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The global coupling of few-level quantum systems (“spins”) to a discrete set of bosonic modes is a key
ingredient for many applications in quantum science, including large-scale entanglement generation, quantum
simulation of the dynamics of long-range interacting spin models, and hybrid platforms for force and spin
sensing. We present a general numerical framework for treating the out-of-equilibrium dynamics of such models
based on matrix product states. Our approach applies for generic spin-boson systems: it treats any spatial and
operator dependence of the two-body spin-boson coupling and places no restrictions on relative energy scales.
We show that the full counting statistics of collective spin measurements and infidelity of quantum simulation
due to spin-boson entanglement, both of which are difficult to obtain by other techniques, are readily calculable
in our approach. We benchmark our method using a recently developed exact solution for a particular spin-boson
coupling relevant to trapped ion quantum simulators. Finally, we show how decoherence can be incorporated
within our framework using the method of quantum trajectories, and study the dynamics of an open-system
spin-boson model with spatially nonuniform spin-boson coupling relevant for trapped atomic ion crystals in the
presence of molecular ion impurities.
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I. INTRODUCTION

The coupling of spins to bosonic modes provides a paradig-
matic setting for various important phenomena in many-
body physics, such as decoherence, thermalization, virtually
mediated long-range spin-spin interactions, and large-scale
entanglement generation [1–3]. The study of spin-boson
models has historically belonged to the domain of condensed
matter theory [4]. However, experimental setups available
to atomic, molecular, and optical (AMO) physics provide
versatile, clean, and controllable realizations of such models.
In particular, spin-boson models can be engineered in trapped
ion systems by coupling the discrete phonon modes of the
ion crystal to the ion spins [5–9] and in cavities via cold
atoms [1,10] or artificial atoms built from superconducting
qubits [11,12] coupled to quantized cavity modes; similar
models can also be achieved in optomechanical setups [13].
While these AMO platforms differ from the most common
condensed matter spin-boson analog—a two-state version of
the Caldeira-Leggett model of a particle interacting with
a continuum of harmonic oscillators—due to their discrete
boson mode spectra, they offer clean systems in which one
can observe out-of-equilibrium dynamics.

The long history of spin-boson models has led to the
development of a range of theoretical approaches. The most
prevalent one is to adiabatically eliminate the bosons, keeping
only their virtual effect on the spins in the form of long-range
spin-spin couplings [6]. While this approach is useful in
contexts where there is a very large separation of energy
scales between the bosons and spins, in many experimental
realizations and applications such an approach is invalid.
An additional powerful approach, valid in the case that only
uniform, collective spin operators appear in the Hamiltonian,
uses the permutational symmetry of the density matrix to
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reduce the computational scaling of direct numerical diag-
onalization from exponential to polynomial in the number
of spins [14–16]. Outside of the uniform coupling regime,
analytical results have recently been obtained in a special case
in which the coupling Hamiltonian is linear in boson operators
and commutes with the spin Hamiltonian [17]. However, in
spite of the importance of the many-spin, many-boson problem
to myriad fields of physics, a general, systematic approach to
study their quantum dynamics has yet to be developed.

In what follows, we show that spin-boson models with
global coupling can be systematically treated with well-
characterized error using the framework of matrix product
states (MPSs). Our methodology consists of two complemen-
tary methods for treating the out-of-equilibrium dynamics. The
first, using the technology of swap gates [18] to deform the
MPS topology dynamically, is most efficient in the case of
few bosons or at weak coupling, but has a rigorously bounded,
systematically correctable error. The second uses an exact ma-
trix product operator (MPO) representation of the spin-boson
Hamiltonian, and time evolves under this Hamiltonian using
recently developed techniques for time evolution with long-
range couplings [19], together with safeguards against varia-
tional metastability. This latter method is most efficient when
the number of bosonic modes is equal to the number of spins,
relevant for trapped ion quantum simulators in certain cases.

While our results show that MPSs are a powerful framework
for studying spin-boson models, there are certain regimes
which remain difficult or impossible to simulate efficiently
with MPSs. In particular, two-dimensional (2D) systems with
many boson modes and short-range interactions are challeng-
ing, and it is known that the scaling of MPSs for finding
equilibrium states in 2D, even with short-range interactions,
is exponential in the system size [20]. Even in one dimension,
simulations in which spins are strongly entangled with many
bosons in a spatially inhomogeneous fashion are difficult, and
particularly subject to variational metastability. An additional
source of difficulty from a numerical point of view is that
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there is often a large separation of time scales between the
dynamics driven by direct spin-boson couplings and by boson-
mediated spin-spin interactions, with the former limiting the
size of the time step. For this reason, applying multiscale
methods [21] is a promising avenue for improving numerical
performance. In spite of these known limitations, in this work
we show that simulations involving many (Nb = Ns) boson
modes are reasonable for Ns ∼ 10 spins, and simulations
involving a single boson mode and many spins Ns ∼ 100 are
possible, enabling simulations of systems realized in present
one-dimensional (1D) and 2D trapped ion quantum simulators.

This paper is organized as follows: Sec. II presents our
numerical formalism, which includes a brief review of MPSs
and operators as well as our MPS-based methodologies for
spin-boson systems; Sec. III discusses benchmark calculations
of our methods for 1D and 2D systems of trapped ions in
the parameter regimes of recent experiments [22,23]; Sec. IV
extends our formalism to open quantum systems through
the technique of quantum trajectories; and Sec. V presents
simulations of trapped ion systems in the presence of impurity
ions where decoherence and spatially nonuniform spin-boson
couplings invalidate many other approaches. Finally, in Sec. VI
we conclude and give an outlook on broad applications of our
methods. Some technical results are given as appendices.

II. FORMALISM

We consider a collection of Ns spins localized on a
lattice and coupled globally to Nb bosonic modes, shown
schematically in Fig. 1. We take the Hamiltonian to have the
generic form

Ĥ = Ĥspin + Ĥboson + Ĥs-b, (1)

where Ĥspin acts only on the spins, Ĥboson only on the bosons,
and the spin-boson coupling has the form

Ĥs-b =
Nb∑

μ=1

Ns∑
i=1

Ĥs-b;μ,i (2)

=
Nb∑

μ=1

Ns∑
i=1

n∑
α=1

g
(α)
μi X̂(α)

μ Ŷ
(α)
i . (3)

FIG. 1. Spins globally coupled to bosonic modes. A schematic
description of Ns = 7 spins coupled globally to Nb = 3 bosonic
modes (colored lines). Position in the array corresponds to, e.g.,
position of the spins in real space. The amplitude of the boson line
denotes the value of the spin-boson coupling at that position. Our
approach applies for any spatial dependence of the bosonic mode
coupling.

Here and throughout, roman letters i refer to spin indices and
greek letters μ to boson indices. The operators X̂(α)

μ and Ŷ
(α)
i

can be taken to be Hermitian, and act on bosons and spins, re-
spectively. The index α counts the number of such pairs of Her-
mitian operators, e.g., (â†

μ + âμ)σ̂ z
j has n = 1, while (â†

μσ̂−
j +

âμσ̂+
j ) = (1/2)(â†

μ + âμ)σ̂ x
j − (i/2)(â†

μ − âμ)σ̂ y

j has n = 2.
While we will continually refer to our degrees of freedom as
being spins, our approach can be straightforwardly generalized
from spins to mobile particles with any quantum statistics.
As was mentioned in the Introduction, typical 2D systems,
including those with short-range interactions, are difficult to
treat with MPSs, and so the generalization to mobile particles
will be most effective in 1D. A key feature of this general model
is that the coupling between bosons and spins is arbitrary, i.e.,
each boson mode μ can be coupled to each spin i with an
arbitrary amplitude and operator pairs {X̂(α)

μ ,Ŷ
(α)
i }. In contrast

to approaches based on permutational symmetry of the density
matrix [14–16], we do not require that this coupling is uniform;
our approach applies for any amplitudes g

(α)
μi and operators

X̂(α)
μ and Ŷ

(α)
i . Many iconic models can be cast in the form

of Eq. (1), including the Rabi [24,25], Jaynes-Cummings
[26,27], and Tavis-Cummings [28] models of quantum optics
and optomechanics [13] and the Holstein-Hubbard [29] model
of condensed matter physics. Also, we point out that our
setting is more general than previous spin-boson approaches
using related density-matrix renormalization group (DMRG)
methods, in which each spin was coupled locally to a single
boson [29–31], one [32–36] or two [37] spins were coupled to
many bosons, or a single collective boson mode was coupled
to many spins [38].

A. Matrix product states and operators

Before proceeding to the details of how we simulate the
out-of-equilibrium dynamics of Eq. (1), we remind the reader
of a few basic facts about MPSs and MPOs; a more detailed
discussion can be found in, e.g., [39,40]. The natural setting
of MPSs is a 1D chain with L sites, where lattice site i can
be in one of the di states |ji〉. An MPS is a representation of a
many-body quantum state on such a lattice, defined as

|ψ〉 =
∑

j1···jL

Tr[A[1]j1 · · · A[L]jL]|j1〉 ⊗ · · · ⊗ |jL〉. (4)

Here, A[i]ji is a χi−1 × χi dimensional matrix, and the
maximum value of any of the χk is called the bond dimension
χ of the MPS. MPSs are exact ground states of 1D gapped
models with short-range interactions [41]. In addition, MPSs
have proven to be a useful variational ansatz for long-range
interacting systems [42–44], gapless systems, e.g., quantum
critical points [45,46], and quasi-higher-dimensional systems
[20,47,48] by “snaking” a 1D line across the sites of the
higher-dimensional lattice.

A MPO is the natural operator-valued extension of the
MPS definition [49,50]. It is a representation of a many-body
operator acting on the same space defined for the MPS above,
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and has the form

Ô =
∑

j1,j
′
1...jL,j ′

L

Tr[W [1]j1,j
′
1 · · ·W [L]jL,j ′

L ]

×|j1〉〈j ′
1| ⊗ · · · ⊗ |jL〉〈j ′

L|. (5)

MPOs are of interest because (1) they take MPSs to MPSs
(with, in general, larger bond dimension), (2) most many-body
operators of interest, e.g., Hamiltonians, can be represented as
MPOs with constant bond dimension by using a small set
of MPO construction “rules” [44,51–53], and (3) many MPS
algorithms, such as variational search for the ground state and
time evolution, can be formulated generically given that all
many-body operators of interest have a known MPO form
[44]. It is useful to rewrite Eq. (5) as

Ô = Tr[W [1] ⊗ · · · ⊗ W [L]], (6)

where each one of the W [i] is an operator-valued matrix of the
form, e.g.,

W [i] =
(

Â B̂

Ĉ D̂

)
. (7)

The matrix indices are the fictitious “bond” indices contracted
in the trace of Eq. (6), and the indices of the individual
operators, e.g., Â, run over the di states of the local physical
Hilbert space. For simplicity, we have given a bond dimension
two MPO matrix as an example, but any dimensionality is
possible [see Eq. (10)]. A useful means of displaying MPSs,
MPOs, and their operations is the Penrose tensor network
diagram notation exemplified in Fig. 2. In this notation, a
tensor is an object with lines extending from it, with the number
of lines equal to the rank of the tensor. A line connecting two
tensors denotes that index is summed, or “contracted,” between
the two tensors.

. . .A[1] A[2] A[L]

. . . W [L]W [2]W [1]

j1

j1

j1

j2

j2

jL

jL

jL

j2

(a)

(b)

FIG. 2. (a) Tensor network diagram representation of an MPS
with open boundary conditions. Lines extending to the top of the
page correspond to physical states |ji〉 of local system i. (b) Tensor
network diagram representation of an MPO with open boundary
conditions. Each tensor has two physical indices, corresponding to a
linear transformation (operator).

B. Swap operator decomposition of the spin-boson
state and propagator

In this section, we propose a method for simulating the
out-of-equilibrium dynamics of Eq. (1) which is based on
Trotter-Suzuki decompositions. First, we use a Trotter-Suzuki
decomposition to isolate the action of Ĥs-b from Ĥspin and
Ĥboson. The simplest nontrivial such decomposition is (� = 1
unless otherwise specified throughout)

e−iδtĤ = e−i(δt/2)(Ĥspin+Ĥboson)e−iδtĤs-be−i(δt/2)(Ĥspin+Ĥboson), (8)

which is valid to order O(δt3). While this is written in a
form appropriate for time-independent Ĥ , a time-ordered
version of this formula also exists [54], as well as higher-order
decompositions in δt [55]. Since Ĥspin and Ĥboson commute by
construction, the evolutions associated with these operators
can be performed in any order. In the examples given in this
paper both Ĥspin and Ĥboson are sums of single-site operators
and so their exponentials are product operators which are trivial
to apply to an MPS. Alternatively, in the most commonly
encountered case that they are short ranged (and 1D), this
propagation can be performed with ordinary t-DMRG [56,57].

We now turn to the application of exp(−iδtĤs-b) to an MPS.
We do so by using another Trotter-Suzuki decomposition to
write this exponential as a product of two-site unitaries, each
acting on a single spin and boson pair. The simplest such
decomposition is

e−iδtĤs-b =
⎡
⎣ 1∏

i=Ns

⎛
⎝ 1∏

μ=Nb

e−(iδt/2)Ĥs-b;μ,i

⎞
⎠

⎤
⎦

×
⎡
⎣ Ns∏

i=1

⎛
⎝ Nb∏

μ=1

e−(iδt/2)Ĥs-b;μ,i

⎞
⎠

⎤
⎦ + O(δt3), (9)

and, as before, higher-order decompositions can be devised
[58]. In this expression,

∏1
μ=Nb

Ôμ means the product

ÔNbÔNb−1 · · · Ô1. For a fixed ordering of MPS sites, the
application of Eq. (9) requires coupling of sites which are not
contiguous. While this can be done with a variety of available
long-range time evolution methods for MPSs [19,44,59–61],
such an approach can suffer from numerical issues, e.g., getting
stuck far from the variational optimum. In contrast, applying
an operator which couples neighboring sites in the 1D MPS
representation can be performed efficiently, without issues
of variational metastability, and with a precisely controlled
error [56].

We can apply the decomposed operator, Eq. (9), to an MPS
using only operations on neighboring sites by inserting swap
gates Ŝμi which interchange the positions of boson μ and spin
i in the MPS representation between different terms appearing
in the product [18]. Swap gates have been previously used to
implement MPS algorithms for periodic boundary conditions
[62], as well as for generic long-range time evolution [63]. In
the latter case, long-range time evolution requires O(L2) swaps
per time step, where L is the total number of lattice sites; this
can be prohibitively costly. In our case, only O(NsNb) swaps
are required, which is more favorable in the often realized case
that Ns � Nb as well as the case Nb � Ns .
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i = 1 i = 2 i = 3μ = 1μ = 2

Û11

Û21

Û12

Û22

Û13

Û23

Û23

Û13

Û22

Û12

Û21

Û11

1

2

1

1

1

2

2

2

1

2

2
1

Ŝ11

Ŝ21

Ŝ12

Ŝ22

Ŝ11

Ŝ21

Ŝ12

Ŝ22

Ŝ13

Ŝ13

FIG. 3. Application of spin-boson propagator through swap
gates. The tensor network diagram for the application of e−iδtĤs-b on a
state of Nb = 2 bosons (circles) and Ns = 3 spins (squares) through
the Trotter-Suzuki decomposition with swap gates (crossed lines)
demonstrates that only nearest-neighbor operations are required.
For clarity, circles containing the boson mode number are drawn
next to boson index lines, and the boson lines have been color
coded.

To see how the swapping works in practice, we show
the tensor network diagram for a full application of e−iδtĤs-b

for Ns = 3 and Nb = 2 in Fig. 3. Here, the tensors in the
initial MPS are circles (squares) for boson (spin) sites, Ûμi =
exp(−iδtĤs-b;μ,i), and crossed lines indicate the application
of a swap gate. Motivated by the form of the decomposition

Eq. (9), a natural 1D chain ordering of the spins and bosons
is to begin with all of the bosons left of the spins. In order
to keep track of the position of the boson sites in the MPS
representation, we draw a circle containing the mode index
next to index lines corresponding to bosons, showing that
each boson is moved past all of the spins using the swap
gates. From the diagram it is clear that the combination of
Trotter-Suzuki decomposition and swap gates leads to a prop-
agator which involves only operations on nearest-neighbor
sites.

C. Exact MPO representation of the spin-boson Hamiltonian

As the number of bosons approaches the number of spins,
the scaling of the swapping method described in the last section
approaches O(N 2

s ), which can be prohibitively expensive.
However, as we will discuss below, in this situation a direct
simulation of the dynamics of the spin-boson system using a
representation of the Hamiltonian with long-range couplings
between spins and bosons can be efficient. Here, the ordering
of the spins and bosons in the MPS representation can be
chosen to minimize issues of variational metastability that
can pose problems for long-range time evolution with MPSs.
Before we discuss how to choose this ordering, we first show
that Eq. (1) has an exact, compact MPO representation for
spin-boson couplings of the form of Eq. (3), irrespective of how
the spins and bosons are ordered in the 1D array. For simplicity,
we will write down the MPO in the case that Ĥspin = ∑Ns

i=1 Ĥs;i

and Ĥboson = ∑Nb
μ=1 Ĥb;μ do not couple multiple sites and the

sum over α in Eq. (3) contains a single term; this is the form
of the Hamiltonian relevant for trapped ion experiments, as
shown in Sec. III. More complex spin and boson Hamiltonians
can be formulated using known MPO constructions in the
literature [44,51–53], and more terms in the α summation
can be included by matrix direct sums [49]. Additionally, for
compactness, we consider the case of two boson modes; the
MPO for many modes is also a straightforward generalization.

To begin, we write the collection ofNs spins and two bosons
as a 1D chain with (Ns + 2) sites, and let the boson modes
μ = 1 and 2 be placed at sites j1 and j2, respectively, with
j1 < j2. Then, the MPO matrices representing Eq. (1) take the
form

W [j<j1] =

⎛
⎜⎜⎝

Îs 0 0 0
0 Îs 0 0
0 0 Îs 0

Ĥs;ij g
(1)
1ij

Ŷ
(1)
ij

g
(1)
2ij

Ŷ
(1)
ij

Îs

⎞
⎟⎟⎠,

W [j1] =

⎛
⎜⎜⎝

Îb 0 0 0
X̂

(1)
1 0 0 0
0 0 Îb 0

Ĥb;1 X̂
(1)
1 0 Îb

⎞
⎟⎟⎠,

W [j1<j<j2] =

⎛
⎜⎜⎜⎝

Îs 0 0 0
g

(1)
1ij

Ŷ
(1)
ij

Îs 0 0
0 0 Îs 0

Ĥs;ij 0 g
(1)
2ij

Ŷ
(1)
ij

Îs

⎞
⎟⎟⎟⎠,
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W [j2] =

⎛
⎜⎜⎜⎜⎝

Îb 0 0 0

0 Îb 0 0

X̂
(1)
2 0 0 0

Ĥb;2 0 X̂
(1)
2 Îb

⎞
⎟⎟⎟⎟⎠,

W [j>j2] =

⎛
⎜⎜⎜⎜⎝

Îs 0 0 0

g
(1)
1ij

Ŷ
(1)
ij

Îs 0 0

g
(1)
2ij

Ŷ
(1)
ij

0 Îs 0

Ĥs;ij 0 0 Îs

⎞
⎟⎟⎟⎟⎠. (10)

Here, Îs (Îb) is the identity operator in the spin (boson) space,
ij is the spin index for lattice site j , and the first (last) MPO
matrix for open boundary conditions is the last row (first
column) of the associated MPO matrix W . Remarkably, in
spite of the generality and complexity of the model, Eq. (1), the
Hamiltonian admits a very simple and compact representation.
This MPO is useful not only for the out-of-equilibrium
dynamics we discuss in the next section, but can also be used
to find eigenstates variationally [39].

D. Long-range time evolution with Ns = Nb

Many methods for time evolution of MPSs exist which
are applicable to general Hamiltonians in MPO form, such
as the Krylov [44,59,60] and the local Runge-Kutta [19]
methods, which require some form of variational optimization
of an MPS, and the time-dependent variational principle [61],
which has an additional error associated with projection of
the Hamiltonian onto a local subspace. While such methods
are useful in many cases, the error analysis and convergence
behavior of these algorithms can be complex. Of particular
concern when applying these algorithms to our Hamiltonian
(1) via the exact MPO representation, Eq. (10), is that the
effectiveness will depend strongly on the ordering of the
spin and boson modes in the 1D MPS representation. This is
especially true when many strongly coupled boson modes are
present, as this situation can lead to glassy spin physics [64,65]
which may pose problems for variational optimization.

The main issue of variational metastability for systems with
long-range interactions is that efficient MPS algorithms use
an iterative local variational optimization to search for the
global optimum [39], where local means that two neighboring
sites are optimized at a time. Hence, MPS algorithms build up
entanglement and correlations locally, two sites at a time, and
then build up longer-ranged correlations and entanglement by
repeated “sweeping,” in which each pair of neighboring sites
are optimized in a round-robin fashion. If there are long-ranged
(farther than nearest-neighbor) terms in the Hamiltonian,
entanglement resulting from these terms is not directly built in
by the optimization, and so we must either build in the proper
entanglement structure by hand or it must be incorporated in
by other short-range terms in the Hamiltonian upon repeated
sweeping.

For the system at hand and in the case Ns = Nb, we can
ensure that all spins and bosons have a least some short-range
entanglement built in during the optimization by alternating
the spins and bosons in the 1D representation (see Fig. 4). In
this representation, each spin i neighbors boson μ = (i − 1)

i = 1 i = 2 i = 3μ = 1 μ = 2 μ = 3

FIG. 4. MPS topology for the long-range time evolution method
with Ns = Nb = 3. To avoid variational metastability when directly
simulating time evolution with long-ranged spin-boson interactions,
we use an MPS representation in which spins are always neighbored
by bosons, allowing for strong spin-boson entanglement to be built
up locally. The coherence between spins and bosons which are not
neighboring is built up both by repeated variational sweeping and
by mixing in a small amount of a state which contains long-range
spin-boson coherence (see the text for details).

and μ = i, and hence entanglement between this spin and these
bosons is directly generated as part of a two-site variational
optimization procedure. The fluctuations of these boson modes
can then couple to the fluctuations of further away spins,
improving convergence to the global optimum. A further
safeguard against variational metastability, in which a state
with long-range coherence between spins and bosons far
separated in the MPS representation is explicitly mixed in
during optimization to speed convergence, is described in the
Appendix. Our method of choice for long-range time evolution
is the second-order local Runge-Kutta method of Ref. [19].

E. Observables and fidelities

While the computation of observables with MPSs, e.g.,
single-spin expectations or two-point spin-spin correlation
functions, is standard and discussed in review articles [39,40],
here we point out the measurement of two quantities which
are nonstandard. The first is the measurement of the full
probability distribution of outcomes for a collective spin
measurement along direction n, i.e., the full counting statistics
(FCS) Pm(n) for m spins to be aligned along n. To compute
the FCS directly involves the computation of all correlation
functions of any order, which in general scales poorly with
the number of spins [17]. However, the FCS can be computed
efficiently given an MPS representation for the state of the
spins by measuring the Fourier transform of this distribution,
known as the characteristic function

Ck(n) = 〈
eπik

∑Ns
j=1 σ̂ j ·n/(Ns+1)〉, (11)

k = 0, . . . ,Ns, and then inverse Fourier transforming. Noting
that

Ck(n) =
〈 Ns∏

j=1

eπikσ̂ j ·n/(Ns+1)

〉
, (12)

the characteristic function for each k is the expectation of an
MPO with bond dimension 1, which can be performed at the
same O(Lχ3) cost as taking the overlap of two MPSs (see
Fig. 5). The FCS is useful in trapped ion quantum simulators
because it is readily accessible thanks to near single-ion reso-
lution, and it provides detailed information about the structure
of the state beyond low-order correlation functions [23].

Often, rather than simulating a complex model of spins
coupled to bosons, one would like to integrate out the bosons
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. . .
A[1]

A[1] A[2]

A[2] A[3]

A[3] A[L]

A[L]

Ô1 Ô2 Ô3 ÔL

FIG. 5. Tensor network representation of the characteristic func-
tion. The tensor network description of the characteristic function
for a given Fourier variable k and spin quadrature n is especially
simple due to the fact it is the expectation of a product operator. Here,
Ôj = exp[πikσ̂ j · n/(Ns + 1)].

and keep only their virtual effect in the form of an effective
model acting only on the spins. The most stringent test of the
faithfulness of this spin-only description is the fidelity between
the reduced density matrix of the spin-boson system obtained
by tracing out the bosons with that of a pure spin state evolving
under an effective spin Hamiltonian. This fidelity is defined as

F (ρb,ρ) = Tr(
√√

ρ̂ρ̂b

√
ρ̂), (13)

where ρ̂b = Trμ|ψ〉〈ψ | is the density matrix obtained from
tracing the bosons out from the pure spin-boson state |ψ〉 and
ρ̂ = |	〉〈	| is the density matrix of pure state |	〉 containing
only spins. As ρ is pure, we find that

F (ρb,ρ) =
√

〈	|ρ̂b|	〉. (14)

As we intend to trace out the bosons, it is useful to separate
the bosons and spins spatially in the MPS representation. Such
a representation naturally appears in our swapping dynamics
protocol (see Fig. 3) and can be obtained straightforwardly
from any representation using swap gates. With this ordering,
the fidelity has a simple tensor network representation as
the norm of a vector L, provided both |ψ〉 and |	〉 have
known MPS representations and the boson tensors are in
left-canonical form [39], as shown in Fig. 6. The restriction on
canonical form, which involves no loss of generality, simply
uses the freedom inherent in the MPS ansatz to transform the
contraction over boson states into the identity, making the trace
over bosonic degrees of freedom particularly simple.

III. BENCHMARK CALCULATIONS FOR 1D AND 2D
TRAPPED ION SYSTEMS

As an application of the above methods, we will consider
crystals of trapped ions subject to a spin-dependent force. Such
systems have been a topic of great recent interest due to their
capability of performing high-fidelity quantum simulation of
long-range interacting quantum spin models [6]. In these
systems, a competition between the Coulomb repulsion of
the ions and external trapping from electromagnetic potentials
leads to a crystalline structure for the ions in equilibrium.
The normal modes of these equilibrium crystal structures
comprise a set of global boson (phonon) modes, which are then
coupled to the spin of the ions using lasers in a Raman scheme

A[1] A[2] A[3]

A[1] A[2] A[3] A[4]

A[4] A[5]

A[5]

A[6]

A[6]

B[1]

B[1] B[2]

B[2] B[3]

B[3]

A[4] A[4] A[5]A[5] A[6]A[6]

B[1]

B[1]B[2]

B[2] B[3]

B[3]

ρb

|Ψ Ψ|

=

L

L†

FIG. 6. Tensor network representation of the fidelity between a
traced spin-boson state and a pure spin state. An example tensor
network diagram giving the (squared) fidelity of the spin density
matrix ρ̂b of a system with three bosons (circles) and three spins
(squares) with the bosons traced out with the pure density matrix
|	〉〈	| of a system comprised of only spins (triangles). Assuming
the boson tensors are in left canonical form, the upper diagram is
transformed to the lower diagram, which is the inner product of a
vector L.

with characteristic wave vector kR to impart a spin-dependent
force along the direction perpendicular to the crystal structure
[5,66–69]. After performing a frame transformation on the
spins, the Hamiltonian is expanded to lowest order in the
Lamb-Dicke parameters ημ = kR

√
�2/2Mωμ, where M is

the mass of an ion and {ωμ} are the phonon normal mode
frequencies. In addition, we will transform the phonons to a
frame rotating with ωR , the Raman beat note frequency of the
beams creating the spin-dependent force, and enact a rotating
wave approximation. While this approximation will fail for
very large detunings, we have verified that it is an excellent
approximation for the parameter regimes explored in this work,
and it leads to time-independent Hamiltonians which are more
amenable to numerical computation. Following these steps,
the Hamiltonian takes the form of Eq. (1) with Ĥspin = 0,
Ĥboson = −∑Nb

μ=1 δμn̂μ, and

Ĥs-b = −1

2

Ns∑
j=1

Nb∑
μ=1

�μbjμ(âμ + â†
μ)σ̂ z

j . (15)

Here, δμ = ωR − ωμ is the detuning of mode μ from the
Raman beat note frequency, �μ = Fημ/kR , with F the
magnitude of the spin-dependent force, quantifies the strength
of the spin-dependent force for mode μ, and bμ is the normal
mode amplitude vector of phonon μ.
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The effective Hamiltonian describing the time-dependent
dynamics of Eq. (15) can be found by moving to an interaction
picture which rotates with Ĥboson and using the Magnus series
[70,71]. Due to the fact that all spin operators in Ĥs-b commute
and the boson operators form Nb copies of the Heisenberg
algebra, the Magnus series truncates exactly at second order,
and the propagator may be written exactly within the rotating
wave approximation as

ÛI (t) = ÛSP(t)ÛSS(t), (16)

with the spin-phonon coupling propagator

ÛSP(t) = exp

⎧⎨
⎩

∑
μ

∑
j

[αμj (t)â†
μ − ᾱμj (t)âμ]σ̂ z

j

⎫⎬
⎭ (17)

and the spin-spin coupling propagator

ÛSS(t) = exp

⎡
⎣−i

∑
i,j

J̃ij (t)σ̂ z
i σ̂ z

j

⎤
⎦. (18)

In these expressions, we have defined

αμj (t) = �μbμj

(
1 − e−iδμt

2δμ

)
(19)

and

J̃ij (t) = 1

4

∑
μ

�2
μ

bμibμj

δ2
μ

(δμt − sin δt). (20)

Noting that the last term within the braces of Eq. (20)
is bounded while the first grows without bound, J̃jj ′ (t) is
commonly approximated as J̃ij (t) ≈ Jij t , where

Jij =
∑

μ

�2
μbμibμj

4δμ

. (21)

In this approximation, ÛSS(t) is the propagator of a long-range
Ising model ĤIsing = ∑

i,j Ji,j σ̂
z
i σ̂ z

j .
Trapped ion quantum spin simulator experiments can be

divided into two regimes parametrized by their hierarchy of
energy scales. This categorization also currently coincides
with the effective dimensionality of the ion crystal in present
experiments, with 1D crystals corresponding to linear Paul
traps [7], and 2D systems forming in Penning traps [8].
Experiments in 1D Paul traps typically operate in the regime
δμ � �μ, in which all modes of the ion crystal participate
in the dynamics. In contrast, current experiments in the 2D
Penning trap operate in the regime where δμ � �μ for all
modes except for the center-of-mass mode μ̃, for which
δμ̃ � �μ̃. That is to say, only the center-of-mass mode is
driven substantially, and dominates the dynamics in these
experiments. We stress that both types of traps can operate
in both parameter regimes in principle, and our grouping of
parameter regimes with dimensionality refers only to current
experiments.

We numerically find the equilibrium positions of the ions
following Ref. [72] for the Paul trap and Ref. [73] for the
Penning trap; typical equilibrium structures and effective spin-
spin couplings are shown in Fig. 7. The spin-spin interactions
in the 2D array with detuning close to the center of mass, shown
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FIG. 7. Equilibrium structures and effective spin-spin couplings
for 1D and 2D ion traps. (a) The equilibrium crystal structure for a 1D
Paul trap with Ns = 11 ions and a trap anisotropy of ωz/ωx = 0.184.
The spacing between ions is nonuniform, with the smallest spacing
at the center of the chain. (b) Equilibrium positions for Ns = 61
ions in a Penning trap, using the trap parameters of Ref. [23]. Here,
0 = (2e2/4πε0Mω2

z )1/3. The ions roughly form a triangular lattice.
(c) Spin-spin couplings, Eq. (21), for the 1D trap with detuning
δ/h = 80 kHz above the center-of-mass mode (blue circles) and
150 kHz above the center of mass (red squares), with the force
adjusted so that the maximum value of Ji,j is roughly 400 Hz. Best
power law fits are shown with solid lines. Significant deviations from
translational invariance are seen, especially for the larger detuning.
(d) Spin-spin couplings, Eq. (21), for the 2D trap with a detuning
of δ/h = 2 kHz above the center of mass and a spin-dependent
force similar to Ref. [23]. While there is some nonuniformity, the
interactions are well modeled by an all-to-all interaction, justifying
the use of only the center-of-mass mode in the main text.

in Fig. 7(d), are well approximated by a uniform, all-to-all
interaction. In contrast, the effective range of the interactions
for typical parameters in linear Paul traps, modeled as a power
law decay Jij ∼ 1/|ri − rj |α [8,74], depends on the detuning
[see Figs. 7(b) and 7(c)].

Remarkably, an exact solution for the dynamics of Eq. (15)
exists when starting from an uncorrelated product state of
phonons and spins [17]. We will use this exact solution to
numerically benchmark our methodologies in both the 2D
case, where we keep only a single boson mode and use the
swapping method described in Sec. II B, and in the 1D case,
where we keep all modes and use the methods of Sec. II D. In
particular, we will compare the one- and two-point correlation
functions

〈
σ̂ a

j

〉 = 1

2

Nb∏
μ=1

e−2|αμj (t)|2
Ns∏
i 	=j

cos[4Jij (t)], (22)

〈
σ̂ a

i σ̂ b
j

〉 = 1

4

Nb∏
μ=1

e−2|aαμi (t)+bαμj (t)|2

×
Ns∏

k 	=i,j

cos[4aJi,k(t) + 4bJj,k(t)], (23)
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〈
σ̂ a

i σ̂ z
j

〉 = ai

2

Nb∏
μ=1

e−2|aαμi (t)|2 sin[4Ji,j (t)]

×
Ns∏

k 	=i,j

cos[4Ji,k(t)]. (24)

where a,b ∈ {+,−} and we have taken the initial state in which
all phonons start in the vacuum state and all spins initially point
along the +x direction. In general, the phonon temperature in
trapped ion experiments is nonzero. Our methods as presented
here, as well as the exact solution, can be readily extended to
any phonon pure state, and hence be used to generate thermal
expectations by summing over Fock state expectations. The
effects of finite phonon temperature have been analyzed using
the exact solution in Ref. [17]. A more efficient method
for large numbers of phonons may be to use MPS methods
specifically designed for finite-temperature systems [75,76].

In what follows, we also use an MPS ansatz which explicitly
conserves the Z2 symmetry of Eq. (15) associated with the
parity operators

∏
μ (−1)n̂μ

∏
j σ̂ x

j and
∏

j σ̂ x
j for spin-boson

and spin systems, respectively, as conservation of symmetries
leads to significant computational gains in MPS algorithms
[77,78]. For the MPS calculations on pure spin models, we
calculate the dynamics by fitting a long-range spin model with
time-independent spin-spin couplings determined by Eq. (21)
to an MPO, and then time evolve using the local Runge-Kutta
method of Ref. [19]. As these spin-spin couplings are not
translationally invariant, we use the nonuniform exponential
MPO fitting method developed in Refs. [79,80].

We begin our benchmarking by looking at the 1D case, in
which the drive of the spin-dependent force is far detuned
above the center-of-mass mode and so all phonon modes
contribute to the dynamics. In particular, we consider the
detunings above the center-of-mass mode δ/h = 80 kHz and
δ/h = 150 kHz, employed in Ref. [22], and which results in
the effective spin-spin couplings shown in Fig. 7(c). When the
spin-dependent force is turned on, the effective Ising interac-
tions will cause a coherent depolarization of the collective spin
length 〈σx〉 = ∑Ns

i=1〈σ̂ x
i 〉 concurrent with the development

of collective spin-spin correlations 〈σaσ b〉 = ∑Ns
i,j=1〈σ̂ a

i σ̂ b
j 〉.

In addition, spin-phonon entanglement resulting from spin-
dependent displacements of the phonon modes will cause
oscillations in collective spin observables. Both effects are
seen in Fig. 8, which compares the numerically computed
collective spin expectations (red symbols) with the exact,
analytic expressions, Eqs. (22)–(24) (blue lines). Panel (a)
shows the depolarization of the collective spin for the δ/h =
80 kHz detuning, with the inset showing the small amplitude
oscillations due to dynamical phonons which are perfectly
captured within our numerical approach. Panel (b) shows
the development of collective spin-spin correlations for the
δ/h = 150 kHz detuned situation. Here, the numerical points
are indistinguishable from the analytical curves on the scale
of the plot, again demonstrating excellent agreement.

As mentioned above, the most stringent test of the fidelity
of quantum simulation of a pure spin model can be obtained
by measuring the fidelity of the spin reduced density matrix
obtained from the wave function of the full spin-boson

FIG. 8. Comparison of numerical and analytically computed
collective spin observables; multimode case. (a) Interaction-induced
depolarization of the collective spin computed numerically (red
symbols) and analytically (blue lines) for the δ/h = 80 kHz detuned
configuration of Fig. 7, showing excellent agreement. The inset
shows small oscillations due to spin-phonon entanglement, which
are not captured within spin-only approaches. (b) Collective spin
correlations for the δ/h = 150 kHz detuned configuration of Fig. 7.
The difference between the numerical values (symbols) and analytical
results (lines) is not visible on the scale of the plot.

dynamics |ψ〉 by tracing out the bosons, ρ̂b = Trμ|ψ〉〈ψ |, with
the pure spin density matrix ρ̂ obtained from evolution under
the time-independent Ising model, Eq. (21). We compute this
quantity using the methods of Sec. II E; the results are shown
in Fig. 9 for the two detunings we consider. We see rapid
oscillations at many frequencies, corresponding to the gener-
ation of spin-phonon entanglement with all phonon modes.
However, throughout the course of reasonable experimental
time scales, the fidelity remains quite high, �95%. We stress
that the computation of this fidelity in the multimode case
using the exact solution of the spin-boson dynamics [17] scales
poorly with the number of spins; in contrast, this quantity is
easily calculated within our numerical framework.

We now turn to the 2D case, in which only the center-
of-mass mode participates in the dynamics and we use the
swapping method (Sec. II B) to compute the dynamics. We
use the parameters of Fig. 7, which are similar to recent
experiments [23]. A key observable in these experiments is
the Ramsey squeezing parameter, defined as [81]

ξ = min
θ

√
Ns�S2

θ

|〈Ŝx〉|
, (25)
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FIG. 9. Fidelity of spin-boson dynamics with pure spin dynamics.
The fidelity of the spin-boson dynamics with the bosons traced
out with the pure spin dynamics, calculated using the methods of
Sec. II E, is displayed for the δ/h = 80 kHz detuning (red +’s) and
the δ/h = 150 kHz detuning (blue ×’s) configurations of Fig. 7.
Rapid oscillations resulting from the development of spin-phonon
entanglement with all phonon modes is visible, but the overall fidelity
remains quite high.

with �S2
θ = 〈Ŝ2

θ 〉 − 〈Ŝθ 〉2 and Ŝθ = cos θŜz + sin θŜy . The
squeezing parameter is of interest because the condition
ξ 2 < 1 witnesses entanglement in the system [82], and ξ 2 also
quantifies the signal-to-noise enhancement of the spin state for
performing Ramsey spectroscopy compared to an uncorrelated
spin state [83]. Figure 10 displays the squeezing as a function
of time starting from all spins aligned along x, and compares
this with the results of simulating the time-independent Ising
model, Eq. (21). While the pure spin approach predicts a
smooth buildup of squeezing to a maximal point followed by
monotonic destruction of squeezing, the spin-boson dynamics
displays oscillations resulting from the development of spin-
phonon entanglement, which tends to antisqueeze the spin
distribution, as well as from the time dependence of the

FIG. 10. Squeezing dynamics; single-mode case. Dynamics of
the Ramsey squeezing parameter in dB for the coupled spin-boson
system (oscillating red points) and the pure spin system (blue points)
evolving under Eq. (21), with parameters from Fig. 7(d). Coupling to
phonons as well as time dependence of the Ising spin-spin couplings
[see Eq. (20)] cause modulation of the squeezing in the spin-boson
dynamics. The spin-boson and pure spin approaches agree at the
decoupling points, here given by integer multiples of 0.5 ms.

spin-spin couplings J̃ij (t) [see Eq. (20)]. However, the two
results agree at the decoupling times td = 2π�n/δ, n an
integer, where the spin-phonon entanglement vanishes. While
we do not show it here, we again find excellent agreement
between our computed values and the exact solution, validating
the swapping approach to dynamics.

The modification of spin observables due to spin-phonon
entanglement is strikingly seen by comparing the FCS of
collective spin observables between the spin-boson and pure
spin approaches. The computation of these quantities from the
analytical solution scale polynomially in the number of spins
in the case that only the center-of-mass mode participates in
the dynamics [23], but also requires high-precision arithmetic
to avoid catastrophic cancellation. In the general case, the
computation of these quantities scales exponentially in Ns.
However, as discussed in Sec. II E, the computation of the
FCS is particularly straightforward within our MPS-based
approach. Figure 11 displays the FCS along the antisqueezed
quadrature y as well as the squeezed quadrature nmin such that
S · nmin minimizes the spin variance �S2. The upper panels (a)
and (b) display the squeezed quadrature, which show the devel-
opment of a narrow feature which is useful for sub-shot-noise
spectroscopy, with panel (a) corresponding to the coupled
spin-boson dynamics and panel (b) to the pure spin dynamics.
The pure spin dynamics shows a monotonic development of
this narrow feature, while this feature is periodically broadened
and its height modulated in the spin-boson dynamics due
to spin-phonon entanglement. The antisqueezed quadratures,
shown in panels (c) and (d), initially broaden with respect
to the initial uncorrelated state before developing fine-scale
features whose usefulness for metrology are not witnessed
by spin squeezing but can be captured via other measures,
such as the quantum Fisher information [23,84]. A comparison
between the pure spin and spin-boson calculations again shows

FIG. 11. Full counting statistics of spin-boson and pure spin
states. The full counting statistics, obtained using the methods of
Sec. II E, are displayed for the squeezed quadrature minimizing the
spin variance (upper panels) as well as the antisqueezed quadrature
along Ŝy (lower panels) for the parameters of Fig. 7(d). The left panels
display the full coupled spin-boson dynamics, and the right panels
correspond to spins evolving under a time-independent Ising model.
Periodic modulations from spin-phonon entanglement broaden the
squeezed quadrature and can either broaden or narrow features in the
antisqueezed quadrature. Generally, the antisqueezed quadrature is
less sensitive to phonon coupling than the squeezed quadrature.
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FIG. 12. Dynamics of MPS bond dimension in 1D and 2D. Panels (a) and (b) show the dynamics of the spin-boson MPS bond dimension
(solid black) and the spin MPS bond dimension (magneta) in the 2D case for the parameters of Fig. 10. Panel (a) uses the spatially homogenous
center-of-mass mode and panel (b) one of the inhomogeneous tilt modes, leading to the Ising spin-spin coupling constants Jjj ′ between sites
j and j ′ in the MPS representation shown in the insets. The bond dimensions of the spin-boson and spin states have the same overall trend at
longer times. Panel (c) shows the 1D, multimode (Nb = Ns) case for the parameters of Fig. 8(a) and multiple Ns. The addition of more boson
modes causes a substantial increase in bond dimension due to spin-boson entanglement compared to the spin-only state. For comparison, the
fractional decay of the magnetization due to spin-spin interactions ∼0.95 at 0.03 ms in panel (c) and 1 ms in panel (a).

periodic differences driven by spin-phonon entanglement, but
the differences are more slight compared to the squeezed
quadrature.

Finally, in Fig. 12 we consider the dynamics of the bond
dimension χ , which is the main convergence parameter of
the MPS representation [see the definition following Eq. (4)],
for the 1D and 2D cases considered above. Panels (a) and
(b) correspond to the 2D case with Ns = 60 ions and the
detuning and driving strength of Fig. 10. Panel (a) uses the
spatially uniform center-of-mass mode, while panel (b) uses
one of the spatially inhomogeneous “tilt” modes which is
lower in energy. The center-of-mass mode leads to uniform
spin-spin interactions [inset of panel (a)], while the tilt mode
has strongly inhomogeneous, but still long-ranged, spin-spin
interactions [inset of panel (b)]. In spite of these differences,
we see similar dynamics of the bond dimension in the two
cases. The solid black lines are the bond dimensions of the
spin-boson MPSs, and the dashed magenta lines are the bond
dimensions of the pure spin MPSs evolving under the Ising
Hamiltonian with couplings shown in the inset. After an
initial rise of the bond dimensions of the spin-boson MPSs
compared to the spin MPSs due to short-time buildup of
spin-boson entanglement, the bond dimensions of the two
states follow essentially the same trend. This indicates that
the entanglement present in the MPS representation is mostly
arising from entanglement between spins, and substantially
more entanglement is not required to additionally capture the
residual spin-boson entanglement.

In panel (c) we show the bond dimension dynamics in the
1D case with the parameters of Fig. 8(a), in which we keep
Nb = Ns modes, as a function of Ns. In this case, we see
a very pronounced build up of spin-boson entanglement at
short times, which also increases with increasing system size
due to the addition of more boson modes. This additional
entanglement present in the state makes simulations with
many modes much more challenging than those with a
single mode. Still, as we have shown above, we are able to
capture the dynamics of systems of comparable size to current
experiments within our approach. We note that qualitatively
similar behavior is seen for the multimode case in 2D: a rapid
growth in bond dimension due to the buildup of spin-boson

entanglement at short times that is followed by a gradual
increase in bond dimension due to spin-spin entanglement.
Independent of the system dimensionality, the spin-boson
entanglement is long range and inhomogeneous, leading to
qualitatively similar behavior in 1D and 2D at short times.
The buildup of spin-spin entanglement, however, occurs more
quickly in 2D than in 1D, and will eventually lead to a
breakdown of an efficient MPS description.

IV. INCLUDING DECOHERENCE: QUANTUM
TRAJECTORIES

An important component of many AMO experiments is
losses and other forms of dissipation, which are usually thought
to degrade coherence and destroy quantum correlations, but
can also lead to the production of entangled steady states [85–
87]. A major source of decoherence in trapped ion systems
arises from scattering of the light used to create the spin-
dependent force [88]. A full description of the system including
losses is found by solving the master equation

�
d

dt
ρ̂ = −i[Ĥ ,ρ̂] − L̂ρ̂, (26)

where ρ̂ is the system density matrix and the action of
the Lindbladian superoperator accounting for spontaneous
emission from the Raman beams is given as

L̂ρ̂ =�ud

2

∑
j

({σ̂+
j σ̂−

j ,ρ̂} − 2σ̂−
j ρ̂σ̂+

j )

+ �du

2

∑
j

({σ̂−
j σ̂+

j ,ρ̂} − 2σ̂+
j ρ̂σ̂−

j )

+ �el

4

∑
j

(ρ̂ − σ̂ z
j ρ̂σ̂ z

j ). (27)

Here, the terms proportional to �du and �ud correspond to
spontaneous excitation and deexcitation, respectively, from
Raman scattering, and the term proportional to �el represents
elastic dephasing.

It is possible to apply MPS-based approaches to directly
simulate master equations by replacing states by operators
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(“superkets”) and operators by superoperators, in which the
local dimension of superket i is d2

i , the square of the physical
on-site Hilbert space [50,89]. Here, we instead use the method
of quantum trajectories, in its first-order incarnation [90,91].
To do so, it is useful to rewrite the master equation as

�
d

dt
ρ̂ = −i(Ĥeff ρ̂ − ρ̂Ĥ

†
eff) + R̂ρ̂, (28)

where the non-Hermitian effective Hamiltonian is

Ĥeff = Ĥ − i

2

∑
μ

Ĵ †
μĴμ (29)

and the recycling term is

R̂ρ̂ =
∑

μ

Ĵμρ̂Ĵ †
μ. (30)

In these expressions, the “jump operators” {Ĵμ} are a basis in
which the Lindbladian may be written as

L̂ρ̂ = −1

2

∑
μ

[{Ĵ †
μĴμ,ρ̂} − 2Ĵμρ̂Ĵ †

μ]. (31)

In the present case, we take the basis of jump operators to
be the 3Ns operators {√�udσ̂

−
j ,

√
�duσ̂

+
j ,

√
�elσ̂

z
j /2} for j =

1 · · ·Ns. Now, at each time step, we evolve |ψ(t)〉 under Ĥeff

to obtain |ψ̃(t + δt)〉. Because the effective Hamiltonian is
non-Hermitian, the norm of this state, call it (1 − δp), will be
less than 1. At first order in δt , δp is comprised of a sum of
terms δp = ∑

μ δpμ, where

δpμ′ = 〈ψ(t)|Ĵ †
μĴμ|ψ(t)〉. (32)

We now stochastically choose whether to use this state at the
next time step, or undergo a “quantum jump” by applying
the recycling term. Namely, we choose a random number r ∈
[0,1], and select the state at the next time step to be

|ψ(t + δt)〉 =
{|ψ̃(t + δt)〉 with probability 1 − δp

Ĵμ|ψ(t)〉 with probability δpμ,

and then renormalizing the state. The equally weighted average
of the expectation of an operator 〈Ô〉 taken with Nsamp such
stochastically generated trajectories converges to the dynamics
of this same observable generated by the master equation with
an error εÔ that is asymptotically statistical, εÔ ∼ 1/

√
Nsamp.

In closing, we note that the quantum trajectories method may
be trivially parallelized.

V. APPLICATION: TRAPPED ION SPIN-BOSON
SIMULATORS IN THE PRESENCE OF

MOLECULAR IMPURITIES

For a pure spin Ising model (i.e., without dynamical
phonons), the summation over all quantum trajectories can be
performed analytically, leading to an exact solution of arbitrary
Ising models in the presence of decoherence [92,93]. When
the dynamical motion of the phonons is included, however,
no closed-form summation over quantum trajectories exists,
and the dynamics must be obtained numerically. In what
follows, we will consider the dynamics in the presence of
decoherence as parametrized above in the 2D Penning trap
where only the center-of-mass mode is relevant. In principle,

these dynamics can be calculated efficiently, even in the
presence of decoherence, for a spatially uniform initial state
by restricting the Hilbert space to the space of permutationally
symmetric density matrices [14–16]. In order to exemplify the
power and generality of our approach compared to these other
methods, we thus consider a case in which the center-of-mass
mode is no longer spatially uniform. In particular, we simulate
the case of an ion crystal in which some atomic ions have
converted to heavier mass molecular ions through collisions
with background gas, focusing on a crystal of Be+ ions with
BeH+ impurities as a particular example [94].

Impurity molecular ions have a heavier mass than the
atomic ions, and so move to the edge of the rotating crystal due
to centrifugal forces. We compute the equilibrium positions
and axial normal modes of the ion crystal in the presence of
these impurities using the methods of Ref. [95]; results for
a crystal of 37 Be+ ions and 44 BeH+ impurities are shown
in Fig. 13. Panel (a) shows the equilibrium crystal structure
for trapping parameters similar to current experiments [23],
with filled (empty) circles denoting molecular impurities
(atomic ions). The highest frequency axial mode, analogous
to the center-of-mass mode in a crystal with no impurities,
is shown in panel (b). The impurity ions have a greatly
reduced amplitude of oscillation due to their heavier mass,
and, more importantly for our purposes, the amplitudes of
the center-of-mass mode on the atomic ions are nonuniform.
The spread in amplitudes is roughly 10% of the mean
for the particular parameters we consider. Only the atomic
ions respond to the light-induced spin-dependent force that
generates effective Ising spin-spin interactions, and so the
effective number of spins in the quantum spin simulator is
the number of atomic ions: 37 in our example case. Still,
the molecular ions influence the spin-phonon and spin-spin
dynamics through their modification of the center-of-mass
mode amplitudes on the atomic ions.

Our calculations of the spin dynamics for a spatially
nonuniform center-of-mass mode with decoherence are shown
in Fig. 14. We take decoherence rates of �el = 60 s−1, �ud =
9 s−1, and �ud = 6 s−1, comparable to current experiments,
and average over ∼200 trajectories. Panel (a) shows collective
spin correlations such as the normalized total magnetization
〈σx〉 and its square 〈(σx)2〉. The black dashed line is the
mean-field prediction of the decay of magnetization, which
occurs solely due to decoherence at a rate �tot = (�el + �ud +
�ud)/2. Strong deviations from this curve indicate the decay
of magnetization due to the build up of higher-order spin
correlations. The blue dashed lines for the spin correlations
use the actual inhomogeneous analog of the center-of-mass
mode shown in Fig. 13(b). In contrast, the solid red lines use
its nearest uniform approximation, in which the amplitude
of the mode at each position is replaced by the average of
the amplitude vector. Almost no difference between the exact
and approximate predictions can be seen in the decay of the
magnetization, whereas a slight difference can be seen in the
squared collective magnetization at late times. In contrast,
the effect of the mode inhomogeneity is clearly seen in the
spatially resolved magnetization shown in Fig. 14(b). Here,
the size of the circles are proportional to 〈σx(x,y)〉 and the red
solid (blue dashed) circles are for the uniform approximation
and the true inhomogeneous mode, respectively. Our results
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FIG. 13. Equilibrium structures and center-of-mass mode of an
ion crystal with impurities. (a) Equilibrium crystal structure for 37
atomic Be+ ions (empty circles) and 44 BeH+ molecular ions (filled
circles) in a Penning trap. The heavier molecular ions move to the
outside of the crystal due to centrifugal forces in the rotating frame of
the ion crystal. (b) Amplitude of the highest frequency axial normal
mode, analogous to the center-of-mass mode in a crystal without
impurities. The molecular ions have a reduced amplitude due to
their larger mass, and the amplitudes of the atomic ions (inside
boxed region) are spatially nonuniform, which in turn makes the
spin-phonon coupling spatially inhomogeneous.

demonstrate that, even in the presence of a relatively large
number of impurity ions, the inhomogeneities in the analog
of the center-of-mass mode have only a slight impact on
low-order collective spin correlations over experimentally
relevant time scales, whereas inhomogeneities in the spatial
distribution of the magnetization can be quite sizable.

VI. CONCLUSIONS AND OUTLOOK

We have developed a generic approach to the out-of
equilibrium dynamics of spins globally coupled to bosonic
modes, which encompasses many paradigmatic models from
all areas of quantum science, based on MPSs. In contrast to
existing methods, our framework applies for any spatial and
operator dependence of the spin-boson coupling, and places
no restrictions on relative energy scales. In the regime of many
fewer bosons than spins, Ns � Nb, an efficient approach is to
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FIG. 14. Spin correlations in an ion crystal with impurities
and decoherence. (a) Normalized collective magnetization 〈σx〉
and its square 〈(σ x)2〉 computed for the spatially inhomogeneous
mode pictured in Fig. 13(b) (blue dashed) and its closest uniform
approximation (red solid). The black dashed line is the mean-field
prediction of the decay of magnetization due to decoherence. (b)
Spatially resolved magnetization 〈σx(x,y)〉 at the final time shown
in (a), with circle size indicating magnitude. Blue, dashed border
(red, solid border) circles are the inhomogeneous mode (uniform
approximation). Note that all red circles have the same diameter, and
only the blue circles are inhomogeneous. The spread in magnetization
values is roughly twice the mean for the inhomogeneous mode.

use a Trotter-Suzuki decomposition of the spin-boson coupling
propagator and dynamically deform the MPS topology using
swap gates, resulting in a method with rigorously controlled
error. Alternatively, for equal numbers of spins and bosons,
Ns = Nb, we propose to perform direct time evolution using
an exact MPO representation of the spin-boson Hamilto-
nian with long-ranged couplings, and provide techniques to
safeguard against variational metastability. This exact MPO
representation of the Hamiltonian can also be employed to
find eigenstates and static properties of spin-boson systems.

Using our approach, we calculated the dynamics of 1D and
2D trapped ion quantum simulators in experimentally relevant
parameter regimes, fully accounting for the dynamics of the
phonons that mediate effective spin dynamics between ions.
We first benchmarked our numerical results against a recent
exact analytical solution for a particular spin-phonon coupling,
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finding excellent agreement. Beyond comparing low-order
correlation functions which are straightforward and efficient
to compute with the exact solution, we also demonstrated the
power of our approach for computing detailed properties of
the quantum state which are difficult to obtain through other
means, such as the full counting statistics of collective spin
observables and the fidelity of the spin-phonon system as a
pure spin quantum simulator.

We showed that Markovian decoherence, which is an
important component of trapped ions and many other AMO
platforms, can be incorporated within our approach by solving
the associated master equation using the method of quantum
trajectories. Within this framework, we simulated the dynam-
ics of a 2D ion crystal in the presence of realistic decoherence.
In order to evince the power of our approach beyond those
that require spatial uniformity of the spin-boson coupling,
we treated the case of a nonuniform spin-boson coupling,
physically motivated by the presence of impurity molecular
ions in an atomic ion quantum spin simulator.

Myriad future research directions are available based on the
framework developed in this paper. For one, our approach is
able to treat several competing interaction scales, as well as
decoherence, on the same footing, and so provide a rigorous
means for justifying effective models of driven spin-boson sys-
tems in various parameter regimes. This is especially important
for trapped ion quantum spin simulators in effective transverse
fields, where the presence of noncommuting interactions
with comparable energy scales can fundamentally change the
effective spin physics in ways not captured by a perturbative
approach [96]. Additionally, while we focused on applications
to trapped ion systems, our techniques can be applied to many
other platforms, including quantum optics and optomechanics,
and provide a scalable means for studying strongly correlated
physics in these diverse systems. Our framework also applies
to higher-dimensional spin representations, such as spin-1,
which can also be realized with trapped ion systems [97,98]
and can shed light on fundamental questions such as the
nature of topological phases with long-range interactions [99].
A generalization from discrete boson spectra to continuous
boson spectra is possible, given a single global coupling
operator between spins and bosons, using techniques based on
orthogonal polynomials [100–103] while keeping well-defined
error [104]. This can lead to new insights into quantum phases
of correlated spins which are coupled to an external bath.
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APPENDIX: IMPROVING THE CONVERGENCE OF
LONG-RANGE TIME EVOLUTION

In this Appendix, we discuss additional safeguards against
variational metastability when using the long-range time
evolution methods of Sec. II D. Time evolution proceeds by
optimization of the functional min|φ〉 ||φ〉 − Û |ψ〉|2, with Û

an MPO representation of the propagator over a small time
step δt [19] and |ψ〉 an MPS representation of the state at
time t , over all MPSs |φ〉 with fixed resources. The optimal
MPS |φ〉 then becomes the new state at time (t + δt). The
global optimization over the entire MPS cannot be performed
efficiently, and so optimization is performed over the tensors
of two neighboring sites in the MPS representation [see
Eq. (4)] with all other tensors held fixed [39]. A complete
optimization cycle over all neighboring pairs of sites is
referred to as a sweep. In this local optimization scheme,
the main cause of metastability is that entanglement is only
built up between neighboring sites in a single step, and
longer-ranged entanglement must be built up by repeated
sweeping.

In some cases, the algorithm is not able to properly build
up the appropriate entanglement structure for a long-ranged
Hamiltonian, especially when starting from an unentangled
state of spins and bosons. Our idea to improve the convergence
is to also endow our initial variational guess |φ〉 with long-
range coherence between spins and bosons which are far
separated in the MPS representation. We do so by generating
a state |φ′〉 which contains long-range coherence between
all spins and all bosons and mixing in a small amount α of
this state to the optimal state obtained from local variational
minimization, with the mixing parameter α taken to zero
towards the end of the sweeping optimization. More precisely,
the mixing is done by projecting the state |φ′〉 onto the
orthonormal basis formed by holding all tensors except two in
the MPS representation fixed, and then adding this projected
two-site wave function directly to the wave function obtained
from the optimization procedure.

This approach is similar in spirit to the modified single-site
DMRG algorithm by White [105], which also builds fluctu-
ations on top of the local variational optimum to accelerate
convergence. While a detailed study of the optimal states |φ′〉
and mixing parameters α is outside of the scope of this work,
we find that choosing |φ′〉 to be the ground state of Ĥ and
α ∼ O(0.1) to perform well. Note that the ground state can be
efficiently found using ordinary two-site DMRG with the MPO
representation of Fig. 4, as entanglement which is directly
built up between neighboring spins and bosons propagates to
farther separated spins and bosons by repeated sweeping. We
also note that an accurate representation of the ground state
is not essential—only nonvanishing long-range coherence is
required—and so relatively coarse tolerances can be used in
obtaining the ground state.
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