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Collective modes of a one-dimensional trapped Bose gas in the presence of the anomalous density

Abdelâali Boudjemâa*
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We study the collective modes of a one-dimensional harmonically trapped Bose-Einstein condensate in
the presence of the anomalous density using the time-dependent Hartree-Fock-Bogoliubov theory. Within the
hydrodynamic equations, we derive analytical expressions for the mode frequencies and the density fluctuations
of the anomalous density which constitutes the minority component at very low temperature and feels an effective
external potential exerted by the majority component, i.e., the condensate. On the other hand, we numerically
examine the temperature dependence of the breathing mode oscillations of the condensate at finite temperature
in the weak-coupling regime. At zero temperature, we compare our predictions with available experimental data,
theoretical treatments, and Monte carlo simulations in all interaction regimes and the remaining hindrances are
emphasized. We show that the anomalous correlations have a non-negligible role on the collective modes at both
zero and finite temperatures.
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I. INTRODUCTION

Ultracold atomic Bose gases in a one-dimensional (1D)
geometry [1,2] have attracted a great deal of interest as they
yield a fascinating physics and many surprises not encountered
in 2D and 3D. The regime of a weakly interacting gas requires
the criterion γ = mg/�

2nc � 1 which is the ratio between the
interaction energy and the kinetic energy of the ground state,
where g is a coupling that characterizes the interaction, m the
atomic mass, and nc the 1D condensed density. In such a regime
the mean-field theory can be safely used and a trapped true
Bose-Einstein condensate (BEC) is possible. In the limit γ →
∞ which corresponds to small density or large interaction, the
gas transforms into a strongly interacting system and acquires
Fermi properties. In this case it is called a gas of impenetrable
bosons or gas of Tonks-Girardeau (TG) [3,4].

Bose gases in very elongated traps which feature of
1D condensate, have been studied in different regimes of
quantum degeneracy [5–7]. The sum-rule approach [8], time-
dependent modified nonlinear Schrödinger equation (MNLSE)
[9], numerical Monte carlo simulations [10,11], Hartree-Fock-
Bogoliubov (HFB)-based approaches [11–13], and finite-
temperature hydrodynamics [14] have successfully predicted
the collective modes of both weakly and strongly interacting
1D Bose gases at zero and finite temperatures. Experimental
investigations of the breathing oscillations in 1D ultracold
gases have been reported by several groups [15–17]. The main
finding emerging from these explorations is that the breathing
mode frequencies as a function of the interaction strength go
through two crossovers: from the value 2 down to

√
3 and then

back to 2, as the system goes from noninteracting to weakly
interacting and then from weakly interacting to the TG regime
[16].

At nonzero temperatures, the elementary excitations arising
from quantum and thermal fluctuations are always present
[6,18–21] and may considerably affect the dynamics of the
condensate. It is well known that at finite temperature, the
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condensate coexists with the cloud of thermal excitations and
the anomalous component. This latter quantity, which survives
naturally in Bose systems, can be interpreted as the density
of pair-correlated atoms. This pairing phase is similar to the
BCS phase in superconductors at low temperature proposed
by Evans and Imry [22] a long time ago. In addition, it
has been argued that the anomalous density accompanies in
an analogous manner the condensate: they both arise from
gauge symmetry breaking [23,24]. If the condensate density
is nonzero, the anomalous average is also finite. Conversely,
when the condensate becomes zero, the anomalous density
has also to disappear. Moreover, in homogeneous 2D Bose
systems, the condensate and the anomalous density exist
together at zero temperature while they both do not survive
at any nonzero temperature [21] due to the destruction of the
long-range order. In spatially uniform 1D Bose gases, BEC
and the anomalous states do not occur at all temperatures.
However, the presence of a trapping potential in such systems
introduces a finite size of the sample and drastically changes
the picture of long-wave fluctuations of the phase and thus the
phase coherence over the finite sample size is restored.

Certainly, the presence of the anomalous density in an
ultracold Bose gas plays a crucial role in its dynamical
and thermodynamical properties. First of all, the anomalous
phase is usually of the order of or even larger than the
noncondensed density [23–30]. So, the exclusion of such a
quantity is indeed an unjustified approximation and may render
the system unstable [23,24]. Moreover, the absence of the
anomalous density prevents the occurrence of the superfluidity
in Bose gases [21,24,28,29], which is natural since both
quantities arise from atomic correlations. The inclusion of
the anomalous correlations in a 3D harmonically trapped Bose
gas accounts well for shifts in the lower-lying excitation of
the JILA experiment [27,31]. In attractively interacting BECs,
it has been found that the anomalous fluctuation causes the
condensate to collapse and the 1D soliton to split into two
solitonic structures [32–35].

In view of these circumstances it is then interesting to study
the properties of a quasi-1D weakly interacting BEC in the
presence of the anomalous density. Obviously, this mixed
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system is categorically different from that of a pure BEC
especially at intermediate temperatures where the anomalous
density reaches its maximum [23,27].

The aim of the present work is to investigate the collective
modes of both the condensate and the anomalous components
in a quasi-1D trapped Bose gas at finite temperature utilizing
our time-dependent HFB (TDHFB) theory [21,23,29,30,34–
38]. The TDHFB is a self-consistent approach describing
the dynamics of ultracold Bose gases. The main feature of
this theory is that it preserves the validity of conservation
laws and a gapless spectrum of collective excitations. The
TDHFB approach is based on the time-dependent Balian-
Véréroni (BV) variational principle [39] which requires the
minimization of an action which involves two variational
objects: one is related to the observables of interest and the
other is akin to a density matrix [39]. The theory is valid
for arbitrary interacting Bose systems, whether equilibrium or
nonequilibrium, uniform or nonuniform, in the presence of any
external potentials, at any temperature and in any dimension.

The rest of the paper is organized as follows. In Sec. II, we
introduce our TDHFB model which describes self-consistently
the dynamics of a trapped Bose gas at finite temperature and
establish its validity criterion. We analyze the profiles of the
condensed and anomalous densities for different temperatures.
In Sec. III, we use the TDHFB within the hydrodynamic
equations to investigate the collective oscillations and the
density fluctuations of the condensate and the anomalous
fraction. This quite general approach permits us to obtain
an analytical expression for the dispersion relation of the
anomalous component in a quasi-1D setting. We highlight
effects of the anomalous fluctuations and temperature on
excitation frequencies. At zero temperature, we compare our
findings for the breathing mode frequencies of the mixed
system with recent experimental, theoretical, and numerical
predictions in the entire spectrum of interaction regimes from
the noninteracting gas, passing by the mean-field regime, to
the TG limit. Our concluding remarks are presented is Sec. IV.

II. TDHFB FORMALISM

We consider a weakly interacting Bose gas confined in a
highly anisotropic trap where the longitudinal and transverse
trapping frequencies are ωx/ω � 1. In such a case, the system
can be considered as quasi-1D and, hence, the coupling
constants effectively take their 1D form, namely, g = 2�ω a,
where a is the s-wave scattering length. The TDHFB equations
which we choose to employ here constitute a model well
suited to this task because it governs both the dynamics of the
condensate and the anomalous density at finite temperature.
In this quasi-1D geometry, the TDHFB equations may be
represented as [21,23,29,30,34–38]

i�
∂

∂t
� =

[
− �

2

2m

∂2

∂x2
+ V + gcanc + 2gñ

]
�, (1a)

i�
∂

∂t
m̃ = 4

[
− �

2

2m

∂2

∂x2
+ V + G(2ñ + 1) + 2gn

]
m̃, (1b)

where V (x) = mω2x2/2 is the harmonic trapping poten-
tial with frequency ω, �(x) = 〈ψ̂(x)〉 is the condensate
wave function, nc(x) = |�(x)|2 is the condensed density, the

noncondensed density ñ(x) and the anomalous density m̃(x)
are identified respectively with 〈ψ̂+(x)ψ̂(x)〉 − �∗(x)�(x)
and 〈ψ̂(x)ψ̂(x)〉 − �(x)�(x), where ψ̂+ and ψ̂ are the boson
destruction and creation field operators, respectively. The total
density in BEC is defined by n = nc + ñ. The parameter
gca = g(1 + m̃/�2) stands for the renormalized coupling
constant [30,37,40], and G = ggca/4(gca − g). Consequently,
the small parameter of the weakly interacting regime becomes

γ ′ = γ

(
1 + m̃

nc

)
� 1, (2)

indicating that a dilute 1D system requires small anomalous
fluctuations.

If one neglects both the noncondensed and the anomalous
densities (ñ = m̃ = 0), the set (1) simplifies to the Gross-
Pitaevskii (GP) equation. For m̃ = 0, the TDHFB equations
reduce to the HFB-Popov (HFBP) approach which is gapless
and coincides with the HF approximation at high temperature.
Very recently, the HFBP approximation has been applied in
a harmonically trapped 1D Bose gas to study the collective
modes at finite temperature [13]. Note that the TDHFB
equations have been discussed by many authors using different
methods (see, e.g., [33,41–44]). Moreover, in spirit of the
mean-field theory, linearized TDHFB equations have been
derived in [31] to study the damping and the collective
oscillations in the collisionless regime. Our TDHFB formalism
is usually given in the form of nonlocal coupled equations for
the condensate order parameter and the single-particle density
matrix [21,23,36]. A striking advantage of such equations
would be that they can be solved self-consistently using the ex-
act nonlocal interaction potential (dipolar, gravitational, etc.).

The validity criterion of the TDHFB theory (1), as all HFB-
like theories, requires that the temperature should be much
smaller than a certain characteristic temperature Tφ [5,12]

T � Tφ = �ω

μc

Td, (3)

where Td ≈ �ωN is the degeneracy temperature (the Boltz-
mann constant kB = 1) and μc is the chemical potential of
the condensate. At T � Tφ , both the density and phase fluc-
tuations are suppressed, and hence, there is a true condensate
(see, e.g., [5,12]). In the temperature range Td � T � Tφ , the
density fluctuations are suppressed but the phase fluctuations
are large, this is often refereed to as quasicondensate (or
condensate with fluctuating phase) [5]. In this regime, many
experiments [14,17] in 1D Bose gases are carried out revealing
that finite-temperature effects are more pronounced and the
properties due to elementary excitations are rather different
than those of nearly pure 1D BECs.

An interesting feature of our formalism is that the noncon-
densed and the anomalous densities are not independent. By
deriving an explicit relationship between them, it is possible
to eliminate ñ via [23,30,44,45]

ñ =
√

|m̃|2 + 1
4I − 1

2I, (4)

where I is often known as the Heisenberg invariant [45]
and represents the variance of the number of noncondensed
particles.
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It is also possible to show that Eq. (4) can reproduce the
mean-field result based on the HFB approximation. Working
in the Bogoliubov quasiparticles space [37] one has âk =
ukb̂k − vkb̂

†
−k, where b̂

†
k and b̂k are operators of elementary

excitations and uk,vk are the standard Bogoliubov functions.
In the quasiparticle vacuum state, ñ and m̃ may be written as
ñ = ∑

k [v2
k + (u2

k + v2
k )Nk] and m̃ = −∑

k [ukvk(2Nk + 1)],
where Nk = [exp(εk/T ) − 1]−1 are occupation numbers for
the excitations. Utilizing the orthogonality and symmetry
conditions between the functions u and v, and using the fact
that 2N (x) + 1 = coth(x/2), we obtain [38]

Ik = (2ñk + 1)2 − 4|m̃k|2 = coth2

(
εk

2T

)
. (5)

For an ideal Bose gas where the anomalous density vanishes,
Ik = coth2(Ek/2T ) with Ek being the energy of the free
particle. At zero temperature, I → 1. In the trapped case,
the expression of I keeps the same form as Eq. (5) with
only replacing the excitation energy by the energy of the
system εk(x) which can be calculated using the semiclassical
approximation.

The reduced set of equations are then the coupled equations
(1) with ñ is replaced by the expression (4). This latter clearly
shows that m̃ is larger than ñ at zero temperature, so the
neglect of the anomalous density is a hazardous approximation.
Importantly, the expression of ñ not only makes the set (1) close
and enables us to reduce the number of equations making the
numerical simulation easier but also allows us to highlight
the role of the anomalous density in the dynamics and the
collective modes of the system.

Inserting Eq. (4) into set (1), one obtains

i�
∂

∂t
� =

[
− �

2

2m

∂2

∂x2
+ V + gcanc

+ 2g

(√
|m̃|2 + I

4
− I

2

)]
�, (6a)

i�
∂

∂t
m̃ = 4

[
− �

2

2m

∂2

∂x2
+ V + 2gnc + G

+ gac

(√
|m̃|2 + I

4
− I

2

)]
m̃, (6b)

where gac = 2(G + g). Remarkably, the coupled TDHFB
equations (6), which describe the dynamics of the condensate
and the anomalous density at finite temperature, are formally
similar to the two coupled time-dependent GP equations
describing the two-component BEC at zero temperature.

To compare our results with the experimental data and
previous theoretical treatments, it is useful to introduce the
effective dimensionless interaction parameter [9] instead of γ ′

γeff =
[

2

nTG(0)|a1D|
](

1 + m̃

nc

)
, (7)

where nTG = √
2Nmω/�/π is the analytical TG density in

the center of the trap. In what follows, we express lengths,
densities, and energies in units of the harmonic oscillator
length l0 = √

�/mω, l−1
0 , and �ω, respectively.

The static equations (1) or equivalently (6) and (7) can
be solved self-consistently using an appropriate numerical
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FIG. 1. Density profiles of the condensed (left) and anomalous
(right) components at different temperatures for N = 25 and γeff =
0.01. Solid lines: our predictions; dotted lines: HFBP results. Here
T 0

c = Td/ ln(2N ) [1] is the critical temperature for a 1D ideal Bose
gas.

scheme. In the left panel of Fig. 1 we compare our predictions
for the condensed density with the HFBP calculation of [13].
As is clearly seen, there is a definite shift between the two
approaches, notably at T = 0.4Tc. This can be attributed to
the presence of the anomalous correlations which reach their
maximum at intermediate temperatures, i.e., 0.4 � T/Tc �
0.6 (see the right panel of Fig. 1) [23,27]. Furthermore, it
is quite interesting to observe that the TDHFB predictions
become compatible with the HFBP results as the temperature
approaches zero or the transition due to the small contribution
of the anomalous density at these points. Note that at T = 0,
although the anomalous density is low, it is larger than the
noncondensed density [23–29]; this is also confirmed by our
formula (4). Whereas, in the ideal gas limit where T � Tc, m̃

vanishes [23,25,28,29] and hence the TDHFB and the HFBP
excellently agree with each other. We deduce that anomalous
fluctuations which arise from the interactions may reduce both
the condensed fraction and the critical temperature. In the TG
regime where γeff � 1, one can expect that the anomalous
density becomes significant.

III. COLLECTIVE MODES

The hydrodynamic equations of superfluids have been
already successfully employed to predict the collective fre-
quencies of trapped BECs. To study analytically the collective
oscillations, we write the condensate wave function and the
anomalous density of set (1) in the form [21,30,37]

�(x,t) =
√

nc(x,t) exp[iφ(x,t)],
(8)

m̃(x,t) = m̃(x,t) exp[iθ (x,t)],

where φ and θ are phases of the order parameter and the
anomalous density, respectively. They are real quantities,
related to the superfluid and pairing velocities, respectively,
as vc = (�/m)∇φ and va = (�/m)∇θ . By substituting expres-
sions (8) in Eqs. (1) and separating real and imaginary parts,
one gets the following set of hydrodynamic equations:

∂nc

∂t
+ ∇ · (ncvc) = 0, (9a)

∂|m̃|2
∂t

+ 4∇ · (|m̃|2va) = 0. (9b)
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Equations (9) represent equations of continuity expressing the
conservation of mass. On the other hand, Euler-like equations
read

m
∂vc

∂t
= −∇

[
− �

2

2m

�
√

nc√
nc

+ 1

2
mv2

c + V + gcanc

+ 2g

(√
|m̃|2 + I

4
− I

2

)]
, (10a)

m
∂va

∂t
= −4∇

[
− �

2

2m

�m̃

m̃
+ 1

2
mv2

a + V + 2gnc + G

+ gac

(√
|m̃|2 + I

4
− I

2

)]
, (10b)

where �
√

nc/
√

nc and �m̃/m̃ are quantum pressures associ-
ated with condensed and anomalous components, respectively.

A. Analytical results

For analytical tractability, let us assume that at very low
temperature, I → 1, ñ =

√
|m̃|2 + 1/4 − 1/2  m̃ [23–29].

We then consider small fluctuations of the condensed and
anomalous densities n̂c = nc(x) + δn̂c and ˆ̃m = m̃(x) + δ ˆ̃m,
where δn̂c/nc � 1 and δ ˆ̃m/m̃ � 1, and we linearize Eqs. (9)
and (10) with respect to δn̂c, δ ˆ̃m, ∇φ̂, and ∇ θ̂ around the
stationary solution.

The zero-order terms of these equations give

μc = − �
2

2m

�
√

nc√
nc

+ V + gcanc + 2gm̃, (11)

μa = 4

[
− �

2

2m

�m̃

m̃
+ V + gacm̃ + 2gnc + G

]
, (12)

where μa is the chemical potential associated with the
anomalous density.

The first-order terms provide equations for the density and
phase fluctuations:

�
∂

∂t

δn̂c√
nc

= [Lc + gcanc + 2gm̃]2
√

nc φ̂, (13a)

−2
√

nc �
∂φ̂

∂t
= [Lc + 3gcanc + 2gm̃]

δn̂c√
nc

+ 4g
√

ncδm̃,

(13b)

�

4

∂

∂t

δm̃

m̃
= [La + gacm̃ + 2gnc]θ̂ , (13c)

−�

4

∂ θ̂

∂t
= [La + 2gacm̃ + 2gnc]

δm̃

m̃
+ 2gδnc, (13d)

where Lc = −(�2/2m)� + V − μc and La = −(�2/2m)� +
V − μa + G. Expanding the density and the phase in the basis
of the excitations εj

φ̂(x) = −i

2
√

nc(x)

∑
j

[
f c+

j (x)e−iεj t/�b̂j − H.c.
]
, (14a)

θ̂ (x) = −i√
m̃(x)

∑
j

[
f a+

j (x)e−iεj t/�b̂j − H.c.
]
, (14b)

δn̂c(x) =
√

nc(x)
∑

j

[
f c−

j (x)e−iεj t/�b̂j + H.c.
]
, (14c)

δ ˆ̃m(x) =
√

m̃(x)
∑

j

[
f a−

j (x)e−iεj t/�b̂j + H.c.
]
, (14d)

where f ±
j = uj ± vj satisfy the normalization condition∫

dx[f +
j f −

j ′
∗ + f −

j f +
j ′

∗
] = 2δj,j ′ . After some algebra, we find

the generalized Bogoliubov-de Gennes (BdG) equations

εjf
c−
j (x) = [Lc + gcanc + 2gm̃]f c+

j (x), (15a)

εjf
c+
j (x) = [Lc + 3gcanc + 2gm̃]f c−

j (x)

+ 4g
√

m̃ ncf
a−
j (x), (15b)

εjf
a−
j (x) = 4[La + gacm̃ + 2gnc]f a+

j (x), (15c)

εjf
a+
j (x) = 4[La + 2gacm̃ + 2gnc]f a−

j (x)

+ 2g
√

m̃ ncf
c−
j (x). (15d)

Equations (15) form a complete set to calculate the ground state
and collective modes of the condensate and the anomalous state
at finite temperature.

In a homogeneous case where V (x) = 0, the spectrum
corresponding to the BdG equations (15) takes the following
form:

ε±2
k = εc

k
2 + εa

k
2

2
±

√(
εc
k

2 − εa
k

2)2

4
+ 32E2

kg
2ncm̃, (16)

where εc
k =

√
E2

k + 2gcancEk and εa
k = 4

√
E2

k + gacm̃Ek de-
note, respectively, the condensate and the anomalous density
Bogoliubov dispersions. In the long wavelength limit k → 0,
we have εi

k = �cik where ci (i = c; a) is the sound velocity
of the condensate and the anomalous component. The total
dispersion is phonon-like in this limit

ε±
k = �c±k, (17)

with sound velocities c± determined by

c±2 = 1

2

[
cc

2 + ca
2 ±

√(
cc

2 − ca
2
)2 + 128

g2

gca gac

c2
cc

2
a

]
.

(18)

For m̃/�2 ∈ [−1,(3−√
17)/4], we have g2 > gca gac and

hence, the spectrum (16) becomes unstable. In this situation
the condensate and the anomalous density spatially separate.

Now we turn to analyzing the behavior of the collective
oscillations of a harmonically trapped BEC. It is obvious
that at zero or very low temperatures, the anomalous fraction
constitutes the minority component and does not affect the
condensate, which is the majority component. The system in
this case behaves like a highly unbalanced Bose-Bose mixture
or a BEC-impurity mixture [30,35]. In the Thomas-Fermi (TF)
approximation, the hydrodynamic equations (11) and (12) take
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the algebraic form

nc = μc − mω2x2/2

gca

, (19)

m̃ = μ̄a − mω̄2x2/2

gac

, (20)

where μ̄a = μa(1/4 − 2αμc/μa), ω̄2 = ω2(1 − 2α), and α =
g/gca . In Eq. (20), we have omitted the term G/gac since its
contribution is negligible at temperatures tending to zero.

The condensate evidently behaves as being unique, and
its dispersion relation in the quasi-1D case can be obtained
by considering low-energy excitations (εj � /μc). Using the
TF equation (19) and substituting f c−

j from Eq. (15a) into
Eq. (15b), we then obtain an equation for f c+

j . The solution of
such an equation gives the frequencies εc

j = �ω
√

j (j + 1)/2
[5,8], where the quantum number j is an integer and depends
on the mode of interest. For the center-of-mass (dipole) mode
(j = 1), the condensate has simply εc = �ω, while for the
breathing mode (j = 2), εc = √

3�ω which well coincides
with collective modes of a purely BEC at zero temperature.

To calculate the collective modes of the anomalous fraction
which is the minority component, we suppose that for the
low frequency mode the spatial variation of the condensate
component is just a higher order correction, i.e., ∇δm̃ �
∇δnc. In this case the dispersion relation of m̃ takes the form

εa
j = 4�ω̄

√
j (j + 1)/2. (21)

The relation (21) shows that for all the repulsive coupling
constants the dynamics of the anomalous fraction is faster
in the presence of the condensate. Indeed, this is natural
since the anomalous density itself is related to the thermal
cloud which acquires higher energy. For the dipole and the
breathing modes, εa

j has, respectively, εa = 4�ω
√

1/2 − α

and εa = 4
√

3�ω
√

1/2 − α. An unexpected result is that the
dispersion of the anomalous fraction depends explicitly on the
interaction strength which is in disagreement with the above
spectrum of the condensate [5,8].

The wave functions associated with the anomalous compo-
nent can be given as

f a±
j (ya) =

(
j + 1/2

La
T F

)1/2[
μ̄a

εa
j

(
1 − y2

a

)]±1/2

Pj (ya), (22)

where Pj are Legendre polynomials, ya = x/La
T F , and La

T F =√
2μ̄a/mω̄2 is the TF size of the anomalous component.
Figure 2 depicts that the center of mass and the breathing

modes of the anomalous component decrease with increasing
α. From α > 0.5, εa

j vanishes since the anomalous density
disappears and thus the condensate survives alone as we have
foreseen above.

The mean-square fluctuations of the anomalous density is
defined at equal times as 〈[� ˆ̃m(y)]2〉 = 〈[δ ˆ̃m(y) − δ ˆ̃m(0)]2〉.
A straightforward calculation using Eqs. (14d) and (22) yields

〈[� ˆ̃m(ya)]2〉
m̃2(0)

=
∑

j

εa
j (j + 1/2)

μ̄aL
a
T F m̃(0)

[Pj (ya) − Pj (0)]2

× coth
(
εa
j /2T

)
, (23)
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FIG. 2. Center-of-mass (solid lines) and breathing (dashed lines)
modes of the anomalous component as a function of α.

where m̃(0) is the central density which can be computed via
Eq. (20). At low temperature, Eq. (23) becomes

〈[� ˆ̃m(ya)]2〉
m̃2(0)

= T

μ̄a

∑
j

2j + 1

La
T F m̃(0)

[Pj (ya) − Pj (0)]2. (24)

Equation (24) shows that the anomalous density fluctuations
are strongly suppressed at temperatures T � μ̄a . This con-
firms the existence of the anomalous density in a trapped
1D system as we anticipated in the Introduction. At higher
temperatures, the main contribution to the density fluctuations
(23) comes from quasiclassical excitations (j � 1). So,
the fluctuations are small: 〈[� ˆ̃m(y)]2〉/m̃2(0) ∼ 1/[m̃(0)ξa]
with ξa = �/

√
mm̃(0)gac being the correlation length of the

anomalous component.

B. Numerical simulations

In this section, we investigate more precisely the effects
of the anomalous density on the collective mode frequencies
of the condensate at finite temperature. To this end, we solve
numerically the full BdG equations which can be obtained
easily from Eqs. (1) and (4) and compare our findings
with existing previous analytical, numerical, and experimental
predictions.

Figure 3 depicts that the TDHFB excitation frequencies
slightly diverge from the generalized GP and the HFBP
predictions at T = 0. At intermediate temperatures, T =
0.4Tc, the discrepancy between the TDHFB and the HFBP
approaches becomes perceptible ∼4% at γeff = 0.1 owing to
the strong contribution of the anomalous fluctuations. We can
see also that the shift rises with rising γeff and is downward
in frequency. Note that this behavior holds also in a trapped
3D Bose gas [27]. In the same figure, we observe that as
the critical temperature is approached (T  Tc), the frequency
of the breathing mode increases until it reaches its ideal gas
value ε/�ω = 2, in good agreement with the recent theoretical
results of Ref. [13].
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FIG. 3. Breathing mode frequency as a function of γeff for N = 25
in the weakly interacting regime. Solid line: TDHFB predictions.
Dotted line: HFBP results. Squares: Generalized GP equation at T =
0 of Refs. [9,13].

In Fig. 4 we plot our predictions for the breathing mode
frequency as a function of N (a/a0)2 and compare the results
with the experimentally measured frequencies [16], Monte
carlo simulation points [11], and the local density approxima-
tion (LDA) [8]. For N (a/a0)2 � 100, our predictions are in
qualitative agreement with the Innsbruck experiment [16] and
Monte carlo simulation [11]. Whereas for large N (a/a0)2,
frequencies of both experimental and numerical data are
higher than our theory predicts. The TDHFB and the LDA
curves [8] agree for N (a/a0)2 < 1. This match proves that
the anomalous correlations have a minor role in the limit of
very weak interactions. Note that a recent finite-temperature
investigation within a variational approach has shown the
appearance of a broad minimum in the mode frequency, with
its position shifting to the strong regime when temperature
increases [12]. The present TDHFB theory is not applicable
beyond N (a/a0)2 > 100, and therefore the regime where the
broad temperature-dependent minimum in the mode frequency
occurs cannot be reproduced here.

Figure 5 displays the behavior of the breathing modes in
terms of the gas parameter γeff. It is clearly visible that the
curves of the TDHFB approach, MNLSE [9], and generalized

10 4 0.01 1 100 104
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3.8

4.

N a a0 2

Ω
2

FIG. 4. Breathing mode frequency as a function of interac-
tion strength N (a/a0)2 in logarithmic scale. Solid line: TDHFB
predictions. Dashed line: LDA results with N = 25 [8]. Filled
triangles: Monte carlo simulation with N = 25 [11]. Plus: Innsbruck
experiment [16].
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FIG. 5. Breathing mode frequency as a function of log10γeff. Solid
black line: TDHFB predictions. Blue dotted line: Generalized GP
equation [13]. Stars: MNLSE results [9]. Plus: Innsbruck experiment
[16].

GP equation [13] agree with each other, while all of these
theories cannot reproduce the experimentally measured mode
frequency [16] in the spectrum of the noninteracting regime.
A careful analysis of the same figure shows that our TDHFB
theory improves the previous theoretical treatments in the
region 0 < log10γeff � 1. This correction brings our theory
into qualitative concordance with Innsbruck experiment data
[16] in the weakly interacting regime. For γeff � 1 where
the system reaches the TG limit, the TDHFB theory fails to
capture it. A source of this discrepancy can be, as we have
stated above, the considerable effects of the anomalous density
which causes a huge loss of atoms during the oscillation even
at zero temperature.

IV. CONCLUSION

We have studied the finite-temperature collective modes
of a trapped atomic Bose gas in a quasi-1D geometry using
the TDHFB theory. This allows us to analyze the coupled
dynamics of the condensed and the anomalous components
which offers straightforward implications for interpretation of
recent experiments. We have presented detailed results for the
condensed and anomalous densities in terms of temperature.

Within the realm of the hydrodynamic approach, we
have derived analytical expressions for the spectrum of the
condensate and the anomalous components. Surprisingly, we
found that the dipole and the breathing modes of the anomalous
fraction are enhanced by increasing the intercomponent inter-
action. The density fluctuations of the anomalous component
corresponding to these modes has been found to be small at
temperatures T � μ̄a .

By fully self-consistent numerical calculation of the
TDHFB-BdG equations, we have determined the temperature
dependence of the excitations of the system. We have shown
that the presence of the anomalous correlations leads to shift
the calculated breathing mode frequency from those obtained
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by the HFBP approximation, in particular at intermediate
temperatures. The height of the shift increases as the effective
interaction parameter increases. At zero temperature, we have
compared our findings for the breathing mode frequency
with recent experimental data, Monte carlo simulations, and
previous theoretical predictions. Results show that although
TDHFB predictions, Monte carlo calculations, and previous
theoretical theories are in very good agreement with each
other, they conflict with measured values in the noninteracting
regime. In contrast, the TDHFB results slightly correct the
existing previous theoretical works in the mean-field regime,
making the theory in qualitative agreement with the recent
experiment [16], while it fails in the strongly interacting limit

due to the indispensable role of the anomalous correlations
which render the system highly correlated.

Clearly, further work, both experimental and theoretical,
will be required to solve this issue. One way of grafting the
desired corrections is to fully include the dynamics of higher-
order quantum fluctuations.
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[29] A. Boudjemâa, Phys. Rev. A 91, 053619 (2015).
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