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Bose-Einstein condensates and the spectrum of excitations in a two-dimensional channel
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The transverse spatial distribution of weakly interacting Bose gas in a narrow channel is found. The
corresponding analytical solution of the Gross-Pitaevskii equation has the form of a cnoidal wave. The possible
physical realization of the model is a system of cold atoms or quasiparticles, e.g., excitons, cavity photons, exciton
polaritons. The obtained formula is used for the numerical calculation of the spectrum of excitations and the
critical velocity of the condensate. These numerical results do not coincide with the Bogoliubov spectrum, and
we show that the strongly inhomogeneous condensate density leads to larger values of the critical velocity. We
also make numerical estimation of the critical velocity for various types of considered particles or quasiparticles.
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I. INTRODUCTION

Bose condensation of atoms and quasiparticles, such as
excitons [1,2], cavity photons [3,4], and exciton polaritons
[5–10], is one of the most popular objects of study in modern
physics due to the fundamental nature of the phenomenon
and great opportunities for various applications of it [11–20].
The Bose condensation of quasiparticles (excitons, cavity
photons, exciton polaritons) was experimentally obtained
in low-dimensional systems. The evidence for condensation
of excitons was reported in two-dimensional structure with
coupled quantum wells [21] and in a single quantum well
[22]. Several works were dedicated to the superfluid flowing
of Bose condensate along low-dimensional guiding structures
and similar devices [23–29]. A device, which is analogous to
a transistor, but based on flowing of the polariton condensate,
was suggested [30]. It was suggested to use the flowing
polariton condensate in a wide Y-shaped channel as an optical
switch [31]. The two-fluid polariton switch was investigated in
[32]. A polariton quantum gyroscope, based on the formation
of vortex pairs in the polariton condensate flowing in a
ring-shaped channel, was proposed in [33].

The majority of works use the mean-field approximation,
describing the possible states and behavior of the Bose-
Einstein condensate. In this work we present the exact
analytical solution, describing the ground state of the Bose
condensation in the two-dimensional guiding structure having
the form of a long, narrow channel. The structure under
consideration is close to the cigar-shaped one-dimensional
traps experimentally realized by Görlitz et al. [34] for the
condensates of cold atoms, though in our work the cylindrical
geometry of the trap is replaced by a rectangular one. The
trap of such a geometry (three-dimensional optical box) was
experimentally realized for atoms [35]. The solution, which
we found, stays valid at an arbitrary value of the interparticle
interaction parameter and width of the channel. The inhomo-
geneity of the spatial distribution of the condensate density
in the trap causes a dramatic rise of the critical velocity of
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the condensate in comparison with homogeneous distribution
of the condensate. Our results are universal for all types of
condensed particles and quasiparticles. We have chosen the gas
of rubidium atoms as an object of investigation for numerical
calculations, though the considered system can be realized
in other atomic gases, excitons, and exciton polaritons. The
atomic gas is chosen due to the fact that a lot of experimental
works devoted to the measurement of the critical velocity of
the condensate were realized in the condensates of atoms (for
example, in optical lattices of various dimensionality).

II. TRANSVERSE DENSITY SPATIAL DISTRIBUTION OF
THE CONDENSATE IN TWO-DIMENSIONAL CHANNEL

To solve the problem we first obtain the density distribution
function n(x,t) of the condensate. Here we suppose that the
density varies along x, which we direct across the channel,
and is uniform along y, directed along the channel. The density
distribution can be derived from the Gross-Pitaevskii equation:(

− �
2

2m
� + g n(x,t)

)
�(x,t) = i�

∂

∂t
�(x,t), (1)

where m is the effective mass of the particles, g is the interpar-
ticle interaction parameter, �(x,t) = √

n(x,t) exp [iS(x,t)] is
the wave function of the condensate, and S(x,t) is its phase.
We have the boundary conditions n(0) = n(L) = 0, where L

is the width of the channel. Substituting the formula for wave
function of the condensate into (1), we get the set of equations,
which reads
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n
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First, we consider the stationary solution of (2), so we suppose
S(x) to be constant and introduce ∂S

∂t
= −μ

�
, where μ is the

chemical potential. Then from (2) we get the equation
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Substituting ∂n
∂x

= p in (3), we get

−μ + gn + �
2

8mn2
p2 − �

2

4mn

∂p

∂x
= 0. (4)

Equation (4) does not contain the coordinate explicitly, so the
further algorithm of actions is standard: substituting Z = p2

2 ,
we transform Eq. (4) into first-order a differential equation:

dZ

dn
= 4mgn2

�2
+ Z

n
− 4mnμ

�2
. (5)

Solving Eq. (5) by the method of variation of constants, we
get Z:

Z = n

(
2mgn2

�2
− 4mnμ

�2
+ C

)
. (6)

Here C is the integrating constant. Making a transformation
from (Z,n) to (n,x) we obtain the following differential
equation:

dx = dn√
2n

( 2mgn2

�2 − 4mnμ

�2 + C
) . (7)

Factoring the denominator in (7) we get an equation that reads
√

2mg

�
dx = dn√

2n(n − γ −)(n − γ +)
, (8)

where
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g
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2gC

2m
. (9)

In order to integrate (8) we use the substitution n = γ − sin2(ϕ)
and get the elliptic integral of the first kind:

√
2mg

�
x =

∫ n
′

0

dn√
2n(n − γ −)(n − γ +)

=
√

2

γ +

∫ ϕ

0

dϕ√
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γ + sin2(ϕ)

=
√

2

γ + F

(
arcsin

(
n

γ −

)
,

√
γ −
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)
. (10)

The condensate density n can be found from Eq. (10) with the
help of Jacobi elliptic function sn(u,k), where u is the variable
of the elliptic function and k is the elliptic modulus:

n(x) = γ −sn2

(√
γ +mg

�2
x,

√
γ −

γ +

)
, (11)

where γ − > 0 and γ + > 0. This solution can be called a
stationary cnoidal wave. It is governed by three parameters:
γ −, γ +, and the interaction parameter g. The parameter γ −
obviously is an amplitude of the density spatial distribution.
γ + cannot be physically interpreted, but all three parameters
γ ± and g determine the period of the condensate wave
function. The values of the parameters can be determined via
the boundary conditions and the requirement of the density
distribution being normalized to the full number of particles
in the condensate.

FIG. 1. (a) The spatial distribution of normalized density of the
condensate in the channel for l = L/ξ = const. (b) The relationship
between the number of particles N per μm and the width of the
channel L for several values of l = L/ξ , corresponding to the
profiles of the density above. The graphs are provided for the atoms
of rubidium at g = 1,5 peV × μm2. Each line corresponds to the
constant values of l and constant density profile. Two dots on the
lines l1 and l2 in the graph (b) show the states used for further
numerical calculations. Grey regions show 3D and 1D regimes at
thickness of the trap d = 0,3 μm. The dark grey region in the upper
left corner corresponds to dense Bose gas, where Na3/(dL) > 1. The
scattering length, used for the calculations, is approximately 66 nm.
(c) Normalized density profiles for j = 1, j = 2, and j = 3 at one
and the same value of the chemical potential.

It follows from the boundary and the normalization condi-
tions that the solution must satisfy a set of equations

(γ − + γ +)ξ 2 = 2

�

N =
∫ L/ξ

0
γ −ξsn2

(√
γ +�ξ 2

2
η,

√
γ −

γ +

)
dη

L = 2j

√
2

γ +�
K

(√
γ −

γ +

)
. (12)

Here N is the number of particles per unit of length in
the condensate, K(k) is the complete elliptic integral of the
first kind, ξ = �√

2mμ
is the spatial scale, which coincides

with the healing length in a wide channel, where the spatial
distribution of the condensate is nearly homogeneous. � =
2mg

�2 ,η = x/ξ,j = 1,2,3 . . . is the number of solution and
j = 1 corresponds to the ground state of the condensate. N, L,
and � are related to the γ −, γ +, and g here.

A number of solutions may exist in the channel. They differ
from each other in their energy and their density profile. The
density spatial distribution for j = 1, j = 2, and j = 3 is
shown in Fig. 1(c).
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The system possesses an interesting inner symmetry, which
can be seen from the set (12): at different values of the chemical
potential and the width of the channel the density distribution
may have one and the same profile, if L/ξ stays constant and
the value of � is not changed (it can be tuned by Feshbach
resonance). As it is shown in Fig. 1, in an N − L diagram
these constant profiles correspond to hyperbolas. In Fig. 1(b)
there are several solid lines, depicting these hyperbolas in
logarithmic scale at fixed value of � for several values of L/ξ .
Corresponding density profiles are provided for each line in
Fig. 1(a).

Choosing L as a spatial scale, we are able to rewrite the set
(12) in the following way:

γ −′ + γ +′ = 2μ

�

N
′ =

∫ 1

0
γ −′

sn2

(√
γ +′

m�

�2
η,

√
γ −′

γ +′

)
dη

1 = 2j

√
�2

γ +′
m�

K

(√
γ −′

γ +′

)
, (13)

where γ ±′ = γ ±L2, � = g/L2, η = x/L, and N
′ = NL. If g

is constant, the only controlling parameter, which determines
the form of the density profile, is N

′
, as then parameters γ ±′

included into the density (11) can be easily calculated. It means
that in fact at constant g the density profile is determined by
the relation N

′ = N × L = const.
From the condition ξ > d, where d is the thickness of the

trap for atoms, or of the quantum well for quasiparticles, we
obtain the condition of low-dimensionality for our system:
N2D < �

2L
2mgd2 . Reducing the width of the channel L we are

able to proceed into the region of N − L diagram, where the
condensate demonstrates the properties of one-dimensional
Bose gas. The crossover happens, if ξ > L. The estimation
gives the following condition of one-dimensionality: N1D <

�
2

2mgL
. These inequalities define the borders of the region of

our interest, the numerical estimations of these borders are
shown in Fig. 1(b), where the regions of the three-dimensional
(3D) and 1D cases are grey. The borders of 3D and 1D regions
cross at L = d. We also take into account that the mean-field
approximation is correct only if the following inequality is
satisfied: N

dL
a3 < 1 (here a is the scattering length), which

means that the gas is not dense. The region of dense Bose
gas is shown in Fig. 1(b) in dark grey color. The condition is
written for 3D gas, as numerical calculation shows that in the
system under consideration this condition may be not satisfied
only for 3D Bose gas.

We avoid the consideration of the region of extremely low
density, as in this limit condensate transits into an asymptotic
regime, analogous to the Tonks-Girardeau regime in one
dimension, where interaction parameter g no longer depends
on the scattering length, but depends on the density [36–38].
The criterion for this transition is given by the inequality [17]

|ln(nd2)| >
√

2πd/a. (14)

According to (14) the critical density value for this transition is
determined primarily by the ratio of the axial thickness of the
trap d and the scattering length a. In the regime the correlation

between N,L,g and the profile of the condensate density is
much more complicated and such value of the average density
(less than 10−4 μm−2 for typical experimental values of a

for the atoms of rubidium) is of little practical use. In Bose
gas of excitons this regime may occur at larger values of the
density due to the larger typical values of the scattering length
for excitons than for atoms, so this type of particle should be
treated more carefully. But one should bear in mind that the
scattering length can be tuned to the lower values by Feshbach
resonance making Fig. 1(b) also correct for the excitons.

Now we analyze several extreme cases: the ideal Bose
gas, dilute weakly interacting Bose gas, and dense weakly
interacting Bose gas.

In the limit of ideal gas g → 0 and γ −
γ + → 0. Then from the

second equation of (12) we have μ = μ0 + δμ, where μ0 =
π2j 2

�
2

2mL2 . The expression for δμ provides us with the correlation
between the number of particles and the chemical potential:

δμ =
√

2gN/L. (15)

The density is

n(x) = 2N

L
sn2

(
πj

L
x,0

)
= 2N

L
sin2

(
πj

L
x

)
. (16)

Equation (1) is formally transformed into the Schrödinger
equation for one particle, while all the possible values of the
chemical potential μ0 are given by the spectrum of one-particle
states. The energy of the condensate is given by the formula

E =
∫ L

0

[
�

2

8mn

(
dn

dx

)2

+ g

2
n2

]
dx. (17)

Integrating (17), we get

E = Nμ0. (18)

In this limit solution (11) reminds one of the solution for a
square of the wave function of a particle in a potential box,
and the energy of the condensate equals the sum of energies of
separate particles μ0. The healing length is then transformed
into ξ0 = L

jπ
and for j = 1 associated with the half of the

wavelength λ/2 = πξ0.
It is also useful to find an approximate explicit relation

between γ ± parameters and the chemical potential. In the
limit of a small value of g we have

γ − = 4

√(
μ0

g
+

√
2N0

L

)[
4

(
μ0

g
+

√
2N0

L

)
+ 2N0

L

]

− 8μ0

g
− N0√

2L
, (19)

where N0 is the number of weakly interacting particles. This
expression turns into 2N0

L
at g = 0 for the ideal gas. γ + is equal

to 2μ

g
− γ −.

In the case of dilute Bose gas (N/L → 0) we have the
same expression for the chemical potential, but the formula
for γ − is different:

γ − = 2N

L
+ 25g

28μ0

N2

L2
. (20)
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FIG. 2. The relationship between the key parameters of the
system [γ ± (red and blue lines), number of particles per unit of
length N (green line)] and the chemical potential (expressed in peV)
at fixed L = 2μm and g = 1.5 peV × μm2 for atoms of rubidium.
The values of γ + (red line) and γ − (blue line) differ at small values
of μ and approach each other, as μ grows. Short thin curves depict
the approximate values of γ +

0 and γ −
0 , given by (20).

The numerical relation between γ −, γ +, and μ is given in
Fig. 2, as well as the approximate values of these parameters,
calculated via the expressions provided above for the dilute
Bose gas at constant value of the interaction parameter. As we
can see, these expressions are correct only in a small range of
values of the chemical potential. In the limit of dense Bose gas
N → ∞ we have

N = L
μ

g
− 2j�

g

√
μ

m
× tanh

(√
μm

�2
L

)
. (21)

We see that all of the states of condensate have one and the
same limit for chemical potential μ = gn, corresponding to
the local Thomas-Fermi density.

In the approximation of large values of the chemical
potential the following relation is found:

γ ± = μ

g

(
1 ± 8 × exp

[
−L

√
μm

j�

])
. (22)

If the chemical potential is large enough, the exponential term
quickly decreases, and the relation turns out to be also linear.

To obtain the formula for the energy of the dense condensate
in the channel we integrate (17) after several algebraic
transformations and series expansion of the first term of the
integral near the value of the modulus of the elliptic function√

γ −/γ + = 1. We also remark that the partial derivative of the
result μ = ∂E/∂N gives the first equation of the set (12) in
dimensional form. We substituted into the result of integrating
(21) and (22) and used the approximation of wide channel
L/ξ → ∞, expanding the obtained expression into the series.
The result of these transformations for the ground state of the
condensate is

E = 4

3
�n

√
gn

m
+ gn2

2
L − 2

√
2gn2ξ, (23)

where the first term is the energy of motionless soliton, the
second term is the energy of the uniform Bose condensate, and
the last term is the correction proportional to the healing length
ξ and the square of the density n. This correction reduces the
region of the uniform Bose condensate from the width of the
channel L by the size of the double healing length.

III. SPECTRUM OF EXCITATIONS AND THE CRITICAL
VELOCITY OF THE CONDENSATE

Now we can use the obtained n(x) to find the spectrum
of the excitations ε via solution of Bogoliubov–de Gennes
equations:

(
− �

2

2m
� − μ + 2gn(x)

)
u(r) + gn(x)v(r) = εu(r)

(24)(
− �

2

2m
� − μ + 2gn(x)

)
v(r) + gn(x)u(r) = −εv(r),

where r2 = x2 + y2, and u(r) and v(r) are Bogoliubov
coefficients. Here we see that condensate n(x) plays a role
of an effective external potential for functions u(r) and v(r).
The set (24) was solved numerically; the results for several
combinations of the controlling parameters N and L are shown
in Fig. 3. The results in the figure are given in dimensionless
units with energy scale of 10−12 eV and 10−6 m as spatial
scale. These numerical results are compared to the spectrum,
calculated via the Bogoliubov formula:

ε =
√

�2k2

2m

(
�2k2

2m
+ 2gn

)
. (25)

To calculate spectrum via (25) we use the average density
n = N/L. The result of such “formal” use of the formula
(25) is a rude effect of a gap in the spectrum of excitations.
The resulting spectra are shown in Fig. 3 by dashed lines.
We see that in the narrow system such straightforward use
of the formula (25) gives wrong result, though in a wide
channel the result is correct and the spectrum is gapless. The
valid spectrum, shown by the solid lines, has no gap and has
phononic shape in the region of small values of the longitudinal
momentum. The difference between the numerical results and
the results obtained via (25) is obviously explained by the
strong inhomogeneity of the condensate density in the narrow
channel, as formula (25) is correct only for the uniform
condensate. The dashed and solid lines, as ky (longitudinal
momentum) increase, approach each other and coincide at
large values of the longitudinal momentum, where the density-
dependent member does not play a crucial role. At low values
of N the spectrum is parabolic. As the number of particles and
density are increased, the spectrum becomes more linear in
the region of the small longitudinal momentum. The change
of the values of the interaction parameter g causes the same
effect.

The spectra of excitations for the excited states of the
condensate are always complex with positive imaginary part,
the examples of which are shown in the inset of Fig. 3. Here,
the diagram of Im(ε) looks like a bell, the height and width
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FIG. 3. Examples of the spectrum of excitations for the states of
the rubidium atoms, shown by the dots in Fig. 1(b) at g = 1.5 peV ×
μm2. The red line 1 shows the numerical results for the spectrum at
N = 7 μm−1 and L = 2 μm, the dark blue line 2 shows N = 1 μm−1

and L = 1 μm. The dashed red line 3 and dashed dark blue line 4
show the spectrum, calculated via the Bogoliubov formula, which
gives spectrum with a gap in the narrow channel. The spectra do
not coincide due to the heterogeneity of the condensate density. The
green lines j = 2 and j = 3 in the main diagram show the real parts
of the energy of excitations for the cases of the excited states of
the condensate with corresponding j . The numerical values used
in calculations are L = 1 and N = 1 for the excited state of the
condensate j = 2; L = 2 and N = 7 for the excited state of the
condensate with j = 3. The inset in the upper left corner shows
the corresponding imaginary parts, indicating the existence of an
instability for the excited states of the condensate. The energy ε and
the longitudinal momentum ky are given in dimensionless units.

of which grow as N and L are reduced. They are also larger
for the excited states of higher order (j = 3,4,5 and so on)
even at the same values of the controlling parameters. The
corresponding real parts Re(ε) are also provided in Fig. 3. It
shows that all the states except the ground state are unstable.

The obtained spectra allow us to calculate the critical
velocity using Landau criteria. The results for the critical
velocity are shown in Fig. 4 by solid lines. These results are
compared to the sound velocity cs = √

gn/m of a uniform
condensate, shown in Fig. 4 by dashed lines, as for a linear
spectrum the critical velocity and the sound velocity coincide.
Obviously, the critical velocity in our nonuniform system
increases faster than the sound velocity of a uniform Bose gas,
as we reduce the width of the channel due to the heterogeneity
of the spatial distribution of the density. In a wide channel these
parameters coincide, but the inhomogeneity leads to the sharp
increase of the critical velocity at small values of L, which
shows the advantage of 1- or 2-μm-wide channels as guiding
structures for the condensate. According to our results, at such
width of a channel it is possible to obtain atomic condensates
with critical velocity up to 8–12 mm/s, which is several times
larger than the critical velocity of 2D rubidium condensate
(0.5–1 mm/s in [39]), or rubidium condensate in 1D optical
lattice (up to 1.5 mm/s in [40]).

FIG. 4. (a) The relation between the critical velocity of the
condensate of rubidium atoms and the number of particles per unit
of length at constant width of the channel, expressed in μm. Here
L = 2 for the solid red line 2 and dashed red line 4 and L = 1 for the
solid dark blue line 1 and dashed dark blue line 3. (b) The relation
between the critical velocity of the condensate of rubidium atoms
and the width of the channel L at constant number of particles per
unit of length N , given in μm−1. Here N = 1 for the solid blue line
2 and dashed blue line 4 and N = 7 for the solid red line 1 and
dashed red line 3. The valid dependence is given by solid lines, and
the one calculated via the formula for the sound velocity is given by
the dashed lines. We see that at low values of L and at large values
of N the critical velocity increases faster than the sound velocity of a
uniform gas for the same values of the average density n.

We have also made an estimation of the critical velocity for
excitons and exciton polaritons for the same values of L and
N , shown by points (a) and (b) in Fig. 1(b). For numerical
estimation we have used g = 6 × 10−6 eV × μm2, which
approximately corresponds to the typical experimental results
for excitons and polaritons [41]. The value of critical velocity
for excitons in the channel for L = 1 μm and N = 1 μm−1

is v = 3.64 × 103 m/s and 5.46 × 103 m/s at L = 2 μm and
N = 7 μm−1. These values approximately correspond to the
value of the sound velocity of excitons in [25]. The value
of the critical velocity of polaritons at the same parameters
varies from 1.3 to 1.4 × 107 m/s vs 1.8 × 106 m/s in [31] or
approximately 4.5 × 106 m/s in [26].

IV. CONCLUSIONS

We have obtained the exact analytical expression for
the spatial density distribution of the condensate in a two-
dimensional narrow channel. In fact, the expression (11) and
set of equations (12) are valid not only for the ground state
of the condensate, but correctly describe the excited states,
characterized by the existence of an arbitrary number of
solitons in the density profile, as well. We also demonstrate
that these excited states are not stable. The spectrum of
excitations and the critical velocity have been calculated.
We have demonstrated that the results do not coincide with
the Bogoliubov spectrum. The solution which we provided
here can be applied to any Bose condensate, including atomic
condensates, condensates of excitons and exciton polaritons.
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