax = �b min{1 − a , a}�.
Since the maximum value for n is N , three main cases can

be distinguished:
(1) ab 
 N with a ≈ 1: corresponds to the paraxial regime

and is the most common case. Here, βn ≈ β0 ≈ k, and
hn ≈ h0 � β0.

(2) ab 
 N but with a �≈ 1: corresponds to a non-
paraxial situation in which the approximations βn ≈ β0 and
hn ≈ h0 = k

√
1 − a2 are still valid. Even so, this case

can be highly nonparaxial, with h0 even exceeding β0 if
a < 1/

√
2 ≈ 0.71.

(3) ab �
 N and a �≈ 1: corresponds to a nonparaxial situ-
ation with very small L. In principle, taking the wavenumbers
as being approximately constant is not a valid approximation
in this case.

The approximate constancy of the wavenumbers in cases
1 and 2 allows multiplicative factors involving βn and
hn to be taken outside summations, providing significant
simplifications on the expressions of the fields and making
their properties clearer. It is worth clarifying that these
approximations are applied only to factors related to the
amplitudes of the superposed BBs and should not be used
on phase factors (like eiβnz).

IV. AZIMUTHAL POLARIZATION

If we write the vector wave equation for �E [18] decomposed
into cylindrical components and using cylindrical coordinates,
that is, for �E(ρ,φ,z) = Eρρ̂ + Eφφ̂ + Ezẑ, we find that the
resulting equations for Eρ and Eφ are coupled. However, if
we assume azimuthal symmetry [i.e., �E(ρ,z)], they become
decoupled, and the equation for Eφ(ρ,z) turns out to be

∇2Eφ(ρ,z) − Eφ(ρ,z)

ρ2
+ k2Eφ(ρ,z) = 0. (8)

Since Eq. (8) is not the usual scalar wave equation [19], it is
not possible to choose Eφ(ρ,z) as a scalar FW of arbitrary
order. However, it is straightforward to verify that

Eφ(ρ,z) = J1(hρ)eiβzφ̂, β2 + h2 = k2, (9)

is a valid solution of Eq. (8), which is exactly a scalar BB
of order ν = 1 without the exponential phase factor eiφ .
Also, if we take �E(ρ,z) = Eφ(ρ,z)φ̂, no other electric field
components are necessary because �E already satisfies Gauss’s
law due to the absence of φ dependence on Eφ , allowing us to
take Eρ = Ez = 0.

So, since the missing exponential phase factor does not
affect the intensity of the resulting field, we can build a FW
with azimuthal polarization of the form

�E = Eφφ̂, Eφ = N1

N∑
n=−N

AnJ1(hnρ)eiβnz. (10)

The corresponding magnetic field is

�B = Bρρ̂ + Bzẑ, (11)

Bρ = − 1

ω
N1

N∑
n=−N

βnAnJ1(hnρ)eiβnz, (12)

Bz = − i

ω
N1

N∑
n=−N

hnAnJ0(hnρ)eiβnz, (13)

and the time-averaged Poynting vector results in

�S = Sρρ̂ + Szẑ, (14)

Sρ = − N1
2

2μω

N∑
n=−N

N∑
m=−N

hmJ1(hnρ)J0(hmρ)

× Im[AnA
∗
mei(βn−βm)z], (15)

Sz = N1
2

2μω

N∑
n=−N

N∑
m=−N

βmJ1(hnρ)J1(hmρ)

× Re[AnA
∗
mei(βn−βm)z]. (16)

Defining

�0
FW ≡ N1

N∑
n=−N

AnJ0(hnρ)eiβnz, (17)

which resembles a FW of order ν = 0, the expressions for
cases 1 and 2 can be simplified to

Bρ ≈ −β0

ω
Eφ = −an

c
Eφ, (18)

Bz ≈ −i
h0

ω
�0

FW = −i

√
1 − a2n

c
�0

FW, (19)

Sρ ≈ − h0

2μω
Im

[
Eφ�0∗

FW

] = −
√

1 − a2

2η
Im

[
Eφ�0∗

FW

]
, (20)

Sz ≈ β0

2μω
|Eφ|2 = a

2η
|Eφ|2, (21)

where η = √
μ/ε is the intrinsic impedance of the medium.

Equations (18) and (19) show that the magnetic field
components follow the same FW pattern as Eφ (with order
ν = 1 in Bρ and ν = 0 in Bz), while Eq. (21) shows that Sz

is proportional to |Eφ|2 and thus also mimics the intensity
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profile of Eφ . In contrast, according to Eq. (20), the pattern
of Sρ is different, and the interpretation of its behavior is
not as immediate. Since the term Eφ�0∗

FW involves products
of the form J0(·)J1(·), we expect oscillations that decay
asymptotically with 1/ρ in the transverse plane, but the
longitudinal behavior is not evident. A detailed analysis is
carried out in Sec. VIII B, where it is shown that Sρ(ρ0,z)ρ̂
points inward when |Eφ|2 increases and outward when |Eφ|2
decreases because it brings and removes energy from the field
in accordance with its intensity pattern variation.

V. RADIAL POLARIZATION

The radial polarization is readily addressed considering the
duality of electric and magnetic fields. If �B is chosen as an
azimuthally polarized FW, �E will be a radially polarized FW
(although with an unavoidable nonzero Ez component). This
allows us to write an electric field of the form

�E = Eρρ̂ + Ezẑ, Eρ = N1

N∑
n=−N

AnJ1(hnρ)eiβnz. (22)

Because of the duality, the results are basically the same as the
ones in Sec. IV, with the roles of �E and �B interchanged. The
expressions for the fields are

Ez = iN1

N∑
n=−N

hn

βn

AnJ0(hnρ)eiβnz, (23)

�B = Bφφ̂, Bφ = k2

ω
N1

N∑
n=−N

1

βn

AnJ1(hnρ)eiβnz, (24)

and those for the �S components are

�S = Sρρ̂ + Szẑ, (25)

Sρ = N1
2k2

2μω

N∑
n=−N

N∑
m=−N

hn

βnβm

J0(hnρ)J1(hmρ)

× Im[AnA
∗
mei(βn−βm)z], (26)

Sz = N1
2k2

2μω

N∑
n=−N

N∑
m=−N

1

βm

J1(hnρ)J1(hmρ)

× Re[AnA
∗
mei(βn−βm)z]. (27)

For cases 1 and 2, the approximations result in

Bφ ≈ k2

ωβ0
Eρ = n

ac
Eρ, (28)

Ez ≈ i
h0

β0
�0

FW = i

√
1 − a2

a
�0

FW, (29)

Sρ ≈ − k2h0

2μωβ0
2 Im

[
Eρ�

0∗
FW

] = −
√

1 − a2

2ηa2
Im

[
Eρ�

0∗
FW

]
,

(30)

Sz ≈ k2

2μωβ0
|Eρ |2 = 1

2ηa
|Eρ |2. (31)

As expected from the duality, the approximate expressions are
also very similar to the ones found in Sec. IV.

VI. LINEAR POLARIZATION

Since each Cartesian component of the electric field obeys
a scalar wave equation, it is possible to choose one of them as
a scalar FW of arbitrary order. So, we can assume a linearly
polarized �E in the x̂ or ŷ direction of the form

�E = E⊥

(
x̂

ŷ

)
+ Ezẑ, (32)

E⊥ = Nν

N∑
n=−N

AnJν(hnρ)eiνφeiβnz, (33)

where the bracket notation will be used to distinguish the terms
corresponding to each direction chosen.

From now on, it is convenient to adopt the shorthand
notation Jν ≡ Jν(hnρ). Then, the expressions for the field
components result in

Ez = Nν

N∑
n=−N

Ane
iβnzeiνφ

[( sin φ

− cos φ

) ν

ρβn

Jν + (Jν−1 − Jν+1)

2
i
(cos φ

sin φ

) hn

βn

]
, (34)

B(x

y) = 1

ω
Nν

N∑
n=−N

Ane
iβnzeiνφ

( 1
−1

) [(
− iν cos(2φ)

ρ2βn

+ ν2 sin(2φ)

2ρ2βn

− hn
2

4βn

sin(2φ)

)
Jν

+ (Jν−1 − Jν+1)

4ρ

hn

βn

[2iν cos (2φ) − sin (2φ)] + (Jν−2 + Jν+2)

8

h2
n

βn

sin (2φ)

]
, (35)

B(y

x) = 1

ω
Nν

N∑
n=−N

Ane
iβnzeiνφ

{[(
cos2 φ

− sin2 φ

)
h2

n

2βn

+
( 1
−1

)
βn −

(1
1

) iν sin (2φ)

ρ2βn

+
( sin2 φ

− cos2 φ

) ν2

ρ2βn

]
Jν

+ (Jν−1 − Jν+1)

2ρ

hn

βn

[(1
1

)
iν sin (2φ) +

(− sin2 φ

cos2 φ

)]
+ (Jν−2 + Jν+2)

4

h2
n

βn

(− cos2 φ

sin2 φ

)}
, (36)

Bz = 1

ω
Nν

N∑
n=−N

Ane
iβnzeiνφ

[
−

(cos φ

sin φ

) ν

ρ
Jν + (Jν−1 − Jν+1)

2
ihn

( sin φ

− cos φ

)]
. (37)
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The explicit expressions for the time-averaged Poynting
vector in terms of Bessel functions would be lengthy and of
no much use.

In this polarization, the approximations for cases 1 and
2 must be done carefully. First, all the fields have terms
with sine and cosine dependencies, so we have to keep
the most significant one(s) of each type. Otherwise, the
approximation would be poor. Second, k = nω/c is usually
very high in optics (due to the high frequencies), and

so are hn and βn. As a consequence, hn
2/βn

N
 hn/βn, and

hn/βn

N
 1/βn [20]. Third, the relative importance of the
terms with hn

2/βn and the one with βn in Eq. (36) depends
on the ratio hn/βn, which defines the regime (paraxial or
nonparaxial). Since the βn term does not depend on φ, it is
not necessary to take one sine term and one cosine term when
it is dominant. Taking all this into account, the approximate
expressions become

Ez ≈
( sin φ

− cos φ

) ν

ρβ0
E⊥ + i

(cos φ

sin φ

)h0

β0
�ν±1

FW , (38)

B(x

y) ≈
( 1
−1

)[
−h0

2

β0

sin(2φ)

4ω

(
E⊥ − �ν±2

FW

) + i
h0

β0

ν cos(2φ)

ωρ
�ν±1

FW

]
, (39)

B(y

x) ≈

⎧⎪⎨
⎪⎩

(
1

−1

)
β0

ω
E⊥ = an

c
E⊥ for case 1,(

1
−1

)
β0

ω
E⊥ + ( cos2 φ

− sin2 φ

)
h0

2

2ωβ0

(
E⊥ − �ν±2

FW

) + [(
1
1

)
iν sin(2φ) + (− sin2 φ

cos2 φ

)]
h0

ωρβ0
�ν±1

FW for case 2,
(40)

Bz ≈ −
(cos φ

sin φ

) ν

ωρ
E⊥ + i

h0

ω

( sin φ

− cos φ

)
�ν±1

FW , (41)

where

�ν±1
FW ≡ Nν

N∑
n=−N

Ane
iβnzeiνφ (Jν−1 − Jν+1)

2
, (42)

�ν±2
FW ≡ Nν

N∑
n=−N

Ane
iβnzeiνφ (Jν−2 + Jν+2)

2
. (43)

The definitions in Eqs. (42) and (43) are motivated by
the fact that the sum and the difference of Bessel functions
that appear in them have characteristics similar to a Bessel
function, i.e., they oscillate and decay, as illustrated in Fig. 1 for

FIG. 1. Comparison among Jν(x), [Jν−1(x) − Jν+1(x)]/2, and
[Jν−2(x) + Jν+2(x)]/2 for ν = 2, showing that they all oscillate and
decay.

ν = 2. Therefore, �ν±1
FW and �ν±2

FW have a transverse localiza-
tion similar to that of a usual FW.

For case 1, since β0 
 h0, it is clear from Eqs. (38) to (41)
that |Ez| � |E⊥|, ∣∣B(x

y)
∣∣ � ∣∣B(y

x)
∣∣, and |Bz| � ∣∣B(y

x)
∣∣, so the

beam is almost TEM. It is also only in the paraxial case that
the approximate expressions for the �S components are simple
because B(x

y) can be neglected when compared to B(y

x). Thus,

considering �B ≈ B(y

x)
(
ŷ

x̂

) + Bzẑ, we get

�S = Sρρ̂ + Sφφ̂ + Szẑ, (44)

Sρ ≈ − h0

2μω
Im

[
E⊥�ν±1∗

FW

] = −
√

1 − a2

2η
Im

[
E⊥�ν±1∗

FW

]
,

(45)

Sφ ≈ ν

2μωρ
|E⊥|2 = ν

2ηkρ
|E⊥|2, (46)

Sz ≈ β0

2μω
|E⊥|2 = a

2η
|E⊥|2. (47)

It is worth noting that Sφ is proportional to ν and ex-
presses the transverse energy circulation that gives rise
to the orbital angular momentum (OAM) carried by the
beam, which is an optical vortex beam with phase fac-
tor eiνφ . This fact also implies that the �S field lines are
helical [21,22].

VII. ELLIPTICAL AND CIRCULAR POLARIZATIONS

An elliptically polarized FW can be obtained by superpos-
ing two linearly polarized FWs in the x̂ and ŷ directions with
a phase delay of ±π/2 rad between them. In this case, �E is
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given by

�E = (ux̂ ± iwŷ)E⊥ + Ezẑ, (48)

with E⊥ taken from Eq. (33). u and w refer to the semiaxes of
the ellipse in the x̂ and ŷ directions, respectively, and the plus
and minus signs refer to right-hand and left-hand polarizations,
respectively. If u = w, the field is circularly polarized.

The expressions for the fields components can be obtained
by combining the results of Sec. VI, from which �S can then
be derived. It is also possible to assign different FWs to Ex

and Ey , but the resultant wave would not be an elliptically
polarized FW.

VIII. SIMULATIONS AND FURTHER DISCUSSION

Here, we focus on some aspects of experimentally feasible
examples of cases 1 and 2 using visible light of wavelength
λ = 632.8 nm propagating in air. Case 3, on the other hand,
is analyzed separately in Sec. VIII F. For the two cases
mentioned, the parameters used were as follows:

(1) Case 1 (paraxial): N = 30, a = 0.9999, and
b = 5.5310 × 105, implying β0 ≈ 9.9282 × 106 rad/m,
h0 ≈ 1.4042 × 105 m−1 ≈ 0.0141β0, and L = 0.35 m.

(2) Case 2 (nonparaxial): N = 30, a = 0.7, and
b = 1.5803 × 104, implying β0 ≈ 6.9504 × 106 rad/m,
h0 ≈ 7.0909 × 106 m−1 ≈ 1.0202β0, and L = 0.01 m.

The function F (z) chosen for the simulations was

F (z) =

⎧⎪⎪⎨
⎪⎪⎩

1 for 0.1L � z � 0.3L,√
2 for 0.4L � z � 0.6L,√
3 for 0.7L � z � 0.9L,

0 otherwise,

within 0 � z � L,

(49)

resulting in the intensity pattern |F (z)|2 shown in Fig. 2
together with the obtained pattern for the superposition with
N = 30. The unit of the electric field (and therefore of its
intensity pattern | �E|2) is arbitrary.

From now on, we denote L1 = 0.1L and L2 = 0.3L, and
the subscript ⊥ refers to the transverse component of the fields.
Since | �B| = n| �E|/c and | �S| = | �E|2/(2η) for a TEM wave and

FIG. 2. Desired and obtained intensity patterns of the FW for
N = 30, expressed in arbitrary units.

these same multiplicative factors appear in the approximate
expressions of the fields, the plots of �B and �S will be of the
form c �B/n and 2η �S, so that these quantities follow the arbitrary
unit of | �E| and we avoid working with unnecessary powers
of 10.

All the simulations were run with the complete field
expressions, i.e., with no approximations.

A. Experimental feasibility, depth of penetration,
and transverse spatial concentration

The feasibility of the cases chosen is related to the size of
the apertures necessary to generate the BBs. The field depth
Z of a BB truncated by a circular aperture of radius R can
be approximated by Z = R/ tan θ [9], where θ is the cone
angle. For a FW, it is sufficient that its composing BBs keep
their localization properties inside the region in which the
intensity is to be modeled (in this case, L). Since θn does not
vary much around θ0, we can estimate the necessary R by
R ≈ L tan θ0 = Lh0/β0. This clearly shows the compromise
between how much the FW is nonparaxial (characterized by
the ratio h0/β0) and how far we want to model the field in
order to achieve feasible apertures.

In the cases 1 and 2 chosen, we have θ0 ≈ 0.81◦
and θ0 ≈ 45.57◦, respectively, resulting in R ≈ 0.5 cm and
R ≈ 1.02 cm, which are perfectly realizable in laboratory.
Even though case 2 is very nonparaxial and L is many orders
of magnitude greater than λ, we still get a reasonable aperture
size.

Regarding the spatial concentration, the more nonparaxial
the BBs are, the higher h0 is and, therefore, the smaller the
spot or the radius of the FW is. Depending on the degree of
nonparaxiality, we can have �ρ0 or ρ0 of a fraction of λ (while
still respecting the diffraction limit). For the parameters chosen
in case 2, for example, we have �ρ0 ≈ 0.5349λ (for ν = 0) and
ρ0 ≈ 0.4103λ (for ν = 1). Hence, it should not be surprising
that we can achieve details on the transverse intensity pattern
of the beam that are smaller than the wavelength, as illustrated
later in Fig. 6.

In practice, of course, a very concentrated transverse pattern
requires a bigger aperture for a given propagation length,
as highlighted above. Nevertheless, even for experimentally
feasible apertures the depth of penetration of a FW can be many
orders of magnitude higher than that of other usual beams. For
example, a Gaussian beam with the same spot as the FW in
case 2 has a Rayleigh length of zR = π�ρ2

0/λ ≈ 0.9λ [23],
which is much smaller than the L ≈ 1.5803 × 104λ in which
the FW keeps its transverse shape practically unaltered.

B. Azimuthal and radial polarizations

These are the simplest polarization cases, since the expres-
sions for the fields have Bessel functions of only one order
and present no φ dependence. The approximate expressions do
not neglect any terms and hence are valid with extraordinary
precision.

The transverse field components all follow the chosen FW
pattern, and the longitudinal components are FWs of order
zero with the same intensity variation in the z direction. As
shown by the approximate expressions, the difference between
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cases 1 and 2 is just an increase in the relative importance of
the longitudinal components.

The most interesting analysis that can be made here regards
the Poynting vector, since the same behavior appears in the
other polarizations. Figure 3 shows the patterns of Sz and Sρ

for azimuthal polarization in case 1. For case 2, the shapes are
the same, but with slightly different magnitudes.

As expected, Sz follows the pattern of |Eφ|2. It is
worth mentioning that, although Sz is negligible near the
propagation axis in the regions between the steps, there
is no violation of energy conservation, which requires∫∫

R2 Sz(x,y,z) dxdy = const [24]. What happens is that even
though the total power flux through the transverse plane
is constant, the regions in which the power flux density is
concentrated change along the propagation direction due to
the interference among the BBs composing the FW. As can
be seen in Fig. 3(a), the magnitude of Sz at a certain distance
from the axis increases in between the steps, so that the flux
that was concentrated near it is now spread over a lateral
structure, which extends beyond the limits of Fig. 3(a).

The behavior of Sρ , on the other hand, is totally different:
it is zero over the axis, increases suddenly, and then decays
as ρ is increased, with (“inside” the steps of the pattern) or
without (at the edges of the steps) changing sign along the
radial direction.

A direct comparison of the sign of Sρ over the radius of
the FW (which can be seen in Fig. 4) with the longitudinal
variation of the obtained pattern (Fig. 2) reveals that Sρρ̂ points
outward when |Eφ|2 decreases and inward when it increases.
The physical meaning of this fact is evident: Sρ is responsible,
at least in part, for the changes in the intensity of the fields
and therefore has to bring or take away energy. Inside the
steps, its magnitude is small because the intensity profile is
almost flat, but it is much higher at the edges, where there
are fast variations in |Eφ|2. As shown in Figs. 3(b) and 4, the
“jumps” in the magnitude of Sρ are proportional to the size
of the steps, suggesting that they are somehow related to the
derivative of |Eφ|2 with respect to z. This is also expected,

because a greater change in the intensity pattern requires the
transfer of more energy. For patterns with smooth variations,
Sρ remains small during the entire propagation, as verified via
simulations with other F (z).

The shape of Sρ along the radial direction can be somewhat
anticipated if we note that Eφ�0∗

FW will be a sum of terms of the
form J1(hnρ)J0(hmρ) (among which hn and hm change only
slightly) and that each of them oscillates and decays. However,
at the edges of the steps, Sρ does not change its sign radially
like in the other positions, although it also decays.

C. Linear polarization

Unlike in the previous polarizations, the fields now have
an azimuthal dependence, but for a fixed φ their components
present the preassigned intensity pattern variation of the FW
along the z direction, with a shape similar to the one shown
in Fig. 3(a). In other words, the differences among the
components lie entirely in their transverse patterns, which are
modulated in the z direction by the chosen FW pattern. The
radius (or spot) of the radial variation and the amplitude of
the lateral rings for each of them depend on the order of the
FW and on the value of φ. These considerations are also valid
for the Poynting components besides Sρ , whose characteristics
will be analyzed separately.

In addition, the field expressions have many terms and
involve Bessel functions of different orders. The terms also
have disparate contributions to the total field, with some of
them dependent on the ratio h0/β0. Because of this, when
going from case 1 to 2, not only do the longitudinal fields get
stronger, but there are also changes in the transverse patterns
of some field components.

Because of all these facts, it is interesting to compare
the different transverse profiles. Unless otherwise stated, the
plots presented are for z = (L1 + L2)/2 and refer to a linearly
polarized FW in the x direction with order ν = 2.

As suggested by the approximate expressions of Sec. VI,
Ez, Bz, and Bx keep the same kind of pattern when we change

FIG. 3. Azimuthal polarization (case 1). Patterns of (a) Sz and (b) Sρ along the z direction.
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FIG. 4. Azimuthal polarization (case 1). 2ηSρ evaluated at ρ = ρ0

as a function of z.

from case 1 to 2, although their magnitudes increase because
the ratio h0/β0 increases. Furthermore, Ez and Bz present the
same pattern rotated by π/2 rad. Figure 5 illustrates the profiles
of |Bx |2 and |Bz|2 for case 1, showing that, in agreement with
the approximate expressions of Sec. VI, Bz has a superposition
of cos φ and sin φ terms and Bx has a superposition of cos(2φ)
(decreasing with 1/ρ) and sin(2φ) terms.

On the other hand, the patterns of By and of the Poynting
components are sensitive to the ratio h0/β0. To illustrate this
fact, Fig. 6 shows what happens to |By |2 and |Sφ| when we
change from case 1 to case 2. In case 1, |By |2 is proportional
to |E⊥|2 (as are |Sz| and |Sφ|), but the term proportional to
h2

0 cos2 φ/β0 becomes more relevant when we change to case
2, making the field stronger over the x axis. As a result, |Sφ|
(and also |Sz|, although it is not shown) is stretched in the x

direction, following the change in By .
Comparing Bx and By in Figs. 5 and 6, we see that in

case 1 |Bx | � |By | and hence the magnetic field is linearly
polarized. However, in case 2 (although not shown in Fig. 5)
their magnitudes become comparable, and the polarization
changes to elliptical.

The behavior of Sρ is more peculiar. In case 1, the
approximate Eq. (45) correctly indicates that it behaves as
in Sec. VIII B. However, due to the nonparaxiality of case

FIG. 5. Linear polarization (case 1). Patterns of (a) |Bx |2 and
(b) |Bz|2 at z = (L1 + L2)/2.

FIG. 6. Changes in the profiles of |By |2 and |Sφ | at
z = (L1 + L2)/2 incurred by the increase in the ratio h0/β0.

2, Sρ starts to present different longitudinal behaviors for
different values of φ. Figure 7 shows that for φ = π/4 rad (and
φ = 3π/4 rad) it follows the FW pattern and points towards
the propagation axis, but for φ = 0 rad (and φ = π rad) it still
behaves as in case 1. Although for the case presented the
pattern in Fig. 7(a) is much less intense than the one in Fig. 7(b),
their relative magnitudes depend strongly on the parameters
Q and L and hence they could be comparable in other cases.

D. Elliptical and circular polarizations

Since the elliptical polarization is a combination of two
linearly polarized waves, all the fields have the desired FW
characteristics for a fixed φ, as in Sec. VIII C. To illustrate how
the interaction between these two waves differs from a single
linearly polarized FW, we will compare the results for a FW
of order ν = 2 with circular (u = w = 1) and elliptical (u = 2
and w = 1 chosen) polarizations with those of Sec. VIII C.

In case 1, Ex and Ey independently generate By and Bx ,
respectively, because the other contributions to these magnetic
field components are negligible. Therefore, they have the same
circular pattern of By in case 1 of Fig. 6 for both circular and
elliptical polarizations. On the other hand, Ez and Bz receive
comparable contributions from both Ex and Ey , and the final
pattern depends on the values of u and w. As an illustration,
Fig. 8 compares the profiles of |Ez|2 in these two cases. For the
circular polarization, the Ez components generated by Ex and
Ey are in space quadrature and have the same magnitude, so
they “close” a circle of intensity. For the elliptical polarization,
the contribution from Ex is twice the one from Ey , resulting
in an almost elliptical shape for |Ez|2. The same conclusions
are valid for Bz if the intensity pattern is rotated by π/2 rad.
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FIG. 7. Linear polarization (case 2). Longitudinal behavior of Sρ for (a) φ = 0 rad and φ = π rad and (b) φ = π/4 rad and φ = 3π/4 rad.

In respect to �S, Sφ and Sz have circular profiles similar to the
ones in the left column of Fig. 6.

In case 2, the contributions for Bx due to Ex and for By

due to Ey cannot be neglected, and their generation becomes
intertwined. Also, the terms with azimuthal dependence
become relatively more important and end up “stretching”
the patterns of the resulting Bx and By in the same fashion as
By in Fig. 6. This, of course, perturbs the circular symmetry
of Sφ and Sz. As in the previous polarizations, the longitudinal
fields also become stronger in case 2.

E. Approximations

A comparison of the exact results for azimuthal and
radial polarizations with the ones obtained from approximate
expressions shows that they agree precisely. For the linear
and, consequently, elliptical or circular polarizations, the
approximations for Bx , By , and �S are less accurate due to
the neglect of terms. Since these are less important under the
paraxial regime, the approximations are precise for case 1. On
the other hand, no terms are discarded in the approximations
of Ez and Bz and, therefore, they are always very accurate.

In addition, the transverse characteristics of the fields
components for all the polarization states are very similar to the

FIG. 8. Transverse pattern of |Ez|2 in case 1 for (a) circular
polarization and (b) elliptical polarization at z = (L1 + L2)/2.

ones obtained for single BBs [25,26], since the variations on
hn are small and the superposed BBs are therefore very similar.

F. Analysis of case 3

Although it does not seem possible, a priori, to make any
approximation for case 3, it was noted that the fields obtained
in such a case present practically the same transverse patterns
and magnitudes as the ones that would be obtained in a case 2
with the same value of Q. This indicates that we can actually
use the approximate expressions of case 2 for case 3 without
losing precision. There are basically two facts that make this
possible and they will be numerically illustrated for a case in
which a = 0.5 and b = 100. Experimentally, this case would
demand an aperture of radius R ≈ 0.11 mm, which is totally
feasible despite the extreme nonparaxiality.

First, the transverse pattern of the FW is determined by a
superposition of the Bessel functions, whose maxima positions
differ because hn varies. However, if this deviation is small,
even considerable changes in hn do not alter the localized
properties of the profile, which is actually what happens in
most practical situations. For the case 3 chosen, Fig. 9(a) shows
J2(hnρ) when hn varies from h0 to h−N and hN . The maximum
deviation of the peak from the case with h0 [which is the
one in which the FW pattern is centered, as will be shown
in Fig. 9(b)] occurs for n = N and increases with the value
of ν. However, unless ν is taken to be excessively high, the
deviation is not enough to strongly separate the peaks and they
still “interfere constructively.” The superposition outside the
peak is destructivelike, and the FW localization property is
kept.

Second, the coefficients An are usually significant only near
a certain value of n (which is usually n = 0), making the
contributions of the terms with distant values of n almost
negligible. Because of this, the “effective” maximum change
in hn that should be considered when analyzing the shift of the
Bessel functions is smaller. For the case 3 chosen, for example,
Fig. 9(b) exhibits the values of |An| and shows that they are
only significant near n = 0.

In conclusion, this shows that the localized structure of the
FWs is very robust to parameters variations.
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FIG. 9. Case 3. (a) Comparison among J2(hnx) when hn varies. (b) |An| vs n.

IX. CONCLUSIONS

In this paper we presented a variety of possible polarization
states for electromagnetic frozen waves and analyzed their
characteristics for three distinct cases: the paraxial regime
(case 1) and nonparaxial regimes with high (case 2) and low
(case 3) field depths. The localization property of the scalar
FWs is kept by all the fields and time-averaged Poynting
components (except for the radial one, Sρ), even when there
are azimuthal dependencies on their expressions. For cases

1 and 2, the small variations on the transverse (hn) and
longitudinal (βn) wavenumbers allow approximations that
greatly simplify the analysis of the fields with almost no loss
of precision. In addition, a study of case 3 shows that even in
extreme cases the variations on hn are not enough to break the
localization properties of the FWs, which appear to be very
robust structures in this sense. Furthermore, the approximate
expressions for case 2 can generally still be used in these
situations.
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