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Measuring correlations of cold-atom systems using multiple quantum probes

Michael Streif,1,2,* Andreas Buchleitner,2 Dieter Jaksch,1,3 and Jordi Mur-Petit1,†
1Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

2Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
3Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore

(Received 10 October 2016; published 28 November 2016)

We present a nondestructive method to probe a complex quantum system using multiple-impurity atoms as
quantum probes. Our protocol provides access to different equilibrium properties of the system by changing its
coupling to the probes. In particular, we show that measurements with two probes reveal the system’s nonlocal
two-point density correlations, for probe-system contact interactions. We illustrate our findings with analytic
and numerical calculations for the Bose-Hubbard model in the weakly and strongly interacting regimes, under
conditions relevant to ongoing experiments in cold-atom systems.
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I. INTRODUCTION

Different phases of matter are fundamentally associated
with different correlations among their constituents. These
correlations can be encoded in various observables. For exam-
ple, the ground state of a one-dimensional, single-component
Fermi gas has the same density profile as a one-dimensional
system of strongly repulsive bosons (Tonks-Girardeau gas),
while their momentum distributions are markedly different
[1]. This stems from the fact that the momentum distribution
contains further information on the two-particle correlations,
which also affect other observables such as the excitation
spectrum and the structure factor of quantum systems [2,3].
While traditionally one could only access these properties via
bulk measurements, e.g., neutron scattering off liquid helium,
the advent of setups based on cold atoms in optical lattices has
opened up new possibilities. For example, the measurement
of local two-particle correlations in a one-dimensional gas of
bosonic atoms for various interatomic (repulsive) interaction
strengths was found [4] to be in excellent agreement with
theoretical calculations [5–7]. Measurements of the momen-
tum distribution [8] and nonlocal density-density correlation
function [9] of one-dimensional bosons in a periodic potential
have also been performed, and they agree with theoretical
findings [8,10]. More recently, Np-point nonlocal correlation
functions up to Np = 10 between two quasi-one-dimensional
Bose gases were measured by matter-wave interferometry
[11]. These results underpin the necessity to account for
conserved quantities in the description of the nonequilibrium
evolution of quantum systems [12–16].

Common to all these experiments is that they use destructive
measurements to study the quantum systems, most frequently
the time-of-flight technique, where the trapping potential is
switched off and the system allowed to expand before light
absorption images are recorded. Based on the development of
new measurement and control methods, such as the quantum
gas microscope (which enables access to quantum lattice
systems with single-site resolution) [17–21], an alternative
approach is advancing which considers the use of other
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quantum objects, such as photons, single atoms, or ions,
as nondestructive quantum probes of many-body quantum
systems [22–32].

The idea of using single quantum probes—which often are
equipped with the simplest possible internal quantum structure
of a qubit—has been implemented to infer diverse properties
of the host substrate, from Fröhlich polarons, to work statistics
and quantum phase transitions, to the Efimov effect and more
[33–44]. Yet it is clear that a single qubit probe in general
cannot suffice to map out the host’s characteristic properties
exhaustively, since the probe-system coupling and the thus
defined local density of states will generally limit the probe’s
diagnostic horizon to a finite subset of the system’s Hilbert
space. It is therefore natural to seek a systematic generalization
of the quantum probe approach to larger numbers of probes,
such as to complement the finite diagnostic power of a single
probe, e.g., by directly monitoring spatial correlations.

In the present contribution, we make a first step in this
direction by considering two impurities embedded in a host
bosonic gas [45]. Specifically, we show that the coherence
of a two-probe density matrix enables us to access the two-
point correlation function of a strongly correlated quantum
system in a nondestructive way. We start in Sec. II with a
general presentation of our two-probe protocol. In Sec. III
we study a specific model of bosonic particles in a lattice,
the Bose-Hubbard model (BHM), and show that our protocol
enables us to determine the average system density as well as
the two-point density-density correlation function, both in the
superfluid and in the insulating phases of the BHM. Finally, in
Sec. IV, we conclude with a summary of our findings and an
outlook.

II. TWO-PROBE PROBING PROTOCOL

We consider a quantum system, S, coupled to two probes,
which we label L (for left) and R (right). The Hamiltonian of
the composite system can be written as

Ĥtot = ĤS ⊗ 1L ⊗ 1R + 1S ⊗ ĤL ⊗ 1R

+ 1S ⊗ 1L ⊗ ĤR + Ĥint, (1)

where ĤS is the Hamiltonian of the system and acts on the
Hilbert space HS, Ĥα (α = L,R) is the Hamiltonian of the left
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FIG. 1. Schematic of a Bose gas (blue shading) in an optical
lattice (black line). Two ancillary two-level quantum systems (circles)
are coupled to the Bose gas at distinct sites on the lattice, separated
by a distance �c in units of the lattice constant a.

(right) probe acting on its corresponding Hilbert spaceHα , and
Ĥint is the interaction Hamiltonian between the system and the
two impurities and therefore acts on Htot = HS ⊗ HL ⊗ HR .

We model the probes as two-level systems (qubits) and
couple them separately to the system, so that the interaction
Hamiltonian reads

Ĥint = V̂SL ⊗ (gL0 |0〉L 〈0|L + gL1 |1〉L 〈1|L) ⊗ 1R

+ V̂SR ⊗ 1L ⊗ (gR0 |0〉R 〈0|R + gR1 |1〉R 〈1|R). (2)

Here, we have indicated the internal states of each probe qubit
by |0〉α and |1〉α , respectively, and the parameters gαq describe
the interaction between the system and the qubit α = L,R

when in state q = |0〉 , |1〉.
Our probing protocol starts with the qubits uncoupled from

the system, gαq(t = 0) = 0. The compound initial state reads
ρ̂tot(t = 0) = ρ̂S ⊗ |�+〉 〈�+|, i.e., with the two qubits not
entangled with the system and prepared in the Bell state
|�+〉 = (|00〉 + |11〉)/√2, with the usual notation |00〉 =
|0〉L ⊗ |0〉R , and similarly for |11〉. This entangled state can
be prepared from both qubits initially in the ground state |0〉
and then subjected to a Hadamard gate acting on the left qubit
followed by a controlled-NOT gate (with the left qubit as control
and the right as target) [46].

At time t = 0, a unitary nonequilibrium evolution is driven
by changing the coupling of one of the internal states of the
qubits with the system, e.g., by using a Feshbach resonance.
For concreteness, we set gL0(t) = gR0(t) ≡ g(t) = 1 for t > 0,
while keeping gL1(t) = gR1(t) = 0. The state of the composite
system then evolves under the time evolution operator Û (t) =
T̂ e− i

�

∫ t

0 dt ′Ĥtot(t ′), where T̂ is the time-ordering operator, so
that after a time t the composite system is in the state ρ̂tot(t) =
Û (t)ρ̂tot(0)Û †(t). A trace over the system degrees of freedom
yields the reduced density matrix operator of the two qubits,
ρ̂Q(t) = TrS(ρ̂tot(t)). We focus our interest on the nondiagonal
coherence element, whose time evolution can be expressed
as 〈11|ρ̂Q(t)|00〉 = 1

4e− i
�

t�ζ (t). Here, the exponential factor
accounts for the free evolution in terms of the energy splitting
between the internal states of the two probes, � = E|11〉 −
E|00〉; without loss of generality, we set this energy difference
to 0, i.e. � = 0. The function ζ (t) characterizes the coherence
element’s time dependence due to the qubits’ coupling to the
system; we refer to it as the coherence function. Note that
ζ (t) will generally depend on the distance between the probes,
ζ (t) = ζ (t ; �c) (cf. Fig. 1), which we indicate explicitly where
necessary.

The moments of the interaction Hamiltonian determine the
derivatives of this coherence function [42]. For example,

dζ (t)

dt

∣∣∣∣
t=0

= i

�
〈Ĥint〉 , (3)

d2ζ (t)

dt2

∣∣∣∣
t=0

= − 1

�2
〈Ĥ 2

int〉 , (4)

where the expectation values on the right-hand sides are
calculated with ρ̂tot(t). It follows that measurements of ζ (t)
permit us to access several equilibrium expectation values
of the system. These expectation values can be related to
observables of interest by a suitable choice of the interaction
between probes and system. Below, we show that, in particular,
for contact probe-system interactions, measurements of the
coherence function provide a way to determine the density
[Eq. (9)] and the two-point density correlation function
[Eq. (10)] of the host substrate.

Representing the internal state of each qubit as a spin
operator, and using the Pauli spin matrices, σi (i = x,y,z),
the real and imaginary parts of ζ (t) can be written

Re[ζ (t)] = 1
2 〈σ̂x ⊗ σ̂x − σ̂y ⊗ σ̂y〉t , (5)

Im[ζ (t)] = 1
2 〈σ̂x ⊗ σ̂y + σ̂y ⊗ σ̂x〉t , (6)

where the bracket 〈·〉t represents a trace over ρ̂Q(t).
Thus, ζ (t) can be experimentally determined by mea-
suring the two-qubit correlation functions which enter
Eqs. (5) and (6). Alternatively, one can express ζ (t) in the
Bell basis as Re[ζ (t)] = 2[ρQ,++(t) − ρQ,−−(t)], Im[ζ (t)] =
4 Im[ρQ,+−(t)], with ρQ,++(t) = 〈�+|ρ̂Q(t)|�+〉, and analo-
gously for ρQ,−− and ρQ,+−, with |�−〉 = (|00〉 − |11〉)/√2.
It follows that ζ (t) can also be determined with Bell-state
measurements.

III. APPLICATION TO THE BOSE-HUBBARD MODEL

We now apply the protocol described in Sec. II to the case
of N cold bosonic atoms loaded into the lowest energy band of
an optical lattice with M sites, described by the Bose-Hubbard
Hamiltonian [47,48]

ĤS = −J
∑
〈i,j 〉

â
†
i âj + U

2

M∑
i=1

â
†
i â

†
i âi âi + μ

M∑
i=1

â
†
i âi . (7)

The operator â
†
i (âi) creates (annihilates) a boson at a lattice

site i = 1, . . . ,M , the index 〈i,j 〉 indicates summation over
nearest-neighbor pairs, and the parameters U, J , and μ

are the on-site interaction energy, the hopping energy, and
the chemical potential, respectively. We are interested in
the translationally invariant system, i.e., in the limit {N →
∞,M → ∞} with fixed average density n = N/M .

We now account for both probe impurities by a coupling
mediated via a contact density-density interaction potential,

V̂Sα =
∫

dxnα(x)�̂†(x)�̂(x), α = L,R, (8)

where �̂(x) = ∑
j wj (x)âj is the bosonic-field annihilation

operator of the system, with wj (x) the lowest energy Wannier
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function at lattice site j = 1, . . . ,M , and nα(x) the density
of qubit α at position x. Assuming that both impurities are
strongly localized at distinct lattice sites (jL and jR), we find
that they interact with the Wannier function of that very site
only. Thus, the interaction term can be written in terms of
the boson number operators at these sites, V̂Sα = ηαâ

†
jα

âjα
, the

parameter ηα = J
∫

dx|wα(x)|2nα(x) being a measure of the
interaction strength between the bosons and the qubit at site jα .
For simplicity, we assume that the local interaction strengths
at both probe locations are identical, i.e., ηL = ηR ≡ η.

Substitution of Eq. (8) into Eq. (2), together with Eq. (3),
yields the expectation value of the interaction’s contribution to
the total Hamiltonian, which, due to the specific form of VSα ,
is equal to the bosonic density ρ̂(j ) = â

†
j âj at site j :

2ρ = 〈ρ̂(j ) + ρ̂(j + �c)〉 = �

iη

dζ (t ; �c)

dt

∣∣∣∣
t=0

. (9)

For the first equality, we used that, for translationally invariant
systems, 〈ρ̂(j )〉 = 〈ρ̂(j + �c)〉 ≡ ρ, with the integer �c =
jR − jL the distance between the two qubits in units of the
lattice constant a (see Fig. 1). (In an experiment, this can be
accomplished by trapping the two qubits in a separate optical
lattice formed by crossing two laser beams; the interqubit
distance �c can then be precisely tuned by changing the
angle between the propagation directions of the beams; see,
e.g., [49].)

Similarly, using Eq. (4), we find the bosonic density-density
correlation function Cor(�c) = 〈ρ̂(j )ρ̂(j + �c)〉 in terms of
the qubits’ coherence function:

〈[ρ̂(j ) + ρ̂(j + �c)]2〉 = −�
2

η2

d2ζ (t ; �c)

dt2

∣∣∣∣
t=0

. (10)

Again, given the system’s translational invariance, 〈ρ̂(j )2〉 =
〈ρ̂(j + �c)2〉, the last expression can be rewritten as

Cor(�c) = �
2

2η2

d2

dt2

[
1

2
ζ (t ; �c = 0) − ζ (t ; �c)

]∣∣∣∣
t=0

. (11)

This result implies that measurements of the qubits’ coherence
function ζ (t) provide access to the system’s density-density
correlation function. We remark that this result depends on the
qubits-system coupling, Eq. (8), but not on the specific form
of the system Hamiltonian ĤS beyond its translational invari-
ance. In the following sections, we assess the experimental
feasibility of our protocol by simulating the outcome of the
protocol in both the superfluid (U/J 
 1) and the insulating
(U/J � 1) phases of the one-dimensional Bose-Hubbard
model and comparing them with exact results for Cor(�c)
in both limits.

A. Weak interactions: Superfluid phase

In the regime of weak interactions (U/J 
 1), we can
use Bogoliubov theory [50] to calculate both the coherence
function ζ (t) and the density-density correlation function
Cor(�c) analytically (see also [31,51]). We start from the
Bose-Hubbard Hamiltonian, Eq. (7), for a one-dimensional
system of homogeneous density n. We first transform the
annihilation operators from the site basis, âi , to the momentum
basis, b̂k = (M)−1/2 ∑

j âj e
ikaj , and similarly for the creation

operator b̂
†
k . A Bogoliubov transformation to quasiparticle

operators, d̂k = ukb̂k + vkb̂
†
−k , brings the system Hamiltonian

into the diagonal form ĤS = ∑
k �ωkd̂

†
k d̂k , with d̂k (d̂†

k ) the
annihilation (creation) operator of Bogoliubov quasiparticles
of quasimomentum k, and ωk = √

εk(εk + 2Uρ) the quasipar-
ticle dispersion relation in terms of the single-particle energies
εk = 2J (1 − cos (ka)), with a the lattice constant and ρ the
bosonic density [52].

With this transformation, we rewrite the density matrix of
the lattice bosons by expressing the bosonic operators in terms
of Bogoliubov quasiparticle operators:

ρ̂j = â
†
j âj = 1

M

∑
k,k′

b̂
†
kb̂k′eikaj e−ik′aj

= ρ +
√

N0

M

∑
k

√
εk

ωk

(d†
ke

ikaj + dke
−ikaj ). (12)

In the second line, we have applied Bogoliubov’s approxima-
tion, i.e., we assume that the occupation of k �= 0 modes is
small [(N − N0)/N 
 1] and neglect terms of quadratic (or
higher) order in quasiparticle operators [50,52]. By inserting
Eq. (12) into the definition of the two-point density correlation
function, we reach the analytic expression valid in the weakly
interacting limit

Cor(�c) = ρ2 + ρ

M

∑
k

εk

ωk

(
2nth

k + 1
)

cos (ka�c), (13)

where we have evaluated the occupations of the Bogoliubov
modes in a thermal state, 〈d̂†

k d̂k〉 = nth
k = 1/(eβ�ωk − 1), with

β the inverse temperature, and we have dropped the anomalous
averages 〈d̂kd̂−k〉, as they are negligible at the low tempera-
tures where the Bogoliubov approximation applies [53]. At
zero temperature (β → ∞), Eq. (13) satisfies the sum rule
established in Ref. [54] for density-density correlations in the
ground state, which re-expresses the sum rule relating the
dynamic structure factor to the static structure factor, which
in turn is sensitive to two-body interactions in bosonic lattice
systems [55].

Based on Eq. (13), we plot in Fig. 2 the normalized second-
order correlation function,

g(2)(�c) = 〈ρ̂(0)ρ̂(�c)〉 − 〈ρ̂(0)〉 〈ρ̂(�c)〉
〈ρ̂(0)〉2 , (14)

as a function of the interprobe distance �c for different
temperatures. We see that, for all temperatures, the correlation
vanishes for distances beyond a few lattice sites, which agrees
with the picture that, in the noninteracting limit, the system is
effectively described by a product of on-site coherent states so
that 〈ρ̂(0)ρ̂(�c)〉 = 〈ρ̂(0)〉 〈ρ̂(�c)〉 [56]. Weakly interacting
homogeneous one-dimensional Bose gases also converge to
this limit fairly quickly [57].

We proceed now to compare these analytic calculations
with the estimation by means of the coherence function ζ (t).
To evaluate the right-hand side of Eq. (11), we rewrite the
system-qubit interaction Hamiltonian in terms of Bogoliubov
operators,

V̂ = V̂SL + V̂SR = 2ρη +
∑

k

(η
kd̂

†
k + ηkd̂k), (15)
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FIG. 2. Weak interactions. Normalized correlation function
obtained with Eq. (11) simulating Nexp = 104 experiments (crosses),
compared with the analytic results, Eq. (13) (lines with symbols), for
a system initially at equilibrium at inverse temperature βJ = 10 and
βJ = 100. Other parameters used are η = 0.4J and U/J = 0.1.

where ηk = η
√

nεk/Mωk(e−ikajL + e−ikajR ) is the coupling
strength of the qubits with the Bogoliubov mode of quasi-
momentum k. Substituting these expressions into Ĥint allows
us to calculate analytically the time evolution of the composite
system and, therefore, to determine the coherence function
ζ (t). Full details of the derivation are reported in Appendix A
(see also [45]); here we quote only the final result,

ζ (t) = e2iηρt exp

[
−i

∑
k

|ηk|2
ω2

k

[ωkt − sin(ωkt)]

]

× exp

[∑
k

(
−2

|ηk|2
ω2

k

sin2 ωkt

2
coth

βωk

2

)]
. (16)

In an experiment, the coherence function ζ (t) can only be
measured at discrete times, tr . In addition, for each time tr , the
expectation value defining ζ (tr ) is obtained upon accumulation
of repeated measurements of the qubits’ state, with individual
measurement outcomes exhibiting quantum (shot) noise. To
simulate this unavoidable spread of experimental measurement
events and to estimate how many measurements one would
need for their statistical average to converge to the expectation
value, we follow the scheme in Ref. [41] and add Gaussian
noise to the calculated values of ζ (tr ); see Appendix B for
details on how to determine the corresponding variance. As one
would do in an experiment, to reduce the ensuing uncertainty
in ζ (tr ), we repeat the simulated experiment a number Nexp

of times and average over all outcomes, for each interprobe
distance �c. The values of ζ (tr ) estimated in this way are
presented in Fig. 3 for a system with average density ρ = 1.
Here, one can note that the real part of ζ (t) has a parabolic
dependence on time, while the imaginary part is linear around
t = 0. It follows that the second derivative will be real,
in accordance with our expectations for the density-density
correlation function [cf. Eq. (11)]. Thus, in practice it suffices
to measure only the real part of ζ (t), Eq. (5).

Given the smooth character of ζ (tr ), we fit a quadratic
polynomial through these values, which enables us to calculate
the right-hand side of Eq. (11) and determine the two-point

FIG. 3. Real part of the coherence function with added Gaussian
noise (symbols) and a parabolic fit (solid line). Inset: Real (solid blue
line) and imaginary (dashed red line) parts of ζ (t), Eq. (16), for the
case �c = 5. Here we used a system with M = 1000 lattice sites
and N = 1000 bosons and, therefore, an average density ρ = 1. The
system is initially in a thermal state with βJ = 10; other parameters
as in Fig. 2.

correlation function. We show the corresponding results for
βJ = 10 in Fig. 2, which are in fair agreement with the
analytic result, (13). In particular, we see that the value of
g(2)(0) derived from the protocol shows the characteristic
enhancement of the superfluid phase. Reducing the statistical
uncertainty of g(2)(�c) for �c � 1 requires a relatively
large number of measurements Nexp, in line with previous
experimental determinations of g(2)(�c) in cold atomic setups
[58,59]. In the framework of the present two-probe protocol,
these fluctuations, and correspondingly Nexp, can be reduced
by running in parallel an arrangement with Npairs pairs of
probes in a double-well superlattice [60–63]; a setup with
Npairs = 100 probe pairs would reach the precision shown in
Fig. 2 with only 100 measurement runs.

B. Strong interactions: Insulating phase

For stronger interactions U/J � 1, the correlations be-
tween the bosons in the lattice invalidate an approach based
on the Bogoliubov treatment. An efficient method to deal
with this situation is tensor network theory (TNT), which
provides numerically exact ground-state properties of strongly
correlated systems, in particular, of the one-dimensional BHM
[64,65]. Here, we apply this method to calculate g(2)(�c)
in the ground state of this model using the implementation
Oxford TNT library [66]. As we are interested in investigating
nonlocal correlation functions, we choose a large system with
M = 101 lattice sites, and ρ = 1 as before, and calculate
g(2)(�c) around the central lattice site so that boundary
effects are negligible and the system can still be considered
(approximately) translationally invariant. For the calculations
presented below, we have checked that sufficient accuracy is
reached bounding the site occupation to a maximum of four
bosons per site and fixing a truncation parameter (maximum
number of Schmidt coefficients) of χ = 100.

The TNT method allows us to calculate directly the
expectation values of the number operator at each lattice site,
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FIG. 4. Correlation function g(2)(�c) for the ground state in
the strongly interacting regime for different interactions strengths,
U/J = 3, 15, and 100, as indicated. These points represent the
numerically exact expectation values of number operator pairs,
(〈ρ̂i ρ̂j 〉 − 〈ρ̂i〉 〈ρ̂j 〉)/ 〈ρ̂i〉2, from the TNT calculation.

〈ρ̂i〉, and all pairs of number operators, 〈ρ̂i ρ̂j 〉. From these, we
obtain directly the normalized two-point correlation function
g(2)(�c) = (〈ρ̂i ρ̂i+�c〉 − 〈ρ̂i〉 〈ρ̂i+�c〉)/ 〈ρ̂i〉2; the results for
increasing values of U/J are shown in Fig. 4. As expected,
in the limit U/J → ∞ we recover that g(2)(�c) = 0 ∀�c, as
the ground state is a product of on-site Fock states with no
density fluctuations [56,67]. These results constitute the test
bed corresponding to the left-hand site of Eq. (11), which we
compare to the outcome of the protocol to obtain ζ (t) and its
derivatives.

We calculate ζ (t) in the strongly interacting regime in the
following way: The coherence function can be written as a
trace over system operators only, ζ (t) = TrS(Û1(t)Û0(t)ρ̂β)
[cf. Eq. (A1)]. Here, Û0(t) is the evolution operator over a
time t with the initial system Hamiltonian, while Û1(t) is
the evolution operator including the coupling to the qubits.
For probe qubits localized at lattice sites and coupled to the
bosons by contact interactions of strength η, the effect of the
probe-boson coupling amounts to a local shift of the bosons’
chemical potential, μ → μ − η, at the sites where the probes
are located. Thus, we can obtain ζ (tr ) at different time steps tr
by calculating the expectation value TrS(Û1(t)Û0(t)ρ̂β), with
ρ̂β the ground state of the bosonic system in a lattice with
modified local potential at the probe sites.

In our numerical calculations, we take tr = r�t with �t =
� × 0.01/J and r = 0, . . . ,20. As for the weakly interacting
regime, we simulate the uncertainty in an experiment by adding
noise to each simulated data point, ζ (tr ), and calculate the
numerical second derivative at t = 0. We repeat this procedure
for all integer distances between the two qubits 0 � �c � 15
(
M to avoid boundary effects). The coherence function,
ζ (t) obtained in this way is shown in Fig. 5(a). We observe
that both real and imaginary parts exhibit broadly a behavior
similar to that of the weakly interacting system. However, the
correlation function that one obtains from this according to
Eq. (11) is notably different, as shown in Fig. 5(b), where we
compare the value of g(2)(�c) obtained from the coherence
function by using Eq. (11) with the numerically exact values
derived from the TNT ground state (the latter values are the

FIG. 5. Strong interactions. (a) Real (asterisks) and imaginary
(crosses) parts of the coherence function ζ (t) for U/J = 3. Other
parameters are �c = 5, M = 101, ρ = 1, and η = J . (b) Normalized
correlation function g(2)(�c) for the same parameters. The results of
the measurement protocol with Nexp = 104 (crosses) agree with the
numerically exact values calculated with the TNT method (circles).

same as those in Fig. 4 for U/J = 3). We see that there is
a good agreement between the two calculations, as happened
in the weakly interacting regime. In particular, the estimation
of the correlation function using our protocol is able to detect
the reduction in g(2)(0) as the system gets deeper into the
Mott insulating phase, U/J � 1. To illustrate this point, we
show in Fig. 6 the normalized correlation function g(2)(�c)
at selected distances �c for different values of U/J across
the Mott insulator–to–superfluid transition. First, we observe
that the outcome of our protocol in each case is very close
to the exact result (calculated with Bogoliubov theory for
weak interactions and with TNT for stronger interactions).
Physically, the local correlation, g(2)(0), decreases steadily as
the repulsion between bosons increases, and it vanishes in the
limit U/J � 1. Correlations at larger distances are negative
(meaning, it is less probable to find a particle at distance �c

in the actual ground state than what one would predict by
relying only on the average density) and generally of smaller
magnitude than the local correlation; they also vanish in the
strongly repulsive limit, as expected for a Mott insulator.
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FIG. 6. Correlation function g(2)(�c) for �c ∈ {0,1,2} and
different values of U/J . Bogoliubov theory was used for U/J � 0.4
with a βJ = 1000 thermal state (shaded region), and TNT for larger
values of U/J . For clarity, we do not include error bars for the �c = 2
calculation; they are similar to those for �c = 1.

IV. DISCUSSION AND OUTLOOK

In this paper, we have developed a framework to study
correlation functions in cold-atom systems by using multiple
atomic impurities as quantum probes, a setup realized in recent
experiments where potassium [27,68,69] or cesium [29,34]
atomic impurities were immersed in larger rubidium Bose
gases.

We have presented a protocol which is able to measure
the density-density correlations of the system relying on
measuring the internal states of two probes and studying
an off-diagonal element of their reduced density matrix.
We have shown that the results of this protocol agree with
those of analytic and numerically exact calculations for a
one-dimensional Bose-Hubbard model in both the weakly and
the strongly interacting regimes. In particular, we have shown
that the protocol is able to witness the change in correlations
across the superfluid–to–Mott insulator transition.

Nonlocal density correlations in quantum gases have
previously been measured by various methods, including
noise interferometry, Bragg spectroscopy, and matter-wave
interferometry. Let us briefly contrast our proposal with these
techniques. In Bragg spectroscopy, some of the atoms in the
system are excited by two-photon Bragg scattering into a
state of given momentum and energy. This provides access
to the dynamic structure factor of the gas, which is the Fourier
transform of the density correlation function [55,70–72].
This method inevitably destroys the initial quantum state of
the system, in contrast to our proposal, which is inherently
nondestructive and, thus, could permit a time-dependent
monitoring of the evolution of correlations. In addition, our
protocol can be extended to using N > 2 quantum probes to
determine N -point correlation functions.

Matter-wave interferometry [73] is a destructive measure-
ment method especially suited to probing the phase structure of
bosonic quantum gases. As mentioned earlier, it has been used
recently to measure density correlation functions up to 10th
order between two quasi-one-dimensional bosonic gases [11].
However, the application of this method to higher dimensional

systems would require a rather involved analysis of the
corresponding multidimensional phase interference pattern. In
contrast, it is straightforward to see that our protocol applies
to systems of any dimensionality.

Noise interferometry retrieves information on particle
correlations in atomic gases by analyzing the shot-to-shot
fluctuations in absorption images of the system after time-
of-flight evolution [9,10,74]. In strongly correlated phases,
where the time-of-flight technique is not suitable, one could
implement noise interferometry by imaging the atoms with
a quantum gas microscope [17–21,75–82] to analyze corre-
lations in optical lattice setups. Our proposal constitutes a
complementary approach of similar experimental complexity,
particularly suited to multicomponent setups with impurities
[27,29,34,68,69], with the distinctive feature of allowing
nondestructive measurements.

The main challenge of our proposal may lie in the dynamical
control of the probe-system coupling. Manipulation via Fesh-
bach resonances is an option if these are available between the
atomic species involved. More generally, one could envisage
probing a one- or two-dimensional gas by allowing the
impurities to “fall through” it, pulled by gravity or driven by
an external field. This would turn on and off the interactions
without changing the state of the system appreciably (given
that there are many more atoms in the background than
impurities). This approach could be implemented exploiting
existing experimental schemes in which the impurities are
trapped near but outside the system and then driven into it
for a fixed amount of time [29,34] or made to penetrate it
periodically [83].

In summary, the framework presented here opens up new
possibilities for the experimental investigation of quantum
many-body systems and, especially, systems of cold atoms
in optical lattices. The protocol can be extended in various
ways, e.g., to estimate N -point correlation functions. Another
possibility stems from the freedom of choosing the kind of
interaction Hamiltonian between qubits and system, different
choices allowing one to gain access to different observables.
For example, by using Raman transitions [84], the evolution of
the probes becomes sensitive to the phase of the matter wave
and one could measure cross-correlation functions [85].
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APPENDIX A: BOGOLIUBOV TREATMENT
OF THE WEAKLY INTERACTING SYSTEM

We briefly expand on the explicit calculation of the
coherence function ζ (t) for weak interactions, with the help
of Bogoliubov theory and following the procedure outlined in
[41]. The first step is to introduce a set of projection operators
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in the Hilbert space of the two qubits,

P̂11 = |11〉 〈11| , P̂10 = |10〉 〈10| ,
P̂01 = |01〉 〈01| , P̂00 = |00〉 〈00| .

This enables us to rewrite the full Hamiltonian in a more
convenient form:

Ĥtot = P̂11 ⊗ (E1 + ĤS + gL1V̂SL + gR1V̂SR)

+ P̂10 ⊗ (E2 + ĤS + gL1V̂SL + gR0V̂SR)

+ P̂01 ⊗ (E3 + ĤS + gL0V̂SL + gR1V̂SR)

+ P̂00 ⊗ (E4 + ĤS + gL0V̂SL + gR0V̂SR).

As stated in the text, we are interested in the time evolution of
the qubits only. Therefore, after calculating the time evolution
of the composite system, we trace out the degrees of freedom
of the bosons. After that, we concentrate on the coherence
element of the two-qubit density matrix, 〈11|ρ̂Q|00〉. We find
that the coherence function can be determined by calculating
the expectation value

ζ (t) = TrS(Û1(t)Û0(t)ρ̂S) (A1)

with the initial state of the system ρ̂S . In this expression

Û0(t) = T̂ exp

(
− i

�

∫ t

0
dt ′ĤS

)

is the time evolution operator with the unperturbed system
Hamiltonian, and

Û1(t) = T̂ exp

(
− i

�

∫ t

0
dt ′(ĤS + g(V̂SL + V̂SR))

)

is the time evolution operator with the Hamiltonian including
the coupling to the probes, where we have used that gL0 =
gR0 = 1 and gL1 = gR1 = 0. It is worth noting the similarity
of ζ (t) to the Loschmidt echo [86,87], which is a function that
enables us to characterize memory effects in the dynamics of
quantum systems (see, e.g., [88]).

For simplicity, we change into the interaction picture, where
Û0 = 1. The remaining time evolution operator simplifies to a
more convenient expression:

Û1(t) = T̂ exp

(
− i

�

∫ t

0
dt ′V̂int(t

′)
)

.

Here, V̂int(t) is the interaction part of the Hamiltonian in the
interaction picture,

V̂int(t) = 2ρη +
∑

k

(η
ke

iωkt b̂
†
k + ηkb̂ke

−iωkt ).

We can simplify the expression for Û1 by applying the Magnus
expansion [89]. To this end, we introduce an operator Â by

T̂ exp

(
− i

�

∫ t

0
dt ′V̂int(t

′)
)

= eÂ.

This operator can be expressed as a sum of operators Â =∑
i Âi which are related to commutators of the interaction

Hamiltonian:

Â1 = −i

∫ t

0
dt ′V̂int(t

′),

Â2 = 1

2

∫ t

0
dt ′

∫ t ′

0
dt ′′[V̂int(t

′),V̂int(t
′′)],

....

Given the form of V̂int above, the commutators
at different times are c-numbers, [V̂int(t ′),V̂int(t ′′)] =
−2i

∑
k |ηk|2 sin (ωk(t ′ − t ′′)). Therefore, all terms of the

expansion beyond the second term vanish. Thus, we can write
the coherence function as

ζ (t) = e2iρηt exp

[
−i

∑
k

|ηk|2
ω2

k

[ωkt − sin (ωkt)]

]

× Tr

[
exp

{
−i

∑
k

(γkd̂
†
k + γ 

k d̂k)

}
ρ̂S

]
, (A2)

where we have defined γk = η
k

ωk
( eiωk t−1

i
). We are left with the

task of calculating the trace over the initial state ρ̂S . A close
investigation of this expression reveals that the operator acting
on ρ̂S is a displacement operator, D̂(α) = eαd̂†−αd̂ , for each
Bogoliubov mode with corresponding displacement iγk . Due
to this and the commutation relations of Bogoliubov operators,
[d̂†

k ,d̂k′ ] = δk,k′ , we can write the trace in the last line of
Eq. (A2) as the expectation value of a product of displacement
operators:

trace = Tr

[∏
k

D̂k(iγk)ρ̂β

]

=
∑
{nk}

∏
k

〈ρ̂k〉nk

(1 + 〈ρ̂k〉)nk+1
〈{nk}|

∏
k′

D̂k′(iγk′)|{nk}〉 .

Here, we have considered that initially the system is in
a thermal equilibrium state at inverse temperature β, so
that ρ̂S = exp(−βĤS)/Z, with the partition function Z =
Tr[exp(−βĤS)], and then used the diagonal representation of
the thermal state in the Fock basis.

The action of a displacement operator on a Fock state |n〉
is to generate a displaced Fock state |n,γ 〉. The remaining
overlap of two of these states can be expressed by [90]

〈n,γ |m,α〉

= 〈γ |α〉
√

n!

m!
(γ  − α)m−nLm−n

n [(γ − α)(γ  − α)],

where La
n(x) are the generalized Laguerre polynomials and

〈γ |α〉 = exp[− 1
2 (|γ |2 + |α|2 − 2γ α)] is the overlap of two

coherent states. This enables us to calculate the trace as

trace =
∑
{nk}

∏
k

〈n̂k〉nk

(1 + 〈n̂k〉)nk+1
〈{nk}|{nk},{iγk}〉

=
∏
k

∑
{nk}

〈n̂k〉nk

(1 + 〈n̂k〉)nk+1
e− 1

2 |γk |2L0
nk

(|iγk|2).
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This expression can be simplified with the generating function
of Laguerre polynomials,

∑∞
n=0 tnLn(x) = 1

1−t
e− tx

1−t [91],
which leads to

trace = exp

{∑
k

[
−1

2
|γk|2 coth

(
β�ωk

2

)]}
,

where we have used 〈n̂k〉 = 1/(exp(β�ωk) − 1) for a thermal
state. Substituting this result into Eq. (A2) provides Eq. (16).

APPENDIX B: CALCULATION OF THE VARIANCE

We show how to estimate the uncertainty in the mea-
surement of Re[ζ (t)] due to the projection noise in the
measurement of the state of the qubits. In this way, we
determine the noise which has to be added to the calculated
values of the coherence function to simulate the outcome of
experiments.

In accordance with Eq. (5),

Re[ζ (t)] = 1
2 〈σ̂x ⊗ σ̂x − σ̂y ⊗ σ̂y〉 , (B1)

the real part of the coherence function can be determined
by measuring the expectation value of a combination of
Pauli matrices on the state of the qubits. Hence, we start
by calculating the variance associated with this expectation
value. Introducing the shorthand notation σ̂xx = σ̂x ⊗ σ̂x , and
similarly for σ̂yy and σ̂zz, we have

Var(σ̂xx − σ̂yy) = 〈(σ̂xx − σ̂yy)2〉 − 〈σ̂xx − σ̂yy〉2 .

The last term is directly related to the coherence function
〈σ̂xx − σ̂yy〉2 = 4Re[ζ (t)]2, whereas the first can be calculated
as

〈(σ̂xx − σ̂yy)2〉 = 〈
σ̂ 2

xx + σ̂ 2
yy − σ̂xx σ̂yy − σ̂yy σ̂xx

〉
= 2 〈14 + σ̂zz〉 , (B2)

where 14 is the 4 × 4 identity matrix. In the last line,
we have used that the Pauli matrices fulfill the algebraic
relation σ̂a σ̂b = δab12 + i

∑
c=x,y,z εabc σ̂c. We observe that

the right-hand side of Eq. (B2) is a diagonal matrix. Since
the time evolution does not affect the diagonal elements, we
can evaluate this expectation value over the initial Bell state,
resulting in 〈(σ̂xx − σ̂yy)2〉 = 4. Thus,

Var(σ̂xx − σ̂yy) = 4{1 − Re[ζ (t)]2}.
Substituting this into Eq. (B1), it follows that the variance
of the real part of the coherence function is connected to the
function itself via

Var[Re(ζ (t)] = 1
4 Var(σ̂xx − σ̂yy) = 1 − Re[ζ (t)]2.

For the error in the imaginary part of the coherence function,
the calculation is analogous.

Having determined the variances of the real and imaginary
parts of ζ (t), we simulate the uncertainty in experiments by
adding Gaussian noise of zero mean and standard deviations
σRe =

√
1 − Re[ζ (t)]2 and σIm =

√
1 − Im[ζ (t)]2 to the real

and imaginary parts, respectively.
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