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Quantum critical behavior influenced by measurement backaction in ultracold gases
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Recent realizations of quantum gas microscopy offer the possibility of continuous monitoring of the dynamics
of a quantum many-body system at the single-particle level. By analyzing effective non-Hermitian Hamiltonians
for interacting bosons in an optical lattice and continuum, we demonstrate that the backaction of quantum
measurement shifts the quantum critical point and gives rise to a unique critical phase beyond the terrain of
the standard universality class. We perform mean-field and strong-coupling-expansion analyses and show that
non-Hermitian contributions shift the superfluid–Mott-insulator transition point. Using a low-energy effective
field theory, we discuss critical behavior of the one-dimensional interacting Bose gas subject to the measurement
backaction. We derive an exact ground state of the effective non-Hermitian Hamiltonian and find a unique critical
behavior beyond the Tomonaga-Luttinger liquid universality class. We propose experimental implementations
of postselections using a quantum gas microscope to simulate the non-Hermitian dynamics and argue that our
results can be investigated with current experimental techniques in ultracold atoms.
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I. INTRODUCTION

Quantum gas microscopy has revolutionalized our approach
to quantum many-body physics. A large number of atoms
trapped in an optical lattice can now be probed at the
single-atom level with the diffraction-limited spatial resolution
[1–9]. One can perform single-shot measurements of quantum
many-body systems at an unprecedented precision for studies
of strongly correlated systems [10–15]. While many-body
dynamical phenomena subject to measurement backaction
have been observed in ultracold atom experiments by using,
for example, a low-resolution imaging [16] or a cavity [17],
recent developments [18,19] in quantum gas microscopy
have opened up the possibility of continuous monitoring of
the many-body dynamics at the single-particle level [20].
Meanwhile, with such ultimate resolution, the measurement
backaction is expected to be significant. One would natu-
rally be led to the question of how the quantum critical
behavior is modified due to the backaction of high-precision
measurement.

Recently, unique dynamical aspects of many-body systems
under the measurement backaction have been studied in
various situations [21–27]. The measurement backaction can
be described as a sudden jump of a quantum state when the
signal is detected. In contrast, if the system is continuously
monitored and conditioned on a null-measurement outcome, it
obeys the dynamics described by a non-Hermitian Hamiltonian
[28–30]. For such continuously monitored systems, an exotic
steady-state transition has been found in the spin chain model
subject to spontaneous decay [31], and the atom-cavity system
in the quantum Zeno regime has been analyzed [32]. However,
it remains to be understood how the conventional notions of
quantum phase transitions and universality in quantum critical
phenomena can be extended in the presence of continuous
monitoring. Statistical mechanics would provide an answer,
were it not for the measurement backaction. The frontier of
quantum gas microscopy thus urges us to elucidate its influence
on the quantum criticality beyond the standard framework of
statistical mechanics.

In this paper, we investigate unique roles played by
the measurement backaction in quantum critical systems
subject to continuous observation. We employ an effective
non-Hermitian description and show that the influence of
measurement backaction on eigenenergies and eigenstates of
a system lead to significant changes in the quantum critical
points and critical exponents (Fig. 1). In particular, we derive
the formula that characterizes the measurement-induced shift
of a quantum critical point of the superfluid–Mott-insulator
transition. We also investigate influence of the measurement
backaction on the quantum critical phase in a one-dimensional
system, and analytically find new critical exponents that

FIG. 1. Schematic illustration of continuous observation of quan-
tum critical phenomena in ultracold atoms loaded in (a) an optical
lattice or (b) a one-dimensional trap. The measurement backaction
(a) expands the Mott lobe and shifts the quantum critical point,
and (b) gives rise to a unique critical behavior described by two
critical exponents Kφ , Kθ (solid curves) in sharp contrast with
the standard universality class described by the single Tomonaga-
Luttinger liquid parameter (dashed curve). Here μ, J , U , and ρ are
the chemical potential, the hopping amplitude, the strength of the
on-site interaction, and the filling fraction, respectively.
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depend on the strength of the measurement, indicating a unique
critical behavior beyond the terrain of the standard universality
class. The formulation can straightforwardly be generalized to
other physical systems subject to various types of external
observations.

This paper is organized as follows. In Sec. II, we introduce
an effective non-Hermitian Hamiltonian as a model to de-
scribe a quantum many-body system subject to measurement
backaction of continuous monitoring. In Sec. III, we consider
ultracold atoms trapped in an optical lattice and show that
measurement backaction shifts the superfluid–Mott-insulator
transition point. In Sec. IV, we consider critical behavior of a
one-dimensional interacting Bose gas subject to measurement
backaction and find a unique critical behavior beyond the
Tomonaga-Luttinger liquid universality class. In Sec. V,
we discuss experimental implementations of our models. In
Sec. VI, we conclude this paper.

II. EFFECTIVE NON-HERMITIAN HAMILTONIANS

We consider a quantum many-body system whose Hamil-
tonian Ĥ exhibits quantum critical behavior, and assume that
the system is subject to continuous backaction of a general
measurement characterized by a set of measurement operators
{M̂i}. Since our primary aim is to elucidate the influence
of the measurement backaction due to continuous obser-
vation, we consider the following effective non-Hermitian
Hamiltonian:

Ĥeff = Ĥ − iγ

2

∑
i

M̂
†
i M̂i , (1)

where the last term describes the measurement backaction
with γ characterizing the strength of the measurement. The
non-Hermitian Hamiltonian (1) can be obtained under a
situation in which the system is continuously monitored
and a null-measurement outcome is postselected [28–30].
We will discuss experimental conditions to realize such
postselection by using quantum gas microscopy in Sec. V.
The non-Hermitian description has proved instrumental for a
wide variety of open quantum systems [31–46]. The effective
Hamiltonian in Eq. (1), in general, has complex eigenvalues
whose real part describes the energy and imaginary part gives
the rate at which the corresponding eigenstate decays out of
the Hilbert space of the system.

Let us first consider a situation in which the many-body
Hamiltonian commutes with all the measurement operators,
i.e., [Ĥ ,M̂i] = 0 for ∀i. In this case, the second term in
Eq. (1) makes a contribution to the imaginary part of the
eigenspectrum, leading to the decay of the state; however, the
real parts of the eigenvalues and the corresponding eigenstates
remain unchanged. Therefore, there are no qualitative changes
in physical properties of the critical behavior. In contrast,
if the original Hamiltonian does not commute with some
of the measurement operators, i.e., there exists ∃i such that
[Ĥ ,M̂i] �= 0, then the measurement backaction can influence
(i) the real part of the eigenvalues and (ii) the eigenstates of
Eq. (1), which, respectively, lead to (i) the shift of the quantum
critical point and (ii) a change in the critical exponent as shown
below.

In the present paper, we focus our attention on the properties
of an effective ground state, which is defined as the eigenstate
corresponding to the lowest real part of the eigenspectrum.
Such a state is found to be relevant in the non-Hermitian
dynamics since it also has the minimal decay rate and thus
survives longest in the time evolution of the systems considered
in this paper. We also note that our model is different from
a dissipative model described by a master equation, where
one expects that the dissipative process eventually destroys
subtle correlations underlying the quantum critical behavior,
thereby leading to a high-temperature mixed steady state.
Indeed, recent works have suggested that such steady states
exhibit static properties similar to classical thermal equilibrium
systems [47–49] and infinite-temperature states [50,51]. In
contrast, we show that continuous observation can sustain the
quantum critical behavior and gives rise to unique phenomena
due to the measurement backaction.

III. MEASUREMENT-INDUCED SHIFT OF THE
QUANTUM CRITICAL POINT

A. Mean-field analysis

We first consider ultracold atoms in an optical lattice. The
system is described by the Bose-Hubbard Hamiltonian [52]:

ĤBH = Ĥ0 + V̂ , (2)

Ĥ0 = U

2

∑
i

n̂i(n̂i − 1) − μ
∑

i

n̂i , (3)

V̂ = −J
∑
〈i,j〉

(b̂†i b̂j + H.c.). (4)

Here J and U are the hopping amplitude and the strength of the
on-site interaction, respectively, μ is the chemical potential, b̂†i
and b̂i are the creation and annihilation operators of a boson at
site i, and n̂i ≡ b̂

†
i b̂i . If J � U , the ground state of the system

is in the gapped Mott insulator phase. With increasing J/U ,
the energy gap decreases and closes at a quantum critical point
(J/U )c, where the quantum phase transition to the superfluid
phase occurs [53]. The critical value (J/U )c corresponds to
the tip of the Mott lobe at an integer filling ρ in the μ − J

phase diagram as schematically illustrated in Fig. 1(a). For
simplicity, we focus on the case of ρ = 1 below.

Let us consider a general measurement process by introduc-
ing an effective non-Hermitian Hamiltonian Ĥeff in Eq. (1). An
implementation of postselection to simulate the non-Hermitian
dynamics depends on the underlying dynamical process. For
example, for a system subject to inelastic two-body loss of
atoms (M̂i = b̂2

i ), the postselection of null quantum jumps can
be realized with quantum gas microscopy and by selecting
those realizations in which the total number of particles in the
initial state agrees with that in the final state (see Sec. V for
details). The fidelity of such a process can be very high in
view of recent developments [1–12,18–20] in achieving the
near-unit fidelity of quantum gas microscopy as detailed in
Sec. V.

Unless all the operators M̂i commute with ĤBH, the
measurement backaction shifts the real parts of eigenenergies.
Such a measurement-induced shift in the eigenspectrum
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manifests itself as a shift in the quantum critical point. To
show this, let us first perform a mean-field analysis [52].
Putting b̂i = β + δb̂i in the hopping term V̂ and neglecting the
second-order terms in δb̂i , we obtain the decoupled effective
Hamiltonian Ĥ MF

eff = V̂ MF + Ĥ0 − (iγ /2)
∑

i M̂
†
i M̂i , where

V̂ MF ≡ −Jz
∑

i(β
∗b̂i + βb̂

†
i − |β|2). The effective ground-

state energy Eβ,γ is given by the real part of the eigen-
value of the ground state of Ĥ MF

eff , and it can be expanded
as Eβ,γ = a0 + a2(γ )|β|2 + a4(γ )|β|4 + · · · . The coefficient
a2(γ ) is determined from the second-order perturbation in
V̂ MF for the Mott insulator state, and the phase boundary
(J/U )γ is determined from the condition a2(γ ) = 0. The
critical point (J/U )c,γ corresponding to the tip of the Mott
lobe can be determined from ∂(J/U )γ /∂μ = 0 under the
condition ∂2(J/U )γ /∂μ2 < 0. The relative amount of the
measurement-induced shift of the quantum critical point
	c,γ ≡ ((J/U )c,γ − (J/U )c,0)/(J/U )c,0 is then found to be

	c,γ = 2 + √
2

2

(√
2c2

M,0 + c2
M,1

)( γ

U

)2

+ 5

16
(4 + 3

√
2)

(
2c2

M,0 − c2
M,1

)2
( γ

U

)4

+O

(( γ

U

)6
)

. (5)

Here we introduce the coefficients cM,ρ ≡ (〈ρ + 1|M̂†M̂|ρ +
1〉 − 〈ρ|M̂†M̂|ρ〉)/2, where the site index i is omitted (for
example, cM,ρ = ρ for M̂ = b̂2). Equation (5) shows that, for
a general measurement, the quantum critical point shifts in
favor of the Mott phase due to the measurement backaction.
Physically, this is due to the suppression of the hopping by
the continuous quantum Zeno effect [54–59], although we
here focus on the influence of a relatively small measurement
strength. The quantum phase transition discussed here is
different from the one in Ref. [31], where the steady-state
transition occurs at which the gap in the imaginary part of
the eigenenergies closes. We note that the ground state dis-
cussed here survives longest in the non-Hermitian dynamics,
as demonstrated by the strong-coupling expansion analysis
below. Thus, our mean-field analysis can be applied if a
duration of the time evolution is long enough so that the initial
state relaxes to the effective ground state.

While the mean-field analysis may not give an accurate
value of the transition point (J/U )c,γ [60], we expect that
the normalized relative shift 	c,γ should capture the right
tendency of the measurement-induced shift. In particular, the
perturbative formula (5) should be valid for small γ /U , as
numerically supported in Fig. 2. We here perform the exact
diagonalization of the non-Hermitian Hamiltonian with the
infinite-range hopping of amplitude J/N among N sites.
The critical point is determined by first identifying the point
at which the energy gap above the effective ground state
becomes minimal and then by extrapolating the data to the
thermodynamic limit. The numerical results asymptotically
agree with Eq. (5) for small γ /U .

FIG. 2. Measurement-induced shift 	c,γ of the quantum critical
point plotted against the strength γ /U of the parity measurement
(cM,ρ = ρ). The blue solid curve shows the perturbative mean-field
result in Eq. (5), and the dots show the numerical results obtained by
the exact diagonalization of the effective Hamiltonian (see the text).

B. Strong-coupling-expansion analysis

Near integer values of μ/U in the μ − J phase diagram
[Fig. 1(a)], fluctuations in the atom density are enhanced,
so that we need to consider a statistical mixture of Mott
states with different fillings. To investigate these regimes, we
perform the strong-coupling-expansion analysis [61,62] that
gives asymptotically exact results for small J/U .

Let us consider a d-dimensional hypercubic lattice and
analyze the Mott lobes with integer filling ρ = 1,2, . . .. For
the unperturbed effective Hamiltonian,

Ĥ0 = U

2

∑
i

n̂i(n̂i − 1) − μ
∑

i

n̂i − iγ

2

∑
i

M̂
†
i M̂i , (6)

the ground state with the lowest real energy remains to be the
Mott state with ρ bosons on each site for (ρ − 1)U < μ < ρU .
The first excited states near the upper phase boundary (μ �
ρU ) constitute a family of degenerate states in which only a
single site is occupied by (ρ + 1) particles and all the other
sites are occupied by ρ particles. In contrast, near the lower
phase boundary (μ � (ρ − 1)U ), the first excited states consist
of degenerate states in which only a single site is occupied
by (ρ − 1) particles and all the other sites are occupied by
ρ particles. We apply a degenerate perturbation theory [62]
to the ground and first excited states up to second order in
the hopping term V̂ = −J

∑
〈i,j〉 (â†

i âj + H.c.), and calculate
their complex eigenvalues. Here, we take into account all
possible processes in which a state in the low-energy manifold
is virtually excited to a high-energy state, and then returns
to the manifold by the operations of V̂ ; see Figs. 3(a)
and 3(b). The real parts of the obtained eigenvalues are
interpreted as the effective energies of the states. Then, the
energy gaps, which are defined as the differences in real
energies between the ground state and the first excited states,
are calculated to be

	
Up
d,ρ = −2d(ρ + 1)J + ρU − μ

− 2dρ(ρ + 1)(2d − 3)J 2

U + (γ 2/U )(cM,ρ−1 − cM,ρ)2

− dρ(ρ + 2)J 2

U + (γ 2/4U )(cM,ρ−1 − cM,ρ+1)2
, (7)
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FIG. 3. Virtual processes relevant to the second-order strong-
coupling-expansion analysis of a one-dimensional ρ = 1 Mott phase,
contributing to the (a) diagonal and (b) off-diagonal matrix elements.
The filled circles indicate particles that occupy the lattice sites. The
dashed circles indicate holes, from where particles move out due
to hopping processes. (c) Coefficients α

Up,Low
d,ρ,γ for the upper (blue)

and lower (red) boundaries of the Mott lobe plotted against the
measurement strength γ /U for the case of the parity measurement
(cM,ρ = ρ) with d = 3 and ρ = 1.

	Low
d,ρ = −2dρJ − (ρ − 1)U + μ

− 2dρ(ρ + 1)(2d − 3)J 2

U + (γ 2/U )(cM,ρ−1 − cM,ρ)2

− d(ρ − 1)(ρ + 1)J 2

U + (γ 2/4U )(cM,ρ−1 − cM,ρ+1)2
, (8)

where 	Up and 	Low denote the energy gaps near the upper
and lower boundaries of the Mott lobe. The phase boundary
of the Mott phase can be identified as the point at which the
energy gap closes:

( μ

U

)Up

c,γ
− ρ = −2d(ρ + 1)

J

U
− α

Up
d,ρ,γ

(
J

U

)2

, (9)

( μ

U

)Low

c,γ
− (ρ − 1) = 2dρ

J

U
+ αLow

d,ρ,γ

(
J

U

)2

, (10)

where the coefficients α
Up,Low
d,ρ,γ are given by

α
Up
d,ρ,γ = 2dρ(ρ + 1)(2d − 3)

1 + (γ /U )2(cM,ρ−1 − cM,ρ)2

+ dρ(ρ + 2)

1 + (γ /2U )2(cM,ρ−1 − cM,ρ+1)2
, (11)

αLow
d,ρ,γ = 2dρ(ρ + 1)(2d − 3)

1 + (γ /U )2(cM,ρ−1 − cM,ρ)2

+ d(ρ − 1)(ρ + 1)

1 + (γ /2U )2(cM,ρ−1 − cM,ρ+1)2
. (12)

The presence of the backaction γ > 0 decreases these co-
efficients α [see Fig. 3(c)], allowing an effective expansion
of the Mott lobe as indicated in Eqs. (9) and (10), and as
schematically illustrated in Fig. 1(a). We note that our results
reproduce the known results [61] in the limit of γ → 0.

Finally, we note that the ground state, i.e., the eigenstate
that has the lowest real part of the eigenvalue, has the minimal
decay rate (the longest lifetime) in the postselected dynamics.

For the sake of concreteness, let us assume ρ = 1, d = 3 and
let �e and �g be the decay rate of the first excited state and
that of the ground state. We note that the decay rate is equal
to the modulus of the imaginary part of the eigenvalue in our
notation. Then, the strong-coupling-expansion analysis gives

�Up
e − �Up

g = 36γ J 2

U 2 + γ 2(cM,ρ−1 − cM,ρ)2

+ 9γ J 2

U 2 + (γ 2/4)(cM,ρ−1 − cM,ρ+1)2
> 0,

(13)

�Low
e − �Low

g = 36γ J 2

U 2 + γ 2(cM,ρ−1 − cM,ρ)2
> 0, (14)

which show that the decay occurs faster for the excited state
than the ground state. Here �Up and �Low denote the decay
rate calculated near the upper and lower boundaries of the
Mott lobe, respectively. We can straightforwardly generalize
the calculations to the higher excited states and show that the
ground state considered here indeed has the minimal decay
rate or the longest lifetime among all the eigenstates of the
effective non-Hermitian Hamiltonian.

IV. INFLUENCE ON THE CRITICAL BEHAVIOR

A. Model

Let us now discuss a physical consequence of the mea-
surement backaction on eigenstates in a quantum critical
regime. To be specific, we consider a one-dimensional (1D)
interacting Bose gas [Fig. 1(b)] described by the Lieb-Liniger
Hamiltonian:

Ĥ =
∫

dx

[−�
2

2m
�̂†(x)

∂2

∂x2
�̂(x)+g

2
�̂†(x)�̂†(x)�̂(x)�̂(x)

]
,

(15)

where �̂(x) is the bosonic field operator and m is the atomic
mass. The repulsive interaction strength g > 0 is given by
g = 2�ωar , where ω is the transverse confining frequency,
and ar is the elastic scattering length. The low-energy
critical behavior of this system is effectively described by the
Tomonaga-Luttinger liquid (TLL) Hamiltonian [63]: ĤTLL =∫

dx�/(2π )[vJ (∂xθ̂)2 + vN (∂xφ̂)2], where the bosonic fields
θ̂ and φ̂ satisfy [∂xφ̂(x),θ̂ (x ′)] = iπδ(x − x ′), vJ is the
phase stiffness, and vN is the density stiffness. Here θ̂ is
related to the phase of the bosonic field operator as �̂†(x) =√

ρ̂(x)e−iθ̂ (x), and φ̂ is related to the density operator ρ̂(x)
as ρ̂(x) � [ρ0 + ∂xφ̂(x)/π ]

∑∞
p=−∞ e2ip(πρ0x+φ̂(x)), where ρ0

is the average density. In the TLL, various correlation functions
decay algebraically with exponents determined by the single
TLL parameter K = √

vJ /vN . In the Lieb-Liniger model, the
Galilean invariance ensures the relation vJ = �πρ0/m [64],
and vN takes the following asymptotic forms [65,66]:

vN =
{

vJ u

π2

(
1 −

√
u

2π

)
for u � 1;

vJ

(
1 − 8

u
+ O

(
1
u2

))
for u � 1,

(16)

where u ≡ mg/(�2ρ0) is the normalized strength of the
interaction.
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Let us discuss how the measurement backaction alters the
Hamiltonian of the system. For the sake of concreteness,
we consider a system subject to inelastic two-body loss
of atoms. In such a situation, the backaction gives a non-
Hermitian contribution to the interaction term, leading to
the replacement g → g − iγ in Eq. (15), where γ = 2�ωai

characterizes the measurement strength determined from the
inelastic scattering length ai [59,67]. Accordingly, as inferred
from the analytic continuation of Eq. (16), the measurement
backaction renormalizes the density stiffness vN to a complex
value ṽN (γ )e−iδγ , where ṽN and δγ are the real parameters that
depend on the measurement strength γ . We thus arrive at the
following effective non-Hermitian Hamiltonian:

Ĥeff = �

2π

∫ ∞

−∞
dx[vJ (∂xθ̂ )2 + ṽNe−iδγ (∂xφ̂)2]. (17)

To analyze the Hamiltonian (17), we first perform the
mode expansions and reduce the problem to that of complex
harmonic potentials [68,69]. We then analytically obtain the
exact effective ground state |�g,γ 〉 and show that it has
the lowest real part of the eigenenergy and the longest lifetime
among all the eigenstates. This indicates that the effective
ground state survives longest in the postselected dynamics. In
the limit of γ → 0, |�g,γ 〉 reduces to the ordinary ground state
of the TLL model [70]. Finally, we calculate the correlation
functions of |�g,γ 〉 and show that a unique critical behavior
emerges as a consequence of the measurement backaction.

B. Ground-state wave function

We here obtain the ground state and the spectrum of the
effective non-Hermitian TLL Hamiltonian (17). We assume
0 � δγ < π/2 so that there exists a metastable ground state
(see the discussion below). We perform the mode expansions
of the fields φ̂(x) and θ̂(x):

φ̂(x) = −
∑
k �=0

i · sgn(k)

√
πK̃γ

2L|k|e
−α|k|/2−ikx(b̂†k + b̂−k), (18)

θ̂ (x) =
∑
k �=0

i

√
π

2K̃γ L|k|e
−α|k|/2−ikx(b̂†k − b̂−k), (19)

where L is the system size, K̃γ is the renormalized TLL
parameter K̃γ ≡ √

vJ /ṽN , b̂k (b̂†k) annihilates (creates) a mode
with momentum k = 2πm/L (m = ±1,±2, . . .), α → +0 is
a short-distance cutoff, and we ignore zero modes which are
irrelevant to the following discussion about the ground state.
The effective Hamiltonian (17) is then rewritten as

Ĥeff = �ṽ

4

∑
k �=0

|k|(b̂†kb̂−k)

(
e−iδγ + 1 e−iδγ − 1
e−iδγ − 1 e−iδγ + 1

)(
b̂k

b̂
†
−k

)

= �ṽ
∑
k>0

k

[
e−iδγ + 1

2
(b̂†kb̂k + b̂

†
−kb̂−k)

+ e−iδγ − 1

2
(b̂kb̂−k + b̂

†
kb̂

†
−k)

]
, (20)

where ṽ ≡ √
vJ ṽN . In analogy with a quantized harmonic

oscillator, we introduce the position and momentum operators
x̂k and p̂k via

b̂k = x̂k + ip̂k√
2

, (21)

b̂
†
k = x̂k − ip̂k√

2
, (22)

and use them to rewrite Eq. (20) as

Ĥeff = �ṽ
∑
k>0

k

[
e−iδγ + 1

4

(
x̂2

k + p̂2
k + x̂2

−k + p̂2
−k

)

+ e−iδγ − 1

2
(x̂kx̂−k − p̂kp̂−k)

]
. (23)

We further introduce the center-of-mass and relative coordi-
nates and momenta of the modes with ±k, x̂k,±, and p̂k,± via

x̂k = x̂k,+ + x̂k,−√
2

, x̂−k = x̂k,+ − x̂k,−√
2

, (24)

p̂k = p̂k,+ + p̂k,−√
2

, p̂−k = p̂k,+ − p̂k,−√
2

, (25)

where k is a positive discrete momentum, i.e., k = 2πm/L

with m = 1,2, . . .. Substituting Eqs. (24) and (25) into
Eq. (23), we arrive at the following Hamiltonian:

Ĥeff = �ṽ
∑
k>0

k

(
e−iδγ

2
x̂2

k,+ + 1

2
p̂2

k,+ + 1

2
x̂2

k,− + e−iδγ

2
p̂2

k,−

)
.

(26)

The problem thus reduces to solving a set of non-Hermitian
harmonic oscillators [68,69]. We choose the basis in which the
operators x̂k,+ and p̂k,− are diagonalized so that the field φ̂(x)
is also diagonalized as shown below. The metastable ground
state |�g,γ 〉 with the lowest eigenenergy can then be obtained
as

〈{xk,+,pk,−}|�g,γ 〉 ∝ exp

[
−e−iδγ /2

2

∑
k>0

(
x2

k,+ + p2
k,−

)]
,

(27)

which is a generalization of the ground-state wave function of
a TLL [70] to a non-Hermitian case. The eigenvalues can be
obtained as

�ṽe−iδγ /2
∑
k>0

k(nk,+ + nk,− + 1), (28)

where nk,± are nonnegative integers labeling the eigenstates of
the modes (k,±). Since we assume 0 � δγ < π/2, the energies
are bounded from below and the ground-state wave function
can be normalized. We note that, while the wave function
(27) remains normalizable for π/2 � δγ < π , it can be shown
that the full spectrum including the zero-mode contributions
is no longer bounded from below in this regime. The negative
imaginary part of eigenvalues found in Eq. (28) indicates a
finite lifetime of the eigenstate. We note that the ground state
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(nk,± = 0) has the lowest energy and the minimal imaginary
part; thus, the ground state has the longest lifetime among
all the eigenstates. Thus, the ground state discussed here has
a clear dynamical meaning—it survives the longest in the
postselected dynamics.

We note that if δγ � π , the energies are not bounded from
below and there are no eigenstates having discrete eigenvalues
because the wave function cannot be normalized [see Eq. (27)].
The system is therefore dynamically unstable, and there is no
metastable ground state for δγ � π .

C. Correlation function of the φ̂ field

We first consider the correlation function 〈e2iφ̂(x)e−2iφ̂(y)〉,
where 〈· · · 〉 denotes the expectation value with respect to
|�g,γ 〉. By performing the transformations described above,
the mode expansion of the field φ̂(x) can be rewritten as

φ̂(x) = i
∑
k>0

√
πK̃γ

2Lk
[(x̂k,+ + ip̂k,−)eikx

−(x̂k,+ − ip̂k,−)e−ikx]. (29)

Let |{φk}〉 be a simultaneous eigenstate of φ̂(x) (0 � x < L)
satisfying

φ̂(x)|{φk}〉 = φ(x)|{φk}〉, (30)

φ(x) =
√

π

L

∑
k>0

(φke
ikx + φ∗

k e
−ikx), (31)

where φk is related to the eigenvalues of the operators x̂k,+ and
p̂k,− via

i(xk,+ + ipk,−) =
√

2k

K̃γ

φk. (32)

The ground state in Eq. (27) can then be expressed as

〈{φk}|�g,γ 〉 = 1√
N

exp

(
−e−iδγ /2

K̃γ

∑
k>0

k|φk|2
)

, (33)

where N is a normalization constant. The correlation function
can be expressed as

〈e2iφ̂(x)e−2iφ̂(y)〉

= 1

N

∫
DφDφ∗ exp

{∑
k>0

[
−2k cos(δγ /2)

K̃γ

|φk|2

+ 2i

√
π

L
φk(eikx − eiky) + 2i

√
π

L
φ∗

k (e−ikx − e−iky)

]}
.

(34)

After performing the Gaussian integrations, we obtain

〈e2iφ̂(x)e−2iφ̂(y)〉

= exp

[
− K̃γ

cos(δγ /2)

∑
k>0

k1

k
(2 − eikr − e−ikr )

]
, (35)

where we define k1 ≡ 2π/L and r ≡ x − y. Here, the summa-
tion over k > 0 can be performed with a regularization trick:∑
k>0

k1e
−αk

k
(2 − eikr − e−ikr ) → −2 ln

(
αk1

2 sin(k1r/2)

)
, (36)

where we take the limit of αk1 � 1. We thus obtain the critical
behavior of the correlation function as

〈e2iφ̂(x)e−2iφ̂(y)〉 =
(

α

(L/π ) sin (πr/L)

) 2K̃γ

cos(δγ /2)

→
(α

r

)2Kφ

,

(37)

where we take the limit of L � r and introduce the critical
exponent Kφ by

Kφ(γ ) = K̃γ

cos
( δγ

2

) . (38)

D. Correlation function of the θ̂ field

Let us next consider the correlation function 〈eiθ̂ (x)e−iθ̂ (y)〉.
Since the operator θ̂ can be expanded as

θ̂(x) = −i
∑
k>0

√
π

2K̃γ Lk
[ip̂k,+(eikx + e−ikx) + x̂k,−(eikx − e−ikx)], (39)

it acts on an eigenstate of the operators x̂k,+ and p̂k,− as

eiθ̂ (x)|{xk,+,pk,−}〉 =
∣∣∣∣
{
xk,+ − i

√
π

2K̃γ Lk
(eikx + e−ikx),pk,− +

√
π

2K̃γ Lk
(eikx − e−ikx)

}〉
. (40)

Using Eq. (32), we can rewrite this as

eiθ̂ (x)|{φk}〉 =
∣∣∣∣
{
φk − i

k

√
π

L
e−ikx

}〉
. (41)

Using this result, we can express the correlation function as

〈ei ˆθ(x)e−iθ̂ (y)〉 = 1

N

∫
DφDφ∗ exp

[
− 1

K̃γ

∑
k>0

k

(
eiδγ

∣∣∣φk − i

k

√
π

L
e−ikx

∣∣∣2
+ e−iδγ

∣∣∣φk − i

k

√
π

L
e−iky

∣∣∣2
)]

. (42)
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FIG. 4. Measurement-induced shifts of the critical exponents.
The effective TLL parameters Kφ (red solid curve) and Kθ (blue
dashed curve) are plotted against the ratio of the inelastic scattering
length ai to the elastic one ar for the normalized strength of the
interaction [see below Eq. (16)] u = 0.01 and 10.0 in (a) and (b),
respectively.

After performing the Gaussian integrations, we obtain

〈ei ˆθ(x)e−iθ̂ (y)〉

= exp

[
− π

2K̃γ L cos(δγ /2)

∑
k>0

1

k
(2 − eikr − e−ikr )

]

(43)

=
(

α

(L/π ) sin (πr/L)

) 1
2K̃γ cos(δγ /2)

→
(α

r

)1/(2Kθ )
, (44)

where we take the limit of L � r and define the critical
exponent Kθ by

Kθ (γ ) = K̃γ cos

(
δγ

2

)
. (45)

E. Shifts in the critical exponents due to
measurement backaction

Let us discuss the critical properties of the effective ground
state |�g,γ 〉. Physically, the effective TLL parameters Kθ,φ

introduced by Eqs. (45) and (38) describe the critical behaviors
of the one-particle correlation and the density correlation,
respectively:

〈�̂†(r)�̂(0)〉 ∝
(

1

r

)1/(2Kθ )

, (46)

〈ρ̂(r)ρ̂(0)〉 − ρ2
0 = − Kφ

2π2r2
+ const × cos(2πρ0r)

r2Kφ
. (47)

The two distinct characteristic parameters Kθ and Kφ mark
a unique critical behavior beyond the realm of the standard
TLL universality class—in the latter, the single TLL parameter
K governs the critical properties. We note that Kθ can be
measured by interfering Bose gases [71,72], while Kφ can be
found by analyzing in situ density fluctuations [73].

Figure 4 shows the shifts of the critical exponents Kφ,θ

as functions of the normalized measurement strength γ /g =
ai/ar . Here we consider both cases of weak and strong
interactions and perform the analytic continuation of the corre-

sponding asymptotic expressions (16) through the replacement
g → g − iγ to relate the measurement strength γ to the
renormalized parameters ṽN and δγ . The decrease in Kφ,θ can
be interpreted as an effective enhancement of the interaction
strength due to the contribution to its imaginary part from
the measurement backaction. Physically, such an enhanced
interaction arises from the increased repulsion between atoms
due to the continuous quantum Zeno effect [54,55]. The split
between the two characteristic parameters Kφ,θ arises from
the additional degree of freedom δγ in the parameter space of
the effective Hamiltonian in Eq. (17) and is a manifestation
of the non-Hermiticity of the underlying model. This unique
feature indicates a dramatic departure from the conventional
TLL behavior due to the measurement backaction. These
findings should also be relevant to various 1D critical systems
in addition to 1D Bose gas owing to the universality of the
effective Hamiltonian (17). A change in the critical exponent in
the non-Hermitian system can also be found in the steady-state
transition [31], while its universality as critical phenomena
remains to be understood.

V. EXPERIMENTAL IMPLEMENTATIONS

Here we discuss how we can implement postselection
processes to simulate the non-Hermitian dynamics in ultracold
atoms. We propose the following two schemes: (A) use of
a system subject to an inelastic two-body loss of atoms
combined with the atom-number measurement with quantum
gas microscopy to postselect the realizations in which no
quantum jumps (atomic losses) occur, and (B) irradiation of an
off-resonant light combined with continuous monitoring of the
scattered photons. We also estimate experimental parameters
for each proposal.

A. Postselection by the atom-number measurement with
quantum gas microscopy

We consider atomic systems accompanying an inelastic
scattering process leading to a two-body loss of atoms. We first
prepare a desired initial state of atoms trapped in an optical
lattice. The current techniques can now prepare an arbitrary
configuration of atoms with an accurate estimated total number
of particles at the single-particle level [13]. A possible loss of
atoms during the preparation can be circumvented by loading
atoms in a stable state and then transferring them into a
metastable state subject to an inelastic scattering process. We
then let the system evolve in time; if an inelastic scattering
between two atoms occurs during the time evolution, then
a pair of atoms are lost from an optical potential because
colliding atoms acquire a much larger amount of the kinetic
energy than the potential energy [Fig. 5(a)]. Thus, such a
process can effectively be described by the operator M̂i = b̂2

i .
Then, after some duration time, we perform a projection

measurement of site-occupation numbers by using quantum
gas microscopy [18]. We compare the total number of particles
in the final state with that in the initial state, and postselect the
realizations in which the two numbers agree [Fig. 5(a)]. [If
they disagree, quantum jumps due to two-body loss should
have occurred and the time evolution of the system cannot be
described by the non-Hermitian Hamiltonian (1).] In this way,
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FIG. 5. Schematic figures illustrating the methods to implement the postselection processes and simulate the non-Hermitian dynamics in
which the system undergoes (a) inelastic two-body loss and (b) continuous monitoring of off-resonantly scattered photons. In (a), we first
prepare an initial state with a well-estimated total particle number, and let the system evolve in time. If an inelastic scattering process occurs
during the time evolution, this leads to a loss of pairs of atoms. At the final stage, we perform the projective measurement with quantum gas
microscopy and postselect the realizations in which no losses of atoms occur. In (b), after preparing an initial state, we let the system evolve in
time and simultaneously probe the system by irradiating an off-resonant light on the system and continuously monitor the scattered photons.
Then, after a duration of time T , we postselect the realizations in which no scattered photons are observed.

we can simulate the dynamics governed by the effective non-
Hermitian Hamiltonian. Here the system can be interpreted as
being subject to the continuous measurement backaction from
an environment that causes the two-body losses of atoms. The
measurement strength γ can be determined by conducting
experiments without performing postselections and measuring
the loss rate of atoms.

B. Postselection by continuous monitoring of off-resonantly
scattered photons

In this scheme, we use an off-resonant probe light
and continuously monitor the scattered photons [Fig. 5(b)].
Specifically, we proceed as follows. First, we prepare an initial
state, and then shine an off-resonant probe light on the system.
In this measurement process, light-induced inelastic collisions
are significantly suppressed owing to far detuning, and the
dominant process becomes a photon scattering process [20].
In such a situation, it is known that the measurement process
can be described by the operator M̂i = n̂i (see, e.g., Ref. [74]).
Physically speaking, this operator form reflects the fact that
the atom occupation number can be determined by collecting
scattered photons and analyzing their interference patterns. We
then continuously monitor the scattered light by, for example,
collecting photons with a high numerical aperture lens and
detecting them with a high-sensitivity CCD imaging device,
as implemented by quantum gas microscopy. During the
continuous monitoring, we postselect the realizations in which
no photons are detected. In this way, ideally, we can simulate
the dynamics governed by the non-Hermitian Hamiltonian
in Eq. (1) with the operator M̂i = n̂i . In practice, however,
we can collect only a portion of the scattered photons and
our results can be tested if possible heating caused by the
undetected photons does not smear our theoretical predictions
for appropriately chosen experimental parameters as discussed
below.

C. Experimental parameters

Here we discuss the feasibility of each of the two proposals
discussed above by estimating some experimental parameters.
Let us first consider the experimental feasibility of the proposal
(A). A system accompanying an inelastic two-body loss can
be realized by using, e.g., the metastable 3P2 state of 174Yb
atoms having an inelastic scattering length ai = 2.8 nm in
addition to the elastic one ar = 5.8 nm [75]. Alternatively,
one may use polar molecules, which have inelastic scattering
channels resulting in two-body losses, or the light-induced
inelastic collisions between stable atoms. The dominant factor
in determining the experimental fidelity of postselections is
the detection fidelity of the atom-number measurement with
quantum gas microscopy. In fact, it is known that the fidelity
of quantum gas microscopy is very high and almost reaches
the near-unit fidelity (99.5% in Ref. [2]). Indeed, such a high
fidelity has already been sufficient to enable experimenters
to implement the postselections to reduce the entropy of the
system and eliminate a possible experimental error [10–13].
While the technique has originally been restricted to the
parity measurement, this restriction has been relaxed by recent
experimental developments [18]. Since the fidelity of selecting
null-outcome events decreases as the total number of atoms
increases, the atom number should be kept relatively small,
say, several tens as demonstrated in Ref. [76], where an
experimental error can be made smaller than our predicted
value of the relative shift of the transition point. To further
improve the experimental fidelity, a recent technique of the
super-resolved observation [19,20] can be useful.

We next consider the proposal (B). In this case, the detection
fidelity of scattered photons is limited in general and the recoil
energies of undetected photons inevitably induce heating of
the system, which may smear out the predicted shifts of the
critical point and the critical exponents. To discuss the appro-
priate experimental parameters, let us estimate the expected
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finite-temperature effect due to heating. Let η be the detection
efficiency of the scattered photons and γ be the scattering
rate of photons by an atom and τ be the duration of the time
evolution. Then, the net heating energy per atom caused by the
recoil energies of the undetected scattered photons is estimated
to be δE = (1 − η)γ τ × �

2k2/(2m), where k = 2π/λ is the
wave number of a scattered light and m is the atomic mass. In
general, it is known that a finite-temperature effect shifts the
transition point [77], and thus our predicted shift is testable if
the heating is not too large. To be specific, we consider 87Rb
atoms and an off-resonant light with wavelength λ = 1064 nm.
For the sake of concreteness, we set the measurement strength
to be γ /U = 0.2 at which the predicted shift of the transition
point is about 10% as shown in Fig. 2. As a typical duration
time, we take the characteristic relaxation time scale τ ∼ 1/γ .
According to Ref. [77], the temperature that induces the same
amount of shift (∼10%) is Tth/J � 3 at U/J � 25. Here we
set kB = 1 and J/� = 3 ms as the hopping rate. Combining
these experimental parameters, the condition δE < Tth/J that
the predicted shift of the transition point is not masked by the
finite-temperature effect imposes a constraint on the detection
fidelity as η > 0.08. Such a condition can be met by a high
detection efficiency of photons which can be achieved with
quantum gas microscopy (η = 0.1 ∼ 0.2 in Refs. [1,2,4–
8,18]). We, however, note that a larger detection efficiency
is required in order for the heating effect to be an order of
magnitude smaller than the predicted shift of the transition
point. We next estimate the experimental benchmark to test our
result on the variations of the critical exponents. In this case,
the heating caused by the undetected photons is characterized
by a finite thermal correlation length ξT ≡ �

2ρ0π/(mT ),
where ρ0 is the number density of atoms. If the heating is
not too large and a length scale of interest r in the correlation
functions satisfies r < ξT , then the critical behavior can be
observed and the associated exponents should experimentally
be determined by measuring the correlation functions. In
addition, we also need to consider the condition to ensure the
validity of the Tomonaga-Luttinger-liquid (TLL) low-energy
description. According to Ref. [78], such conditions in weakly
and strongly interacting regimes are

2mT

�2ρ2
0u2

� 102 (weakly interacting regime, u = 0.01),

(48)

2mT

�2ρ2
0u2

� 10−2 (strongly interacting regime, u = 10),

(49)

where u is the dimensionless interaction parameter defined in
Sec. IV. To be specific, let us consider the above experimental
situations with the density ρ0 = 55 μm−1 and a length scale
r = 10 μm. Then, in the weakly interacting regime, the second
condition on the validity of the TLL description is more
crucial and leads to the constraint on the detection efficiency

given by η > 0.13. This condition is within the reach of the
current experimental techniques of quantum gas microscopy as
mentioned above. In contrast, in a strongly interacting regime,
owing to the large value of u, the low-energy description is
more robust against the finite-temperature effect, as inferred
from Eq. (49), and the experimental constraint is much less
stringent than the weakly interacting case.

VI. CONCLUSIONS

We have investigated how the notions of quantum phase
transitions and universality in quantum critical phenomena can
be extended to many-body systems subject to the measurement
backaction of continuous observation. We have introduced
effective non-Hermitian Hamiltonians of interacting bosons
in an optical lattice and a one-dimensional trap, and analyzed
their effective ground states, i.e., the states having the lowest
real parts of eigenvalues. It is shown that the effective ground
states in both models have the minimal imaginary parts of
eigenvalues and thus survive longest in the non-Hermitian
dynamics. In the former model, by performing the mean-field
and strong-coupling-expansion analyses, we have shown that
the measurement backaction can shift the superfluid–Mott-
insulator transition point and expand the Mott lobes. In the
latter model, we have derived the low-energy effective field
theory that describes critical behavior of the one-dimensional
Bose gas subject to the measurement backaction, and found the
new critical exponents that depend on the strength of the mea-
surement. This indicates a unique critical behavior beyond the
realm of the standard Tomonaga-Luttinger liquid universality
class. Owing to the universality of the effective field theory,
our findings should also be relevant to other one-dimensional
critical systems. To test our predictions, we have discussed two
experimental schemes in ultracold atoms by using quantum gas
microscopy, and estimated possible experimental parameters.
In view of recent developments in engineering non-Hermitian
Hamiltonians [45,46], it seems of interest to explore unique
aspects of non-Hermitian systems such as topological struc-
tures around exceptional points [33] and spectral singularity in
PT symmetric systems [79,80] in the context of many-body
physics, especially in critical regimes.
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