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Exponential wave-packet spreading via self-interaction time modulation
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The time-periodic modulation of the self-interaction of a Bose–Einstein condensate or a nonlinear optics system
has been recognized as an exciting tool to explore interesting physics that was previously unavailable. This tool is
exploited here to examine the exotic dynamics of a nonlinear system described by the Gross–Pitaevskii equation.
We observe three remarkable and closely related dynamical phenomena, exponentially localized profile of wave
functions in momentum space with localization length exponentially increasing in time, exponential wave-packet
spreading, and exponential sensitivity to initial conditions. A hybrid quantum-classical theory is developed to
partly explain these findings. Time-periodic self-interaction modulation is seen to be a robust method to achieve
superfast spreading and induce genuine chaos even in the absence of any external potential.
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I. INTRODUCTION

Physics induced by the self-interaction of a Bose–Einstein
condensate (BEC) or in nonlinear optics has been a fruitful
subject. For example, self-interaction on the mean-field level
of a BEC often leads to a subdiffusion of cold-atom wave
packets, where the second moment of position (or energy)
grows as tα , with 0 < α < 1 [1–10]. Even more remarkable,
experimental advances in Feshbach resonance [11–14] or
waveguide experiments [15,16] have made it possible to
actively tune the self-interaction and then explore new pheno-
mena due to time-modulated self-interaction. In particular,
time-periodic modulation of the self-interaction of BECs has
been recognized as an exciting tool to engineer the Floquet
spectrum [17], control many-body tunneling [18], synthesize
novel gauge fields [19], etc. Indeed, the so-called many-body
coherent destruction of tunneling [18] has been experimentally
realized [20] based on fast time-periodic modulation of the
self-interaction strength of cold atoms. In nonlinear optics, the
spatial modulation of the Kerr nonlinearity (which can be used
to simulate time modulation of nonlinearity) was realized by
tuning the refractive index of waveguides with the femtosecond
laser writing technique [16].

Here we exploit time-periodic modulation of the self-
interaction of an optics system or a BEC on the mean-field
level to expose three related dynamical phenomena. The
results are of general interest to both theoretical studies and
cold-atom-based as well as nonlinear optics experiments. In
particular, (i) analogous to the seminal dynamical localization
physics [21] in cold-atom realizations of kicked-rotor systems
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[22], the main localization profile of the time-evolving wave
functions in momentum space is found to be exponential; (ii)
exponential wave-packet spreading is found to be typical, and
its coexistence with exponential wave-function profile is ex-
plained in terms of an exponential increase of the localization
length in time; (iii) the time evolution is found to be genuinely
chaotic because it displays true exponential sensitivity to
initial conditions, with the computationally found (finite-time)
Lyapunov exponent the same as the rate characterizing the
wave-packet spreading for the same timescale. We further use
a hybrid quantum-classical theory to shed light on our findings.
Our detailed results and theoretical analysis advanced, both
quantitatively and qualitatively, a previous work [23] also
studying periodic self-interaction modulation.

The exponential wave-packet spreading may offer an
alternative route towards superfast heating of particles [24].
Heating up atoms rapidly can suppress the loss of particles
from a trap during the heating process. A system of particles
after superfast heating, once placed in contact with a cooler
system, can be useful for studies of nonequilibrium statistical
mechanics. Because the exponential wave-packet spreading is
achieved by sole self-interaction modulation in time, it does
not need the type of the near-resonance condition advocated
in Ref. [25]) and is hence a more robust method than before.
Finally, although the dynamics of a system described by the
Gross–Pitaevskii equation should be able to exhibit true chaos
considering its nonlinear time evolution, this work gives a
fascinating example displaying exponential sensitivity without
an external potential.

II. MODEL AND RESULTS

Consider a propagating wave under a periodic boundary
condition, with its spatial coordinate given by −π � θ � π .
Other than the self-interaction that is periodically modulated,
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FIG. 1. (a) Exponential profile of the wave functions in mo-
mentum space for g = 1 and �eff = 1 (on a logarithmic scale), at
times t = 50 (lower, blue), 80 (middle, red), and 100 (upper, cyan).
(b) Exponential increase of the localization length L(t) for g = 0.6
(circles), 0.8 (pentagrams), 1.0 (squares), 1.4 (diamonds), and 2.0
(triangles). Dashed lines represent the exponential behavior depicted
by Eq. (4).

there is no external potential. The evolution of such a system
is assumed to satisfy the following Gross–Pitaevskii equation
in dimensionless units,

i�eff
∂

∂t
ψ(θ,t) =

[
1

2
p2 + g|ψ(θ,t)|2

∑
j

δ(t − j )

]
ψ(θ,t),

(1)

where p = −i�eff
∂
∂θ

, �eff is the effective Planck constant, and
g
∑

j δ(t − j ) is the periodically modulated self-interaction,
with g being the modulation amplitude and

∑
j δ(t − j )

representing delta pulses as a convenient way to modulate
the self-interaction.

Let |ϕn〉 be momentum eigenstates, with p|ϕn〉 =
n�eff|ϕn〉, and 〈θ |ϕn〉 = einθ /

√
2π . In the representation of

|ϕn〉, an arbitrary state can be expressed as |ψ(θ,t)〉 =∑+∞
n=−∞ ψn(t)〈θ |ϕn〉, with ψn(t) being the wave function in

the momentum representation. The initial state is taken as
a Gaussian wave packet normalized to unity and centered
at θ = 0; namely, ψ(θ,0) = (a/π )1/4 exp(−aθ2/2). In our
numerical simulations, we take a = 10. This state decays to
virtually zero at θ = −π or θ = π so there is no violation of
the periodic boundary condition in θ . Note also that the initial
state must be nonuniform in θ in order for the self-interaction to
create an effective potential. The one-period evolution operator
from tj−1 = j − 1 to tj = j is given by

U (tj ,tj−1) = e
−i

H0
�eff e

−i
V (θ,tj−1)

�eff , (2)

where H0 = p2/2 and V (θ,t) = g|ψ(θ,t)|2.
As a typical observation, the wave-function profile in the

momentum space after a few modulation periods is found
to display an exponential profile over a very broad range of
momentum [Fig. 1(a)]. That is, if we take the snapshot of
the populations |ψn(t)|2 at a particular time t , on average the

populations behave like

|ψn(t)|2 ≈ 1

2L(t)
exp

[
− |n|

L(t)

]
, (3)

with some expected fluctuations. On the other hand, Fig. 1(b)
indicates that the found localization length L(t) increases
exponentially with time, at a rate depending on �eff and the
interaction strength g. Specifically, we find

L(t) ≈ L0e
γ t/2 with γ ≈ ln[1 + (g/π�eff)

2] (4)

if g is not too small (e.g., g > 0.6). If g is too small, although
the wave-function profile in the momentum space is still
exponential, the time dependence of L(t) will not be captured
by our following theory based on an assumption of chaos.
Equation (4) as the main finding of this work is explained
below by a hybrid quantum-classical theory.

III. A HYBRID QUANTUM-CLASSICAL THEORY

Consider first the matrix elements of the self-interaction
V (t) in momentum representation:

Vn,m(t) = g

∫
dθϕ∗

m(θ )|ψ(θ,t)|2ϕn(θ ). (5)

A simple calculation yields Vn,m(t) = 2gYn−m(t), where Yn(t)
is the wave-function autocorrelation function at time t , with

Yn(t) = 1

4π

+∞∑
m=−∞

ψ∗
m(t)ψm+n(t). (6)

This makes it clear that the V matrix in momentum represen-
tation has a band structure with a band-width determined by
the correlation length of the wave function ψn(t). Indeed, as
observed in direct numerical calculations, the matrix elements
of V (t) outside the band decay to zero rapidly. Such a band
structure of Vn,m accounts for the exponential profile of ψn(t)
depicted by Eq. (3). Now a positive feedback mechanism
comes into play. It is clear that, if the wave-function profile
ψn(t) spreads out in momentum space, then its autocorrelation
length grows, the bandwidth of the self-interaction V matrix
increases accordingly, and as a result the wave packet spreads
more at a faster speed.

To turn the above qualitative picture into a quantitative
theory, we next make connection between the nonlinear
propagator in Eq. (1) and that of a generalized kicked rotor
(GKR) model. To that end, note first

|ψ(θ,t)|2 = 2
+∞∑

n=−∞
Yn(t)einθ , (7)

with Yn(t) defined in Eq. (6). For an initial Gaussian
packet which is an even function of θ , the time-evolving
state will maintain this symmetry. This gives rise to a real Yn(t),
with Yn(t) = Y−n(t) [26]. This simplifies the self-interaction
potential V (θ,t) = g|ψ(θ,t)|2,

V (θ,t) = g|ψ(θ,t)|2 = 2gY0(t) + 4g

+∞∑
n=1

Yn(t) cos(nθ ). (8)
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One can now identify an effective Hamiltonian from Eq. (1)
in terms of a GKR; namely,

Heff = p2

2
+

+∞∑
n=1

Kn(t) cos(nθ )
∑

j

(t − j ), (9)

where Kn(t) = 4gYn(t), and the term 2gY0 also contained
in V (θ,t) is dropped because it is independent of θ and
hence only yields trivial overall phases to the time-evolving
state at all times. That is, the dynamics of our system is
equivalent to that of a GKR, whose kicking potential is given by∑+∞

n=1 Kn(t) cos(nθ ). This kicking potential is self-adjusting on
the fly because it depends on Kn(t) = 4gYn(t), which changes
with the time-evolving state.

To gain further insights, we examine the classical dynamics
of the GKR defined in Eq. (9). The associated classical map
from t to t + 1 is given by

pc(t + 1) − pc(t) =
+∞∑
n=1

nKn(t) sin[nθ (t)],

(10)
θ (t + 1) − θ (t) = pc(t + 1),

where pc stands for classical momentum. For sufficiently large
g such that the autocorrelation length of the time-evolving
state increases rapidly, the kicking strength Kn(t) of the
above classical map quickly increases, resulting in classical
chaos. Assuming a random distribution in θ (decorrelated
with momentum) due to classical chaos, one immediately
has [26] 〈

p2
c (t + 1)

〉 ≈ 〈
p2

c (t)
〉 + 1

2Kg, (11)

with

Kg =
∞∑

n=1

[nKn(t)]2. (12)

Here 〈· · · 〉 denotes a classical average over the initial classical
Gaussian ensemble. To evaluate Kg , one needs to return to
Kn(t) = 4gYn(t). Assuming the exponential profile of ψn(t)
depicted in Eq. (3), it can be shown that Kg is proportional to
g2

π2 L
2(t), i.e., Kg = η

g2

π2 L
2(t) with a proportionality prefactor

η [26]. This being the case, we arrive at

〈
p2

c (t + 1)
〉 ≈ 〈

p2
c (t)

〉 + 1

2
η

g2

π2
L2(t). (13)

Although the GKR introduced above has a time-dependent
kicking strength, there must still be a fair quantum-classical
correspondence. Considering the observed exponential in-
crease in L(t) and hence an exponential increase in momentum
squared, both classical and quantum dynamics should yield the
same exponential rate. Thus, as also confirmed by detailed
numerical results after a transient period (see Fig. 2), the
quantum momentum squared is expected to be proportional
to the mean classical momentum squared,

〈p2(t)〉 = α
〈
p2

c (t)
〉
. (14)

The exact values of α as introduced above are not important,
and they depend on �eff and g. Applying this to Eq. (13), one

FIG. 2. Comparison in energy between the classical GKR (dashed
lines in blue) and the quantum results (solid lines). From top to
bottom: �eff = 1, 0.6, and 0.3 with g = 1. The results indicate that
quantum momentum variance is proportional to classical momen-
tum variance after a transient period, both displaying exponential
increase.

has

〈p2(t + 1)〉 ≈ 〈p2(t)〉 + 1

2
αη

(
g

π

)2

L2(t). (15)

As a final step, we use the exponential profile of ψn(t)
again, which tells us that 〈p2(t)〉 is roughly proportional to
�

2
effL

2(t). We thus assume 〈p2(t)〉 = β�
2
effL

2(t). Substituting
this relation into Eq. (15), an iterative relation emerges as
follows:

〈p2(t + 1)〉 ≈
[

1 + 1

2

αη

β

(
g

π�eff

)2]
〈p2(t)〉. (16)

Remarkably, the important ratio αη

β
above tends to approach

a rather universal value if L(t) increases exponentially, i.e.,
αη

β
≈ 2 after a transient period [26], regardless of other system

parameters. Equation (16) then yields our main theoretical
result, i.e.,

〈p2(t)〉 ∼ eγ t , (17)

where

γ ≈ ln[1 + (g/π�eff)
2]. (18)

This also accounts for the time dependence of L(t) observed
earlier [see Eq. (4)], as supported by a comparison between
numerics and theory in Fig. 1(b). That is, the momentum
squared increases exponentially with an exponent γ , which ex-
plains quantitatively why the localization length L(t) increases
exponentially with an exponent γ /2. This derived exponent
based on a hybrid quantum-classical theory depends on the
self-interaction strength g and �eff. Preparing the system in
different regimes with different �eff will result in different
exponential behavior.
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FIG. 3. (a) The distance �(t) between two wave packets versus
time (on a logarithmic scale), starting from two very close initial
conditions, �eff = 1. From top to bottom: g = 3 (black), 2 (red), 1.5
(green), 1 (blue), and 0.7 (cyan). (b) The extracted exponential rate γ

(solid squares) versus the coupling strength g as compared with the
theoretical value (solid curve) given in Eq. (18). Numerical values of
γ are extracted from L(t) as plotted in Fig. 1(b). The circles denote
the Lyapunov exponent λ calculated from Eq. (19). All of them are
in excellent agreement.

IV. GENUINE “QUANTUM” CHAOS

In linear systems and at least on the wave-function level,
there is no exponential sensitivity to initial states. However, the
Gross–Pitaevskii equation here is nonlinear and exponential
sensitivity to initial conditions might occur. It is then curious
to check whether the exponential wave-packet spreading can
be quantitatively connected with Lyapunov instability of our
system. In particular, we define the (finite-time) Lyapunov
exponent as

λ = − lim
t→tf

lim
�0→0

1

tf
ln

�(tf )

�0
, (19)

where tf is the total time during which one may numerically
track the time evolution, �(t) = 1 − |〈ψ1(θ,t)|ψ2(θ,t)〉|2 is a
natural measure of the distance between two time-evolving
states ψ1(θ,t)ψ2(θ,t), with ψ1(θ,t) and ψ2(θ,t) emanating
from two slightly different initial conditions. We note that
in our numerical experiments tf is on the scale of hundreds of
kicking periods due to the rather fast wave-packet exponential
spreading.

Figure 3(a) shows that � also increases exponentially
with time. The obtained (finite-time) Lyapunov exponents are
plotted in Figure 3(b) as a function of g. It is seen that the
numerically obtained Lyapunov exponents λ agree perfectly
with the γ exponent derived earlier [see Eq. (18)]. This further
justifies our early hybrid quantum-classical treatment. On the
one hand, it is now seen that, in a system with periodic
self-interaction modulation, genuine exponential sensitivity
might occur in the absence of any external potential. On the
other hand, exponential increase of the localization length
L(t), exponential wave-packet spreading, and the exponential
sensitivity to initial conditions can now all be connected with
the same exponent γ .

V. SUMMARY

In a simple dynamical model relevant to nonlinear optics
and mean-field descriptions of BEC, we have shown that
exponential wave-packet spreading can coexist with (mainly)
exponential wave-function profiles in the momentum space,
with the localizing length exponentially increasing in time.
The found exponent characterizing the exponential behavior
can be derived via a hybrid quantum-classical theory. The
found exponent is the same as the positive (finite-time)
Lyapunov exponent characterizing the exponential sensi-
tivity to initial conditions in the absence of any external
potential.
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APPENDIX A: ON THE CORRELATION FUNCTION Yn

In this appendix, we show detailed derivations of some
properties of wave-packet spreading studied in the main text.
In Appendix A, we discuss properties of the correlation
function Yn(t) defined in the main text. In Appendix B, we
present some detailed theoretical derivations together with
their justifications.

We start with the wave-function expansion ψ(θ,t) =∑+∞
n=−∞ ψn(t)einθ/

√
2π , which gives

|ψ(θ,t)|2 = 2
+∞∑

n=−∞
Yn(t)einθ , (A1)

where

Yn(t) = 1

4π

+∞∑
m=−∞

ψ∗
m(t)ψm+n(t) (A2)

is the correlation function discussed in the main text. Equa-
tion (A1) shows that Yn(t) is basically a Fourier transform
of |ψ(θ,t)|2, i.e., Yn(t) = 1√

8π

∫ 2π

0 dθ 1√
2π

|ψ(θ,t)|2e−inθ . The
initial state we consider is a Gaussian wave packet, which is
symmetric with respect to reflection, i.e., ψ(−θ,0) = ψ(θ,0).
Because the time evolution respects this symmetry at all times
t , one has ψn(t) = ψ−n(t) and

Yn(t) = Y−n(t). (A3)
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Moreover, Yn(t) is real, since Y ∗
n (t) = 1√

8π

∫ 2π

0 dθ 1√
2π

|ψ(θ,t)|2einθ = Y−n(t) = Yn(t). From Eq. (A2), the correlation function
Yn can be written as

Yn(t) = 1

4π

⎡
⎣+∞∑

m=0

ψ∗
m(t)ψm+n(t) +

−n∑
m=−∞

ψ∗
m(t)ψm+n(t) +

−1∑
m=−(n−1)

ψ∗
m(t)ψm+n(t)

⎤
⎦. (A4)

The second term in the above equation can be rewritten as

−n∑
m=−∞

ψ∗
m(t)ψm+n(t) =

+∞∑
m=0

ψ∗
−(m+n)(t)ψ−m(t). (A5)

The last term in Eq. (A4) takes the form

−1∑
m=−(n−1)

ψ∗
m(t)ψm+n(t) =

n−1∑
m=1

ψ∗
−m(t)ψ−m+n(t)

=
{∑k−1

m=1[ψ∗
−m(t)ψ−m+n(t) + ψ∗

−n+m(t)ψm(t)] + |ψk(t)|2 for n = 2k, k = 1,2, . . .∑k
m=1[ψ∗

−m(t)ψ−m+n(t) + ψ∗
−n+m(t)ψm(t)] for n = 2k + 1, k = 0,1,2, . . . .

(A6)

Then, we have the following expression for Yn,

Yn = 1

4π

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑+∞
m=0[ψ∗

m(t)ψm+n(t) + ψ∗
−(m+n)(t)ψ−m(t)]

+∑k−1
m=1[ψ∗

−m(t)ψ−m+n(t) + ψ∗
−n+m(t)ψm(t)] + |ψk(t)|2 for n = 2k, k = 1,2, . . .∑+∞

m=0[ψ∗
m(t)ψm+n(t) + ψ∗

−(m+n)(t)ψ−m(t)]

+∑k
m=1[ψ∗

−m(t)ψ−m+n(t) + ψ∗
−n+m(t)ψm(t)] for n = 2k + 1, k = 0,1,2, . . . .

. (A7)

By using the symmetry ψn(t) = ψ−n(t), one finds that ψ∗
−(m+n)(t)ψ−m(t) = ψ∗

m+n(t)ψm(t) and that ψ∗
−m(t)ψ−m+n(t) =

ψ∗
m(t)ψm−n(t). Then, from Eq. (A7) one has

Yn(t) = 1

4π

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑+∞
m=0[ψ∗

m(t)ψn+m(t) + c.c.]

+∑k−1
m=1[ψm(t)ψ∗

−n+m(t) + c.c.]

+ |ψk(t)|2 for n = 2k, k = 1,2, . . .∑+∞
m=0[ψ∗

m(t)ψn+m(t) + c.c.]

+∑k
m=1[ψm(t)ψ∗

−n+m(t) + c.c.] for n = 2k + 1, k = 0,1,2, . . . ,

. (A8)

where c.c. denotes complex conjugation and Y0 = 1
4π

. Rewriting Yn(t) in the above form helps us to make approximations later
on.

Noting next the exponential profile |ψn(t)|2 shown in the main text. Neglecting any subtle structure in the wave-function
profile, the wave function can be approximately written as

ψn(t) ≈ a

√
1

2L(t)
exp

(
− |n|

2L(t)

)
exp(−iφn), (A9)

where φn are the phases. Here, we introduce the parameter a to account for fluctuations of the wave function around the
exponential profile. Numerically, for large-momentum components, these fluctuations tend to be uniform in n and also in time
for the time duration studied here. Therefore, we can approximately take a as a uniformly distributed random number. We have
also checked that the phases φn can be effectively regarded as random numbers as well.

Due to the relation Yn = Y−n, it is sufficient to discuss Yn for n > 0 only. Making use of the expression in Eq. (A9), we arrive
at

ψ∗
m(t)ψn+m(t) + c.c. ≈ a2

L(t)
exp

[
− m

L(t)

]
exp

[
− n

2L(t)

]
cos(φm − φn+m) for m > 0, (A10)

and

ψm(t)ψ∗
−n+m(t) + c.c. ≈ a2

L(t)
exp

[
− n

2L(t)

]
cos(φm − φm−n) for n > m > 0. (A11)

Substitution of Eqs. (A10) and (A11) into Eq. (A8) yields

Yn(t) ≈ a2

8πL(t)
exp

[
− n

2L(t)

]
F (n), (A12)
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where

F (n) =
{

1 + 2
[∑+∞

m=0 e
− m

L(t) cos(φm − φn+m) + ∑k−1
m=1 cos(φm − φn−m)

]
for n = 2k, k = 1,2, . . .

2
[∑+∞

m=0 e
− m

L(t) cos(φm − φn+m) + ∑k
m=1 cos(φm − φn−m)

]
for n = 2k + 1, k = 0,1,2, . . . .

. (A13)

We have checked this prediction numerically [see Fig. 4(a)
here]. Equation (A12) will be used in the next section in the
study of the GKR model. In particular, the factor one in the
above F (n) expression in the case of even n will be neglected.

APPENDIX B: DERIVATION OF γ

The Hamiltonian of the GKR model described the main text
reads

Heff = p2

2
+
[ +∞∑

n=1

Kn(t) cos(nθ )

]∑
j

(t − j ), (B1)

where Kn(t) = 4gYn(t). This leads to the following classical
mapping:

pc(t + 1) − pc(t) =
+∞∑
n=1

nKn(t) sin[nθ (t)],

(B2)
θ (t + 1) − θ (t) = pc(t + 1),

where pc(t) and θ (t) represent the (angular) momentum and
the angle after the t th kick, respectively. Note that, in the
following derivation, for brevity, we use Kt

n to replace Kn(t),
and θt to θ (t). From Eq. (B2), one obtains

pc(t + 1) = pc(t) +
+∞∑
n=1

nKt
n sin (nθt )

= pc(0) +
t∑

i=0

+∞∑
n=1

nKi
n sin (nθi). (B3)

FIG. 4. (a) The correlation function |Yn| for �eff = 1, g = 1 at
t = 50 (blue) and 80 (red). Dashed lines indicate exponential decay
exp(− n

2L
). (b) The corresponding momentum distributions. Dashed

lines (in black) indicate exponential decay exp(− n

L
).

Then, the momentum variance is found to be

〈
p2

c (t + 1)
〉 =

〈[
pc(0) +

t∑
i=0

+∞∑
n=1

nKi
n sin(nθi)

]2〉

= 〈
p2

c (0)
〉 + 2pc(0)

t∑
i=0

+∞∑
n=1

nKi
n〈sin(nθi)〉

+
〈

t∑
i=0

[+∞∑
n=1

nKi
n sin(nθi)

]2〉

+
〈

t∑
μ,ν=0
μ 
=ν

[+∞∑
n=1

nKμ
n sin(nθμ)

]

×
[+∞∑

n=1

nKν
n sin(nθν)

]〉
, (B4)

where 〈· · ·〉 means ensemble average over classical trajec-
tories. One should note that, in the last line of the above
equation, since μ 
= ν, the two summations in the two brackets
[·] correspond to different times. When the classical system
undergoes a chaotic motion, this term decays exponentially
with time. According to the random-phase approximation,
〈sin(nθi)〉 = 0. Then, the momentum variance can be approx-
imately written as

〈
p2

c (t + 1)
〉 ≈ 〈

p2
c (0)

〉 +
〈

t∑
i=0

[+∞∑
n=1

nKi
n sin(nθi)

]2〉

= 〈
p2

c (0)
〉 + t∑

i=0

+∞∑
n=1

n2
(
Ki

n

)2〈sin2(nθi)〉

+
t∑

i=0

+∞∑
m,n = 1
m 
= n

mnKi
mKi

n〈sin(mθi) sin(nθi)〉.

(B5)

Since

〈sin2 (nθi)〉 = 1

2π

∫ 2π

0
sin2 (nθi)dθi = 1

2
, (B6)

〈sin (mθi) sin (nθi)〉 = 1

2
〈cos [(m − n)θi]

− cos [(m + n)θi]〉 m
=n= 0, (B7)

we get from Eq. (B5),

〈
p2

c (t + 1)
〉 ≈ 〈

p2
c (0)

〉 + 1

2

t∑
i=0

+∞∑
n=1

n2
(
Ki

n

)2
. (B8)
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FIG. 5. Linear dependence of Kg on (gL)2 with �eff = 1. The
solid straight line denotes Kg = η(gL/π )2 with η ≈ 1.

That is,

〈
p2

c (t + 1)
〉 ≈ 〈

p2
c (t)

〉 + 1
2Kg, (B9)

where

Kg =
∞∑

n=1

(
nKt

n

)2
. (B10)

Next we discuss the relation between Kg and L2(t). Note
that Kt

n = 4gYn(t) and Yn(t) is already derived in Eq. (A12).
Then, for sufficiently large L(t), we drop the first factor of one
in the F (n) expression for n = 2k [see Eq. (A13)], obtaining
an approximate Kg

Kg ≈ g2

π2L2(t)

+∞∑
n=1

a4n2 exp

[
− n

L(t)

]

×
[+∞∑

m=0

e
− m

L(t) cos (φm − φn+m)

+
k∑

m=1

cos (φm − φn−m)

]2

, (B11)

FIG. 6. Coefficients α, β, η and αη/β versus time for(a) �eff =
0.3 and (b) 0.6 with g = 1. The dashed straight line (in cyan) denotes
that αη/β = 2.

where k = n/2 for even n and k = (n − 1)/2 for odd n. The
effective randomness of φm implies that

+∞∑
m=0

e
− m

L(t) cos (φm − φn+m) ∼
√

L(t), (B12)

and
k∑

m=1

cos (φm − φn−m) ∼
√

k ∼ √
n. (B13)

Due to the rapid decay of e−n/L(t), the main contribution to
the summation over n in Eq. (B11) comes from the region
[1,εL], where ε is of the order of 1. Plugging the estimates of
Eq. (B12) and Eq. (B13) into Eq. (B11) and performing the
summation over n, one arrives at the following estimate:

Kg = η
( g

π

)2
L2(t), (B14)

where η is a proportionality constant (which is used in the
main text). Numerically, as shown in Fig. 5, we have verified
that Kg indeed has a linear dependence on (gL)2.

In the main text, there are three prefactors η, α, and β

introduced to help us to develop a hybrid quantum-classical
theory. Their detailed time dependence in two typical examples
are shown in Fig. 6 of this appendix. There it is seen that, after
a transient period, αη/β approaches a rather universal value
that is approximately two, for different values of �eff and g

(that give different individual values of α, η, and β). It is
this empirical observation αη/β ≈ 2 that further simplifies
our hybrid quantum-classical theory in the main text, with
the theoretical result of the exponential rate in agreement
numerical experiments.
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