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Double Weyl points and Fermi arcs of topological semimetals in non-Abelian gauge potentials
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We study the effect of a non-Abelian SU(2) gauge potential mimicking spin-orbit coupling on the topological
semimetal induced by a magnetic field having π flux per plaquette and acting on fermions in a three-dimensional
(3D) cubic lattice. The Abelian π -flux term gives rise to a spectrum characterized by Weyl points. The non-Abelian
term is chosen to be gauge equivalent to both a 2D Rashba and a Dresselhaus spin-orbit coupling. As a result
of the anisotropic nature of the coupling between spin and momentum and of the presence of a C4 rotation
symmetry, when the non-Abelian part is turned on, the Weyl points assume a quadratic dispersion along two
directions and constitute double monopoles for the Berry curvature. We examine the main features of this system
both analytically and numerically, focusing on its gapless surface modes, the so-called Fermi arcs. We discuss
the stability of the system under confining hard-wall and harmonic potentials, relevant for the implementation in
ultracold atom settings, and the effect of rotation symmetry breaking.
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I. INTRODUCTION

The study of topological phases of matter and the structure
of their energy bands have been very active fields of research
in the past decade. Major results are, among others, the
theoretical classification of such phases in a variety of cases
and the experimental characterization of solid-state materials
with topological properties [1–5]. A remarkable feature of
such research is the strong interplay between theoretical and
experimental advances, with the possibility of singling out
materials having the desired properties and then proceeding to
the corresponding experimental implementation.

An example of systems widely studied both in 2D and
3D is given by models with conical intersections in the
energy spectrum, giving rise to a variety of interesting features
and phenomena, such as the chiral anomaly [6], effective
Lorentz violation [7], emergent space-time super-symmetry
[8], and fractionalization [9]. Additionally, these systems
show a relative robustness against transitions to superfluidity
and eventual emergence of non-BCS superfluid states [10],
peculiar magneto-optical conductivity [11], and the density
response in the presence of an external magnetic field exhibit-
ing a nonanalytic, nonclassical correction to the electronic
compressibility and the plasmon frequency [12].

Similar phenomena characterize gapless systems
displaying topological features, a prominent example
being provided by topological semimetals. Such gapless states
have band structures which mimic the main properties of the
critical points of topological insulators and superconductors.
This is the case of the so-called Weyl semimetals [13–15] in
three space dimensions (3D): gapless systems characterized
by nontrivial boundary phenomena protected by topological
properties of their bands. These systems present zero-energy
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bulk modes with linear dispersion, called Weyl nodes, which
are protected against generic local perturbations of the
Hamiltonian.

The Weyl nodes have a topological origin, since they
constitute monopoles of the Berry curvature of the band
structure. This guarantees their stability against perturbations
and gives rise to protected gapless surface modes, called Fermi
arcs, that connect the projections of the Weyl nodes on the
surface Brillouin zone [13].

Beside the usual Weyl semimetals, characterized by a
linear dispersion of the Weyl nodes, the introduction of extra
rotational symmetries in the system can lead to the formation
of more exotic states. In this case, the band-touching points
can be characterized by quadratic or cubic dispersion relations
along two momentum directions, and constitute monopoles of
higher charges for the Berry connection [16].

In the case of double charge, the resulting band touch-
ing points are called double-Weyl nodes. These particular
topological objects can appear, for example, in the spectrum
of strontium silicide with strong spin-orbit coupling, as was
very recently pointed out [17]. Such materials combine the
anisotropy in their spectrum with the linear behavior of the
density of states as a function of the energy, and this gives
rise to peculiar anisotropic transport properties [18] and to
a nontrivial anisotropic screening of Coulomb interactions
[19,20]. Other properties, such as their behavior in the presence
of disorder, have also been considered [21]. From this point
of view it is therefore desirable to consider the properties of
double-Weyl nodes in models with tunable parameters.

On the experimental level, Weyl semimetals have been
recently obtained in several solid-state compounds, and their
properties are presently an active focus of condensed matter
physics. The main strategy for their realization has been to
engineer particular materials characterized by the breaking
of spatial inversion symmetry. In this way, Weyl semimetals
have been realized in compounds which include tantalum
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arsenide [22–24] and niobium arsenide [25]. Further exper-
iments allowed one to observe the appearance of gapless
Fermi arcs on the surface of compounds such as semimetal
bismuth trisodium [26] and tantalum arsenide [24] through
angle-resolved photoemission measurements. Beside these
solid-state setups, an alternative experimental realization of
Weyl points, similarly based on the breaking of space-inversion
symmetry, was obtained in photonic crystals [27]. We notice
that so far no physical realization of Weyl semimetals has
been implemented by breaking time-reversal symmetry, but
several theoretical proposals have been presented in this
direction. They include the use of magnetic impurities [14],
complex next-nearest-neighbor hoppings in cubic lattices [28],
or particular patterns of staggered magnetic fields [29–31].

A different strategy to achieve a Weyl semimetal is to use, in
a tight-binding model of fermions on a cubic lattice, a magnetic
field such that the flux per plaquette is π [32,33]. Both in
3D [32,33] and in 2D [34] the single-particle spectrum has
conical intersections. This model has a natural counterpart in
ultracold systems [35]: it can be implemented with ultracold
fermions in a 3D optical lattice with a synthetic magnetic field
generating the π fluxes. In this context, various experimental
techniques are available to simulate magnetic fluxes [36].
Indeed, in two dimensional systems, lattices with π fluxes have
already been experimentally realized [37–42], whereas the
corresponding implementation in 3D is still lacking. However,
a recent concrete proposal to realize a π flux per plaquette
in 3D lattices of ultracold atoms shows that the required
space-dependent phases can be obtained through laser-assisted
tunneling in setups which could be implemented with current
technology [43]. Notice for comparison that large magnetic
fluxes are instead in general difficult to achieve in solid-state
realizations.

Beyond the tunability of the experimental parameters,
another important advantage of considering ultracold atom
systems is that in these setups one can also study general-
izations of the Abelian π -flux model that involve artificial
non-Abelian gauge potentials [36], including the effects of
a spin-momentum coupling independent on the position. In
previous works, theoretical investigations have shown that
synthetic non-Abelian gauge potentials are an efficient way
of implementing exotic quantum Hall systems [44–50] or
topological phases [51–55] in two-dimensional lattices, and
that laser assisted tunneling may provide useful tools for
the simulation of particles like massless Dirac fermions [45],
Wilson fermions [56], or Weyl fermions [57].

In this paper, we explore the effects of a non-Abelian
SU(2) gauge potential on the topological properties of Weyl
semimetals. In particular, we examine how the non-Abelian
coupling modifies the Weyl fermion physics of cubic lattices
in the presence of a π flux in each plaquette [35,43]. The gauge
potential mimics the effect of a spin-orbit coupling involving
only two momentum components. Similar to a Rashba or
Dresselhaus spin-orbit coupling, it has an anisotropic nature:
the motion on the ẑ direction is decoupled from the spin.

Our result is that this anisotropic coupling of spin and
momentum leads to the formation of a novel topological
semimetal featuring double Weyl points. The present study
provides a rigorous analytical basis to the recent numerical pre-
dictions by Huang et al. [17] about the formation of quadratic

Weyl fermions. In Ref. [17] it was shown that the spin-
orbit coupling in an inversion-breaking compound, strontium
silicide, leads to the creation of these new topological objects.
Here, we obtain an analogous result by adding a spin-orbit
coupling, thus a specific SU(2) gauge potential, to the Weyl
semimetal induced by π magnetic fluxes in a cubic lattice.
Notably, this topological phase of matter is achieved without
breaking the spatial inversion symmetry or the time-reversal
symmetry of the physical system, a fact allowed by the gauge
freedom of the applied gauge potential [58].

The models that we analyze are well suited to describe the
behavior of ultracold fermionic gases loaded in optical lattices
and subject to artificial non-Abelian gauge potentials (see,
for example, [59,60]) which act on the inner components of
the atoms. In turn, these cold atom systems can be realized
experimentally following several techniques, ranging from
laser-assisted tunneling to lattice modulations [36–42,61,62].

The proposed scheme may provide a useful tool for the
study of the properties of systems with double-Weyl points:
it constitutes both a simple theoretical playground which cap-
tures their main features and is the starting point for their exper-
imental realization. Therefore, it provides a platform to study
the possible modifications of the striking phenomena associ-
ated with Weyl nodes to the case of systems exhibiting double-
Weyl points, as for instance the cited chiral anomaly, transport
effects, or the emergence of non-BCS superfluid states.

Our work is organized as follows. In Sec. II we briefly
review the main properties of a 3D cubic lattice model with
(Abelian) π fluxes acting on a single-component Fermi gas:
this model is known to host Weyl points [32–34]. In Sec. III
we add a uniform non-Abelian gauge potential, mimicking the
effect of spin-orbit coupling, and we describe the spectrum and
symmetries of the system. The latter shows two inequivalent
double-Weyl points, discussed in Sec. III A, as allowed by
the C4 rotational symmetry of the model. After discussing
the properties of the Weyl points, in Secs. III B and III C we
focus on the numerical and analytical study of surface modes
(Fermi arcs) in the presence of hard-wall trapping potentials. In
Sec. III D we investigate the effect of a non-Abelian potential
with broken rotational symmetry. In Sec. III E we analyze
the effect of a harmonic trapping potential, usually present in
cold atom experiments. We finally summarize our findings in
Sec. IV. Further calculations are presented in Appendixes A
and B, where we calculate the Berry charge for a double-Weyl
point and discuss the effect of gauge symmetry breaking.

II. CUBIC LATTICE WITH π FLUXES

A well-known strategy to achieve Weyl points in a cubic
lattice model is to introduce a gauge potential corresponding
to a π flux in each square plaquette. In this section we review
the main properties of tight-binding Hamiltonian for fermions
subjected to such a magnetic field. This model has been studied
extensively; see for example [32,33,35,43,58]. We consider a
single species of (polarized) fermions, while two-component
fermionic mixtures will be considered in the next section.

Consider the Abelian vector potential in the Hasegawa
gauge [33]:

�AAB = π (z − y,y − z,0), (1)
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where the lattice spacing is set to 1 for simplicity. The resulting
magnetic field is �B = π (1,1,1), so that each lattice plaquette
is pierced by a flux π . The tight-binding Hamiltonian of this
system reads

H = −ω
∑
�r , ĵ

c
†
�r+ĵ

eiθj (�r)c�r + H.c., (2)

where c
†
�r and c�r are fermionic creation and annihilation

operators at lattice site �r , ω is the hopping amplitude, ĵ =
x̂,ŷ,ẑ are the unit vectors of the lattice, and

θj (�r) =
∫ �r+ĵ

�r
�AAB(�r) · d�r. (3)

Using Eq. (1) in Eq. (3) one gets θx = π (z − y), θy =
π (y − z) + π/2, and θz = 0. To describe this system in the
translationally invariant case, it is useful to adopt the Hasegawa
approach [33] by using a basis defined in momentum space:
we divide the Hamiltonian in 2 × 2 sub-blocks by considering
pairs of states {kx,ky,kz} and {kx,ky + π,kz − π}. In this basis
the 2 × 2 Hamiltonian can be rewritten as

H (�k) = −2ωτx cos kx + 2ωτy cos ky − 2ωτz cos kz, (4)

where τi are Pauli matrices and �k are in the magnetic Brillouin
zone [63]. With the gauge choice in Eq. (1) we can choose
kx ∈ [−π,π ), ky ∈ [−π,π ), and kz ∈ [0,π ). The eigenstates
of τx label the even and odd sublattices in the ŷ − ẑ plane,
respectively. Only one dimension of the Brillouin zone can be
halved, reflecting the fact that the states come in pairs and,
to obtain the cosine terms, we had to sum the two coupled
states {kx,ky,kz} and {kx,ky + π,kz − π} corresponding to
equivalent points in the Brillouin zone. The spectrum of
Eq. (4),

E±(�k)

2ω
= ±

√
cos2 kx + cos2 ky + cos2 kz (5)

shows Weyl points at π
2 (±1,±1,1). Notice that these

Weyl points are stable also when an anisotropy is intro-
duced in the hopping amplitudes: H (�k) = −2ωxτx cos kx +
2ωyτy cos ky − 2ωzτz cos kz. The system remains a semimetal
also when local attractive interactions are added, up to a critical
value of the interaction strength, due to the vanishing density
of states [64], as discussed in a variety of 2D and 3D lattices,
including the 3D π -flux model [65].

We observe that the Weyl nodes can be obtained by breaking
either time-reversal or spatial inversion symmetry, considered
in their canonical (translational invariant) form. However, it
has been shown that in systems with local gauge symmetries
the breakdown of the canonical time-reversal (T ) or spatial
inversion (P) symmetry does not imply in general a breaking
of the corresponding physical symmetries [58]. In this case it
is possible to engineer Weyl semimetals whose dynamics is
invariant under both the physical symmetries. In the following
we are going to denote by P and T the physical symmetries.
We refer to [58] for a discussion of the difference between
canonical and physical time- and space-reversal symmetry for
the Abelian π -flux potential.

III. ANISOTROPIC SU(2) MODEL

A rich phenomenology is obtained by the introduction of
a non-Abelian term in the gauge potential. To this purpose,
we consider a two-component mixture of fermions on a cubic
lattice subject to the vector potential

�A ≡ �AAB + �ANAB ≡ π (z − y,y − z,0)σ0 + q(σx,σy,0), (6)

where σi are Pauli matrices characterizing the two components
of the inner degree of freedom of the atoms. The Abelian
term �AAB is the gauge potential considered in the previous
section, given by Eq. (1), which now contains the 2 × 2 identity
matrix σ0. The parameter q determines the intensity of the
non-Abelian term �ANAB [55], which is gauge equivalent to
both a 2D Rashba and a Dresselhaus spin-orbit coupling.

The experimental realization of 3D optical lattices char-
acterized by appropriate magnetic fluxes may be obtained
through suitable laser-assisted tunneling in all the three
directions (see, for example, Ref. [43]). Engineering the SU(2)
potential, however, seems to be a more challenging task. There
exists a proposal to create such potentials in the absence of a
lattice [66]. Several theoretical works have focused instead
on the realization of SU(2) potentials based on laser-assisted
tunneling amplitudes among different inner species [53,67]
(see also the review [60] and references therein) or shaking
techniques [68]. Only very recently a first experimental
realization of a two-dimensional SU(2) gauge potential has
been implemented in a rubidium gas through an optical Raman
lattice [69].

In Eq. (6), the Pauli matrices σi refer to the (pseudo)spin-
1/2 degree of freedom, which may represent different hy-
perfine levels in ultracold atomic setups in optical lattices
(see [36,60] for reviews about artificial gauge potentials in
ultracold atomic systems). However, this pseudospin could
also be interpreted as associated to a further sublattice degree
of freedom if we consider a 3D structure composed by layers of
honeycomb lattices, such as the ones realized experimentally
using shaking techniques. In this case the SU(2) non-Abelian
potential can be obtained as the effect of next-nearest-neighbor
hopping with particular phases.

The potential in Eq. (6) produces a system obeying the
same discrete symmetries as in the Abelian case. The system
Hamiltonian can be written in terms of generalized tunneling
phases as

H = −ω
∑
�r , ĵ

c
†
�r+ĵ ,s

U
j

s,s ′ (�r)c�r,s ′ + H.c. (7)

Here s,s ′ label the spin states and the operators Uj ∈ U (2)
characterize the hopping in the j direction:

Ux = eiqσx+iπ(z−y), (8)

Uy = ieiπ(y−z)eiqσy , (9)

Uz = 1. (10)

The canonical time-reversal symmetry T corresponds to
a transformation �A → − �A, which maps Uj → Uj†. The
initial and final Hamiltonians are however related by a U(2)
gauge transformation Uyc�r,s = (σz)s,s ′eiπyc�r,s ′ , such that the
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equation T HT † = U†
yHUy holds. Therefore, T ≡ UyT =

σz eiπyT defines the physical time-reversal transformation.
The spatial inversion symmetry is instead given by the real-
space transformation:

x → −x, y → −y, z → −z, (11)

and it corresponds to a unitary transformation H (−�r) =
σzH (�r)σz. Therefore, P = P = σz, with P being the physical
space inversion symmetry.

Using the same Brillouin zone as in the Abelian model, the
momentum space form of the Hamiltonian in Eq. (7) reads

H (�k)

2ω
=− cos q cos kxτx + cos q cos kyτy − cos kzτz

+ sin q sin kxτx ⊗ σx − sin q sin kyτy ⊗ σy. (12)

This Hamiltonian can be put in a more symmetric form
by a momentum shift kx → kx + π , equivalent to a gauge
transformation. In this way a Dresselhaus spin-orbit coupling
in its standard form is also obtained. Moreover, it becomes
explicit that the model in Eq. (12) displays a C4 symmetry
corresponding to rotations of angles π/2 around the ẑ axis
(including a rotation of both �σ and �τ ).

Diagonalizing Eq. (12) we obtain the following eigenval-
ues:

E±(�k)√
2 ω

=
√

3 + cos2q (cos 2kx + cos 2ky)+cos 2kz ±
√

b(�k),

(13)

with

b(�k) = sin2 q(4 − 2 cos2 q(cos 4kx + cos 4ky)

− 4 sin2 q(cos 2kx + cos 2ky − cos 2kx cos 2ky)) .

(14)

For q → 0 the spectrum (5) is retrieved.
The spectrum is composed of four subbands, two having

positive and two negative energy, linked by a particle-hole
symmetry C = τy ⊗ σyK, with K complex conjugation, such
that Eq. (12) transforms as

H (�k) = −C H ∗(−�k) C−1 . (15)

Furthermore, as we saw before, the unitary space inversion
symmetry is implemented by the operator P = σz and it
implies that the spectrum is symmetric under k → −k.

The two-dimensional limit of the model in Eq. (7) can be
addressed considering different hopping ωj in the different
directions and then simply sending to zero the hopping
amplitude ωz along ẑ,ωz → 0, in all the resulting expressions
for the Hamiltonian and their energies. Keeping ωx = ωy ≡ ω

we do not break the C4 rotational symmetry and we find that
the anisotropic model of Eq. (12) with ωz → 0 is equivalent,
via the unitary global transformation U = (τz + τy)/

√
2 to

the model studied in [55] in the case of Abelian flux π .
This mapping corresponds to the transformation from the
Hasegawa to the Landau gauge in real space: �A → �A −
�∇((z − y)x + y2

2 − zy). In this 2D limit a canonical time-
reversal symmetry is defined as T = τxσyK. The system
is then in the topologically nontrivial symmetry class DIII

[1,4,5,70] but it is a gapless system, corresponding to a thermal
metal [71] or semimetal phase.

A. Double-Weyl points

In the presence of the non-Abelian term �ANAB the two
central bands touch at zero energy in the points �k(±,±)

0 =
π
2 (±1,±1,1) of the Brillouin zone. Unlike the Abelian case,
the energy dispersion around these Weyl nodes is quadratic in
the k̂x − k̂y plane, whereas it remains linear in the k̂z direction.
Therefore, such nodes are double-Weyl points.

They can be shown to be the fusion of two simple Weyl
points into a double monopole of the Berry flux with charge
Q = ±2 (see Appendix A) and they appear due to the C4

symmetry of the Hamiltonian (12). If this rotational symmetry
is broken by a small perturbation, the double-Weyl points
split into two single Weyl points. We refer to Ref. [16]
for a detailed study of the multi-Weyl points stabilized by
point-group symmetries and to Ref. [17] for a numerical
analysis of a compound of strontium silicide, where double-
Weyl points appear due to a weak spin-orbit coupling, similar
to the non-Abelian gauge potential we consider. A different
approach to obtain multi-Weyl points has been very recently
experimentally implemented in photonic crystals with time-
reversal and C3 rotational symmetry [72].

The zero-energy points appear only when the τz term
in Eq. (12) vanishes; thus for kz = π/2. To show this,
we can decompose the Hamiltonian in Eq. (12) into two
anticommuting parts: H = Hxy(kx,ky) + Hz(kz) with Hz =
−2ωτz cos kz, such that {Hxy,Hz} = 0. This implies that the
term Hz couples pairs of eigenstates of Hxy with opposite
energies ±εxy . Therefore, in order to obtain eigenstates of the
full Hamiltonian at zero energy, we must consider, on one side,
pairs of eigenstates of Hxy with εxy = 0 and, on the other, a
vanishing operator Hz. Otherwise, a gap would open between
the two states in each pair (see more details in Ref. [73]).

To examine the system in the proximity of the double-Weyl
points it is useful to apply a perturbative approach and expand
the Hamiltonian in series of the momenta around these nodes.
In this way we define an effective 2 × 2 Hamiltonian which
approximates the behavior of the two intermediate energy
bands in a neighborhood of the band-touching points.

For simplicity, we focus on the point �k = {π/2,π/2,π/2}.
In the basis |τzσz〉, the states |↑↓〉,|↓↑〉 have vanishing energy
at the double-Weyl point, whereas the states |↑↑〉 ± |↓↓〉 have
an energy ±2ω sin q. Once we expand all the terms in the
momenta to second order, we may consider the Hamiltonian
as a perturbation of the trivial Hamiltonian H = 0 for the two
states. In the basis of the two intermediate bands, this effective
Hamiltonian reads

Heff = ω

sin q

(
k̃2
y − k̃2

x

)
τx − 2ω

cos2 q

sin q
k̃x k̃yτy + 2ωk̃zτz, (16)

where k̃i = ki − π/2.
It can be shown that Heff defines, in proximity of the point

�k = (π/2,π/2,π/2), a magnetic monopole of charge 2 for
the Berry flux (see Appendix A). Therefore, similarly to the
conventional Weyl semimetals [13], it is expected to give rise
to unconventional protected zero-energy surface states.
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FIG. 1. Energy bands in an infinite slab geometry with hard-wall
boundaries along the x direction, at x = 0 and x = 120a. We set q =
π/4 and kz = π/2. The color scale shows the eigenstate amplitude
on the first and last 12 sites from the boundaries. Double-Weyl nodes
with opposite chirality overlap in the surface Brillouin zone, causing
their Fermi arcs to interact and acquire a nontrivial dispersion. Only
half of the Brillouin zone is shown, since the dispersion is symmetric
for ky → −ky .

Furthermore, the effective Hamiltonian in Eq. (16) is
expressed in the basis of the two intermediate bands, but it
is also related to the spin degrees of freedom σ and it links
the expectation value of the spin to the momentum k̃ around
the double-Weyl points. Similar to what happens in 1D [74]
and 2D [55] setups with the simultaneous presence of magnetic
fluxes and non-Abelian gauge potentials, the expectation value
〈σ (�k)〉 is an observable that, in principle, can be estimated in
spin-resolved time-of-flight measurements with suitable π/2
pulses. This opens the possibility of a direct measurement of
the charge of the double-Weyl points through an approximated
evaluation of the spin winding numbers associated to surfaces
that enclose the band touching points in momentum space.

B. Zero-energy Fermi arcs and breaking of the gauge symmetry

For both the Abelian and non-Abelian gauge-invariant
models, the effect of a surface orthogonal to the ẑ direction
is trivial: no gapless surface mode can appear for a surface
at z = 0, as can be shown by an explicit calculation in
the presence of a hard-wall potential. In contrast, surfaces
orthogonal to either x̂ or ŷ (the two cases are rotationally
equivalent) present two localized surface modes which emerge
from the projection of the double-Weyl points on the surface
Brillouin zone. However, these states interact in pairs due to
the overlap of double-Weyl points with opposite chirality, and
no protected zero-energy Fermi arcs appear (see Fig. 1).

The overlap of double Weyl points in the k̂x and k̂y

directions is caused by two symmetries of the Hamiltonian
in Eq. (12), which can be expressed as translations by π in
momentum space. We get

H (kx,ky,kz) = −τxH (kx + π,ky,kz)τx, (17)

H (kx,ky,kz) = −τyH (kx,ky + π,kz)τy. (18)

FIG. 2. Band structure in an infinite slab geometry with hard-wall
boundary conditions at x − y = 0 and x − y = 120a, using the same
parameters and the same conventions as Fig. 1. Double-Weyl points
of the same chirality overlap in the surface Brillouin zone, and are
connected by zero-energy Fermi arcs.

These transformations relate Weyl points with opposite chiral-
ity through a translation along k̂x or k̂y . Thus, for each double
Weyl point, there exists a symmetric point which shares either
the same kx or ky coordinate. Further reflection symmetries
characterize the Hamiltonian (12) and entail the same effect
(see Appendix B for more details).

Therefore, the system described by the potential (6) presents
zero-energy Fermi arcs only on surfaces that are not orthogonal
to the main lattice directions. In Fig. 2 we show the band
structure of the Hamiltonian (7) on an infinite slab oriented
along the x̂ + ŷ diagonal direction, with hard-wall boundaries
at x − y = 0 and 120a. In this case only Weyl points with the
same chirality overlap, leading to protected zero-energy Fermi
arcs connecting their projections on the surface Brillouin zone
and localized on the boundaries of the system.

In order to obtain protected zero-energy Fermi arcs also
on surfaces defined along the main lattice directions for
either x = 0 or y = 0, it is necessary to break the previous
symmetries in Eqs. (17) and (18). Since they are independent
on �σ , these symmetries are left untouched when varying the
SU(2) component of the gauge potential in Eq. (6).

The situation becomes different if we instead consider the
introduction of an additional term which breaks the SU(2)
gauge invariance and, therefore, the physical time-reversal
symmetry. The system is then no longer a PT invariant
Weyl semimetal, but a usual Weyl semimetal with broken T .
An example is given by the perturbation Hxx ≡ hxσx ⊗ τx ,
corresponding to a staggered Zeeman term

Hxx = hxσx cos[π (y − z)], (19)

which may be realized by considering a weak optical super-
lattice of spacing 2a tuned close to appropriate antimagic
wavelengths [67]. These are special values of the wavelengths
such that the polarizability of two states of the considered
atoms are opposite. Therefore, by encoding the eigenstates of
σx into these species, one may obtain a suitable Zeeman term in
the form (19). A precise determination of the realization of this
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FIG. 3. Same as Fig. 1, but with the addition of the staggered
Zeeman field Hxx given by Eq. (19), with hx = 1.

staggering term, however, strictly depends on the setup adopted
for the implementation of the non-Abelian gauge potential. We
refer to Refs. [51,53,67,68] for discussions on the effective
engineering of these Hamiltonian terms.

The perturbation Eq. (19) is invariant under the spatial
inversion in Eq. (11), but breaks instead the physical time-
reversal symmetry UyT . The term Hxx commutes with Hxy

at the double Weyl points and anticommutes with Hz, thus
avoiding the opening of an energy gap at the band-touching
points. Additionally, Hxx breaks both the translational sym-
metries along kx of the kind (17), as well as the kx-reflection
symmetries listed in Appendix B. Therefore, it leads to the
formation of Fermi arcs on surfaces orthogonal to the x̂

direction, as seen in Fig. 3.
Finally, we notice that Hxx breaks both the canonical

particle-hole symmetry C and the C4 rotational symmetry
around the ẑ axis. Therefore, all the double Weyl points split
into pairs of Weyl points as shown in Fig. 4.

C. Fermi arcs wave function

In the presence of the staggered Zeeman term (19) and of
a boundary on the system orthogonal to either x̂ or ŷ, the

FIG. 4. Energy of the two intermediate bands in the presence
of the staggered Zeeman term for kz = π/2, q = π/4, and h = 1/3.
The Zeeman term splits the double-Weyl points in such a way that
there are pairs of Weyl points that do not overlap once projected in
the k̂x direction. For clarity only half of the Brillouin zone is shown.

existence of the Fermi arcs can be shown analytically. For this
purpose we start from the Hamiltonian:

Hxy + Hxx =− cos q cos kxτx ⊗ σ0 + cos q cos kyτy ⊗ σ0

+ (sin q sin kx + hx)τx ⊗ σx

− sin q sin kyτy ⊗ σy, (20)

in which we fixed ω = 1/2 for the sake of simplicity and kz =
π/2 since it is a necessary requirement to obtain a vanishing
energy, due to the condition Hz = 0.

First, we show that there are Weyl points located at kx =
−π/2 which have no counterpart at kx = π/2. For kx = −π/2
the Hamiltonian takes the block off-diagonal form:

H =
(

0 A(ky)
A†(ky) 0

)
, (21)

with

A(ky) =
( −i cos q cos ky h + sin q(sin ky − 1)

h − sin q(sin ky + 1) −i cos q cos ky

)
.

(22)

Its gap closes for det A = 0. From

det A(ky) = − cos2 q + sin2 ky − (h − sin q)2 = 0, (23)

we get

sin ky = ±
√

h2 − 2h sin q + 1. (24)

If h < 2 sin q (we consider 0 < q < π ) four Weyl points
appear for kx = −π/2. It is easy to verify that such Weyl points
have no counterpart for kx = π/2 (see Fig. 4), and therefore
do not overlap with other band-touching points once projected
on a surface Brillouin zone along k̂x .

To find a simple approximate expression for the Fermi
arc wave functions appearing on the surface at x = 0, we
adopt the approach discussed in Refs. [73,75], starting from
the Hamiltonian (20). We expand it to first order in kx in
a neighborhood of the Weyl points at kx = −π/2 and then
substitute kx = −i∂x , since translational invariance along x̂ is
broken. We obtain the following equation for the zero-energy
states Hψ(x,ky,kz = π/2) = 0:

∂xψ(x) =
[
− cos kyτz + i

h − sin q

cos q
σx

+ tan q sin kyτzσy

]
ψ(x) (25)

leading to the coupled set of differential equations

∂xψ↑ = i
h − sin q − τz sin q sin ky

cos q
ψ↓ − τz cos kyψ↑,

(26)

∂xψ↓ = i
h − sin q + τz sin q sin ky

cos q
ψ↑ − τz cos kyψ↓.

(27)

From the last equation we obtain

ψ↑ = −i
cos q(∂x + τz cos ky)

h − sin q + τz sin q sin ky

ψ↓. (28)
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FIG. 5. Comparison of numerical and analytic wave functions
(spin down components) for the zero-energy Fermi arcs. The blue
curve (thin line) is numerically obtained in an infinite slab geometry
of thickness Lx = 800, with q = 0.2 and h = −0.05 at momenta
ky = π/2 + 0.02 and kz = π/2 using the Hamiltonian (12). The thick
black curve is the analytic result (31). For small values of q and
negative h Eq. (31) provides a good approximation of the Fermi arcs
wave functions.

Substituting into (26) one has

(∂x + τz cos ky)2ψ↓(x)

= −(h − sin q)2 + sin2 q sin2 ky

cos2 q
ψ↓(x). (29)

Considering a solution of the kind ψ↓(x) ∝ eαx leads to

α = −τz cos ky ± i

√
(h − sin q)2 − sin2 q sin2 ky

cos2 q
. (30)

Therefore, we obtain that, for h < sin q and hard-wall bound-
ary conditions at x = 0, there are two Fermi arcs of the form

ψ↓(x) ∝ sin

⎡
⎣

√
sin2 q sin2 ky − (h − sin q)2

cos2 q
x

⎤
⎦e−τz cos kyx .

(31)

The Fermi arc wave functions are zero-energy eigenstates for
the Hamiltonian Hxy . By considering a value kz �= π/2, how-
ever, they acquire a dispersion given by Hz = −2ωτz cos kz.

The approximate solution of Eq. (31) relies on the first-order
expansion of the Hamiltonian in kx and, for example, it is
not in exact agreement with Eq. (24), which defines the
correct extension of the Fermi arcs in ky . Furthermore, we
emphasize that the Fermi arcs appear for h < 2 sin q, as
deduced from Eq. (24) and not for h < sin q as predicted
by (30). However, the approximate solution Eq. (31) allows
one to verify analytically the existence of the zero-energy
Fermi arcs and gives a good description of these surface states
when q � π/2 and h < 0. In this case both the exponential
decay and the oscillatory term properly match the numerical
results (see Fig. 5). By increasing q the oscillatory term is only
qualitatively captured, and its decay length does not match the
numerical solution.

FIG. 6. Splitting of a double-Weyl point in two single-Weyl points
in the presence of an asymmetry qx �= qy . We set kz = π/2, qx = 0.3,
and qy = 0.4. For clarity only half of the Brillouin zone is shown,
corresponding to two double-Weyl points separating into two pairs
of single-Weyl nodes.

D. Effect of the breaking of rotational symmetry on
double-Weyl points and Fermi arcs

We showed above that double-Weyl points occur for
arbitrary intensity of the non-Abelian gauge field �ANAB in
(6). However, a central ingredient for the emergence of
double-Weyl points is C4 rotational symmetry around the ẑ

axis which implies that the coefficient in front of σx and σy in
(6) must be the same for the two components.

In real experiments, however, this assumption can be
violated. For this reason it is important to examine the effect
of a weak perturbation breaking the rotational symmetry. Such
anisotropy can be modeled by the new vector potential:

�A = π (z − y,y − z,0)σ0 + (qx σx,qy σy,0), (32)

where we consider in general qx �= qy .
Similarly to the previous situation defined by (6), a closed

expression for the four energy bands resulting from (32) can
be obtained, but the final formula for the energies is rather
complicated and not particularly enlightening. Therefore, we
will not give it here, limiting instead the discussion to its main
features.

The main result is that, as expected, for small anisotropies
qx ≈ qy , each double-Weyl point splits into two inequivalent
single Weyl points with linear dispersion, separated along the
direction corresponding to the largest between |qx | and |qy |. A
typical situation is shown in Fig. 6.

In this case, the Fermi arcs of the double-Weyl points in a
diagonal slab split into two Fermi arcs, partially overlapping
and related to the single-Weyl points. Since the two Weyl
points are generated by the same double-Weyl node, and
therefore have the same charge, there cannot be any detrimental
interactions between these Fermi arcs, and the latter are pinned
to zero energy.

For small perturbations given by δq = |qx − qy |, as the
ones coming from imperfections in real experiments, we find
that the distance between the Weyl points is linear in δq. This
implies that in realistic setups such a perturbation could be
controlled to be negligible with respect to the adopted detection
techniques. The same considerations apply to the Fermi arcs.

We observe that a similar phenomenology would be
generated by the introduction of different hopping amplitudes
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in the x̂ and ŷ directions. In the case ωx �= ωy the rotational
symmetry is indeed trivially broken.

Concerning the experimental observations of single- and
double-Weyl points in ultracold atom settings, the main tools
available with current ultracold atom technology rely on the
possibility of detecting the shape of the energy bands and the
Berry curvature as a function of the momenta.

Regarding the band mapping, several techniques, including
Bragg spectroscopy, have already been successfully applied
in 1D and 2D systems (a general technique is applied,
for example, in [76]). Another powerful tool is the study
of Landau-Zener processes which enable one to detect the
gap between two bands along different paths in momentum
space, based on the nonadiabatic transitions between the
two bands [77]. These measurements have been adopted
to detect 2D Dirac cones in optical lattices with a tunable
honeycomb geometry [78], and to study the phase diagram
of the topological Haldane model [41]. It is interesting to
notice that in the previous experiments such techniques have
been applied to band-touching points with a linear dispersion,
corresponding to a standard Landau-Zener process as the
ones expected for standard Weyl points [31]. The study of
double-Weyl points through this technique would instead
require a generalization of the Landau-Zener description for
a quadratic dispersion, in a way similar to the analysis of the
merging transition of Dirac cones in two dimensions [79].

The measurement of the Berry curvature is another useful
tool which can be adopted for the detection of double-Weyl
points. Berry curvatures have successfully been measured in
several 2D systems: these observations include interferometric
experiments [80] and measurements of the population in
different energy bands [81], also in the case of non-Abelian
Berry connections in two-band systems [82]. Once extended
in a 3D setup, this would allow a direct measurement of the
Berry monopole for both single- and multi-Weyl points.

E. Zero-energy states in the presence of a harmonic trap

The experimental setups of ultracold atomic gases loaded
in optical lattices is usually based on either harmonic trapping
potentials [83] or the implementation of a hard-wall confine-
ment for the atoms obtained through optical box traps [84]
or light-intensity masks [85,86]. It is therefore interesting to
examine the behavior of the zero-energy modes in the presence
of both these potentials and to evaluate how they are related to
the double-Weyl points.

By trapping the atoms in this way, the sharp box-shaped
potentials allow us to define precise surfaces for the system,
whereas the role of a weak harmonic trapping can be
assimilated to a space-dependent chemical potential in a local
density approximation regime.

Hence, in order to investigate the effect of the trapping, we
assume the previous diagonal slab geometry with the addition
of a shallow 1D harmonic potential which depends only on the
distance from the surface of the slab. The system is thus infinite
and translational invariant along the ẑ and x̂ + ŷ directions, but
has a finite thickness along the x̂ − ŷ direction. This allows
us to compare the zero-energy surface states arising with and
without the harmonic trap. The single-particle Hamiltonian is

Htrap = H + m �2(x − y)2/2 − μ, (33)

where H is given by Eq. (7). In the central part of the trap the
harmonic potential is negligible and, for values of the chemical
potential such that 0 < μ � 2ω, the system is in a metallic
phase with the two lowest bands fully occupied and the third
band only partially filled. In a local approximation, the Fermi
surface with zero energy corresponds to a set of closed lines
around the double-Weyl points.

By increasing the distance |x − y| from the center, the
harmonic potential effectively reduces the local chemical
potential. Therefore, the Fermi surface shrinks at first to-
wards the double-Weyl points, until a distance such that
m �2(x − y)2 = 2μ where only the double-Weyl points re-
main as zero-energy states. Moving further towards the
surfaces, the system is again in a metallic phase, now with the
second band partially filled. Here the zero-energy modes define
larger and larger contours around the band-touching points.
Finally, on the hard-wall boundary at |x − y| = L, zero-energy
surface modes appear. Their energy can be roughly estimated
by

Hsurface ≈ −2ωτz cos kz − μ + m�2L2/2. (34)

This dispersion relation implies that the Fermi arcs are shifted
by ±δkz from their previous momentum kz = π/2 in order
to compensate for the trapping energy. This approximation
however fails when properly considering the penetration of
the surface modes in the bulk.

In Fig. 7 we plot the states around zero energy on the
surface Brillouin zone for the diagonal slab geometry. We used
a value of the trapping � such that the local chemical potential
ranges from μ to −μ with μ < ω. Our numerical results
show that the gapless surface states interpolate, with curved
shapes, between the zero-energy Fermi surfaces surrounding
the projections of the double-Weyl points, as emerging from
previous discussions [13,75].

FIG. 7. In the top part of the figure we plot in the surface Brillouin
zone the states with energy |E| < 0.02ω in the presence of a harmonic
trapping potential. We use an infinite slab geometry with boundaries
at x − y = 0 and 80a. The color scale depicts the eigenstate intensity
on the first and last eight sites from the boundaries. The parameters �

and μ are chosen in order to have the potential energy ranging from
−0.5ω to +0.5ω from the center of the system towards the surface.
The double-Weyl points become extended regions of bulk states with
zero energy, which are connected by Fermi arcs, bent by the harmonic
trap. For comparison, the states without the harmonic trap are shown
in the lower part of the figure.
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This is the expected result as long as the trapping is weak
enough in such a way that on the boundary of the system the
local chemical potential still falls within the second band. At
variance, if the trapping increases further such that μ � ω, all
the surface Brillouin zone will be covered by bulk zero-energy
states, and the boundary of the system will be locally found in
a gapped phase corresponding to an insulator, where only the
first band is filled. Even larger values of � can then lead to the
appearance of a new metallic phase corresponding to a partial
filling of the first band close to the boundary.

The zero-energy Fermi surfaces, appearing directly as states
in the Brillouin zone, can be experimentally probed through a
band mapping based on Bragg spectroscopy [76], analogous
to the bulk states (see the end of Sec. III D).

IV. OUTLOOK

A flourishing research activity about Weyl semimetals has
been developing in the past few years with the aim of proposing
and experimentally realizing these systems and classifying the
various types of Weyl nodes (see, e.g., the very recent work
[87]). In this paper we analyzed the effects of a non-Abelian
gauge potential on a system of two-species fermions moving
in a cubic lattice with nearest neighbor hopping only. We
considered in particular the case of an U(2) potential describing
both a π magnetic flux in each plaquette and a spin-orbit
coupling. When the non-Abelian component of the potential
preserves a C4 rotation symmetry along the ẑ axis, the system
is characterized by double-Weyl points. These are zero-energy
band-touching points with a quadratic dispersion along two
directions, and correspond to double monopoles for the Berry
connection. Our findings provide a useful and simple analytical
model for their realization and confirm the numerical results
showing that the introduction of a suitable spin-orbit coupling
leads to the formation of double-Weyl points. We observe
that in the noninteracting limit the double-Weyl points we are
considering are distinctly different from a generic quadratic
band touching [88] due to the anisotropy of the dispersion re-
lation, which enables the formation of a monopole of the Berry
curvature thanks to the linear dispersion in the ẑ direction.

The double-Weyl points lead to the formation of peculiar
surface states. In a slab geometry oriented in a diagonal
direction in the xy plane, pairs of zero-energy Fermi arcs
originate from each of these zero-energy bulk states. When the
boundary is instead orthogonal to one of the main directions,
x̂ or ŷ, the surface modes interact and acquire a nontrivial
dispersion. In this case, in order to obtain Fermi arcs, the
breakdown of the specific symmetries is required. This can
be achieved, for instance, by an additional staggered Zeeman
term. However, the latter also breaks the translational and C4

rotational symmetries, splitting the double-Weyl points in pairs
of single-Weyl ones.

In the same way, any anisotropy breaking the C4 rotational
symmetry leads to a splitting of the double-Weyl points.
However, we expect that the amount of anisotropy occurring
in real experiments is small, and does not lead to sensible
difference from the behavior characteristic of these points.

We finally analyzed the effects of the harmonic trapping,
showing that it leads to the formation of topological metals

with nontrivial Fermi surfaces, while preserving the zero-
energy surface modes.

As an interesting avenue for future research, it would
be interesting to study the effect of disorder both in the
Abelian fluxes and in the intensity of the non-Abelian term
to determine how robust are double-Weyl points with respect
to perturbations and imperfections, similar to Ref. [21]. In the
purely Abelian limit, disorder in fluxes was considered in [58]
and on the basis of these results we expect that the disorder
in the translational invariant non-Abelian term may not play a
crucial role and it does not add significant modifications to the
effects of the disorder of the π fluxes. In the noninteracting case
it would be important to consider more general non-Abelian
terms �ANAB to classify the multiple Weyl points one may
obtain. It would be also interesting to consider the effect of
long-range couplings, as the ones studied in [89] and associated
to nontrivial topologies of the Fermi surface.

In the interacting case a first direction of future investigation
would be to add local interaction, as in the case of alkali-metal
atoms, and determine the differences with the superfluid states
in the presence of quadratic band touching. Another promising
future work would be to consider long-range interactions,
possibly in the presence of short-range interactions (as it was
recently considered in [90] for 3D fermions close to a quadratic
band touching point).
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APPENDIX A: DOUBLE-WEYL POINTS AS
BERRY MONOPOLES

The effective Hamiltonian (16) describes the two internal
bands in a neighborhood of one of the double-Weyl points and
it allows one to evaluate an approximated behavior of their
associated Fermi arcs. The double-Weyl points are monopoles
with charge two of the Berry flux associated to each of the two
central bands. In order to show this we consider the particular
case of q = π/4 and we evaluate the field F = �∇ × �A related
to the Berry connectionAj = −i〈ψ |∂k̃j

ψ〉 calculated from the
effective Hamiltonian (16). We obtain

Fx = k̃x

(
k̃2
x + k̃2

y

)
√

2
(
k̃4
x − k̃2

x k̃
2
y + k̃4

y + 2k̃2
z

)3/2 , (A1)

Fy = k̃y

(
k̃2
x + k̃2

y

)
√

2
(
k̃4
x − k̃2

x k̃
2
y + k̃4

y + 2k̃2
z

)3/2 , (A2)

Fz = −
√

2k̃z

(
k̃2
x + k̃2

y

)
(
k̃4
x − k̃2

x k̃
2
y + k̃4

y + 2k̃2
z

)3/2 . (A3)
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By integrating the flux of F for a closed surface around the
Weyl point in �k = (π/2,π/2,π/2) one obtains a flux 4π ,
corresponding to a double charge.

APPENDIX B: OVERLAP OF THE DOUBLE-WEYL
POINTS AND SYMMETRIES

The overlap of double-Weyl points on the surface Brillouin
zone along the canonical directions of the lattice is caused
by the symmetries of the Hamiltonian (12), including the
momentum translations in (17) and (18). Here we focus on
the plane where the Weyl points lie, kz = π/2, and list the
symmetries of Hxy that must be broken to avoid such overlaps.

First, there are anticommuting reflection symmetries which
map either kx → −kx or ky → −ky :

Hxy(kx,ky) = −τzσyHxy(−kx,ky)τzσy, (B1)

Hxy(kx,ky) = −τzσxHxy(kx,−ky)τzσx. (B2)

Then we must consider commuting reflection symmetries
corresponding to the same reflections:

Hxy(kx,ky) = σyHxy(−kx,ky)σy, (B3)

Hxy(kx,ky) = σxHxy(kx,−ky)σx. (B4)

Finally, we must take into account commuting translational
symmetries of the kind

Hxy(kx,ky) = τyHxy(kx + π,ky)τy, (B5)

Hxy(kx,ky) = τxHxy(kx,ky + π )τx. (B6)

The effect of these sets of symmetries is that, given a Weyl
point in a particular position, there will be two symmetric
zero-energy points, with opposite monopole charge, which
share respectively the same kx and ky component.

Therefore, analogous to the symmetries (17),(18), also
the previous relations imply that, if we consider a boundary
orthogonal to either the x̂ or the ŷ direction, two Weyl points
with opposite Berry monopole will overlap in the surface
Brillouin zone and the related Fermi arcs will acquire a nonzero
energy.

In order to avoid this, we have to introduce an additional
term in the Hamiltonian, in such a way to break the symmetries
(17),(B1),(B3),(B5) to avoid overlaps in the kx direction, or
to break (18),(B2),(B4),(B6) in order to avoid the overlaps
in the ky direction. As discussed in the main text, such an
additional term necessarily breaks the SU(2) gauge invariance
and anticommutes with Hz. Thus a simple Zeeman splitting
is not sufficient. The term Hxx in Eq. (19) violates all the
symmetries in the set (17),(B1),(B3),(B5).
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