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A universal k−4 decay of the large-momentum tails of the momentum distribution, fixed by Tan’s contact
coefficients, constitutes a direct signature of strong correlations in a short-range interacting quantum gas. Here
we consider a repulsive multicomponent Fermi gas under harmonic confinement, as in the experiment of G.
Pagano et al. [Nat. Phys. 10, 198 (2014)], realizing a gas with tunable SU(κ) symmetry. We exploit an exact
solution at infinite repulsion to show a direct correspondence between the value of the Tan’s contact for each of the
κ components of the gas and the Young tableaux for the SN permutation symmetry group identifying the magnetic
structure of the ground state. This opens a route for the experimental determination of magnetic configurations in
cold atomic gases, employing only standard (spin-resolved) time-of-flight techniques. Combining the exact result
with matrix-product-state simulations, we obtain the Tan’s contact at all values of repulsive interactions. We show
that a local-density approximation (LDA) on the Bethe-ansatz equation of state for the homogeneous mixture
is in excellent agreement with the results for the harmonically confined gas. At strong interactions, the LDA
predicts a scaling behavior of the Tan’s contact. This provides a useful analytical expression for the dependence
on the number of fermions, number of components, and interaction strength. Moreover, using a virial approach,
we study the Tan’s contact behavior at high temperature and in the limit of infinite interactions, and we show
that it increases with the temperature and the number of components. At zero temperature, we predict that the
weight of the momentum distribution tails increases with interaction strength and the number of components if
the population per component is kept constant. This latter property was experimentally observed in G. Pagano
et al. [ 10, 198 (2014)].
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I. INTRODUCTION

The recent progresses on the experimental control offered
by ultracold atoms setups [1–4] provides new platforms for
the theoretical and experimental activity on one-dimensional
(1D) strongly correlated quantum systems [5]. In the spirit of
quantum simulations [6], they now make it possible to study
many important phenomena like, for instance, superfluidity,
integrable models [4], quantum phase transitions, and quantum
magnetism [7]. In the latter case, multicomponent strongly
interacting quantum particles, living in continuous space,
appear to be a promising alternative [8] to lattice systems where
magnetic interaction parameters are hardly tunable. Indeed,
in the low-energy regime, the κ internal degrees of freedom
(interacting via highly symmetric terms) can be mapped onto
an effective SU(κ) spin chain subjected to a Sutherland Hamil-
tonian [9,10], which reduces to the most traditional SU(2)
Heisenberg model in the case of two components [11–13].
Such systems are therefore currently at the focus of an
intense experimental [8,14,15] and theoretical [16–19] activity.
Inevitably, a compelling question arises about probing the
magneticlike properties of these gases, via experimental tech-
niques as elementary as possible, besides in situ spin-resolved
imaging of the cloud. Our purpose is here to endorse the use
of the standard time-of-flight momentum distribution(s) [1,2],
and in particular of large-momenta tails thereof, as a comple-
mentary diagnostic tool for magneticlike structures.

The momentum distribution n(k) of a Fermi gas is indeed
a powerful probe of both fermionic statistics and of the

intertwined effect of interactions between particles and the
effective dimensionality they move in. For a homogeneous
system of noninteracting fermions at zero temperature, n(k)
is a unit step function of the momentum modulus, sharply
vanishing at the Fermi surface (or Fermi points in 1D) |k| =
kF , where kF is called the Fermi wave vector. In dimensions
larger than one, many-body effects only reduce the jump at
the Fermi surface to a value smaller than one [20], and the
system falls in the universality class of Fermi liquids. In
dimension one, instead, the picture is considerably changed
and the momentum distribution derivative displays a power-
law discontinuity at k = kF , as predicted by the Tomonaga-
Luttinger liquid theory [21]. A remarkable common feature
in all dimensions, however, is the presence of universal
power-law tails n(k) ∼ k−4 for a gas where interactions can be
schematized as contact ones (as it is the case for most standard
cold gases experiments). The weight of such tails, denoted
as Tan’s contact, can be put into relation with several many-
body quantities, ranging from the interaction energy to the
depletion rate by inelastic collisions and many more [22–24].
In this work, we show that such tails also encode precious
information about the permutational symmetry hiding behind
the formation of magneticlike structures in strongly interacting
multicomponent gases.

The presence of a universal Tan’s contact is a robust feature
related to the interaction form only, but its value is expected
to be influenced by the type of confinement the Fermi gas is
subjected to, as it is indeed the case for bosons [25–27]. Its
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value for strongly interacting, homogeneous, two-component
Fermi gas has been calculated both in three [28] and in one
dimension [29]; for a multicomponent mixture, the Bethe-
ansatz exact solution [9,10,30–32] has been exploited to
extract a strong-coupling expansion in the thermodynamic
limit [33,34]. However, although many cold atomic experi-
mental setups are still based on a harmonic confinement [1,2],
few facts are known to date for the correspondent fermionic
momentum distribution, besides the smearing of the Fermi
sphere due to the inhomogeneous density of the atomic cloud.
Here, we focus on such a situation and we provide theoretical
and numerical evidence for a scaling relation between the
Tan’s contact value, the interaction strength, the harmonic
confinement, and the number of particles and components (as
well as the temperature), thus providing solid ground for some
recent numerical observations [35].

In this work, we combine an exact solution at infi-
nite interactions and numerical matrix-product-state (MPS)
simulations at finite interactions in order to predict the
behavior of the momentum distribution tails for a mixture
of κ fermionic components under 1D harmonic confine-
ment and interacting among each other with completely
SU(κ)-symmetric repulsive contact interactions. Moreover,
we show that both the ground and the excited states of
the system have a well-defined symmetry, thus indicating
magneticlike properties of the mixture [11–13,16–18,36] such
as a generalized Lieb-Mattis theorem [37]: We claim that such
information is fully encoded in the Tan’s contact. Furthermore,
we propose a local-density functional approach to determine
the Tan’s contact for arbitrary particle numbers and number
of components and corroborate the above-mentioned scaling
relation, which was qualitatively highlighted in the pioneering
Florence setup [14] and is amenable of further experimental
confirmations also in a few-particle experiments like the ones
done in Heidelberg [8]. Many of the employed techniques
and highlighted scalings can then be readily extended to other
physical quantities of interest in the wealthy arena of fermionic
SU(κ) gases.

The paper is organized as follows. Section II describes the
model and the quantities of interest, momentum distribution
and Tan’s contact. Section III puts forward the scaling
argumentation to obtain a N5/2 dependence of contacts,
provides the local-density approximation (LDA) proof for
it and a series expansion at large effective interactions, and
displays the numerical evidence for our theoretical findings.
Section IV then presents the asymptotic exact solution and
the deep connection between Tan’s contacts and internal
magnetic structure, a central result of our work, and dis-
cusses its robustness to temperature effects. Finally, Sec. V
summarizes the main results of our paper and some open per-
spectives. In addition, several appendixes provide important
details about the different methods employed throughout the
paper.

II. MODEL AND QUANTITIES OF INTEREST

We consider a κ component Fermi gas, made up of N =∑κ
ν=1 Nν particles of equal mass m, trapped in a tight optical

confinement as in the Florence experiment [14]. The potential
is therefore taken as a 1D harmonic trap of frequency ω and

characteristic length aho = √
�/mω:

H0 =
κ∑

ν=1

Nν∑
j=1

H
(1p)
j,ν

≡
κ∑

ν=1

Nν∑
j=1

(
− �

2

2m

∂2

∂x2
j,ν

+ 1

2
mω2x2

j,ν

)
. (1)

Interactions are dominated by s-wave collisions in a com-
pletely SU(κ)-symmetric channel between fermions belonging
to different components and therefore the two-body interaction
potential is accurately described by v(x − x ′) = g1D δ(x − x ′),
where g1D = −2�

2/ma1D and a1D is the 1D effective scatter-
ing length [38]. The interaction part of the Hamiltonian then
reads

Hint = g1D

κ∑
ν<ν ′

Hint,(ν,ν ′) ≡ g1D

κ∑
ν<ν ′

Nν∑
j=1

Nν′∑
j ′=1

δ(xj,ν − xj ′,ν ′ ).

(2)

The effect of interactions can be recast into a cusp condition
for each pair of coordinates belonging to different components,
x = xj,ν − xj ′,ν ′ ,

∂x�(x = 0+) − ∂x�(x = 0−) = 2mg1D

�2
�(x = 0), (3)

with � = �(X) = �(x1, . . . ,xN ) the many-body wave
function, where we have defined X = (x1, . . . ,xN ) =
(x1,1, . . . ,xN1,1,x1,2, . . . ,xN2,2,x1,κ , . . . ,xNκ ,κ ).

The momentum distribution is defined as the Fourier
transform of the one-body density matrix ρν(x,x ′),

nν(k) = 1

2π

∫∫
dxdx ′ ρν(x,x ′)e−ik(x−x ′), (4)

ρν(x,x ′) = Nν

∫
dx2 . . . dxN�(X)�(X′), (5)

where X = (x,x2, . . . ,xN ) and X′ = (x ′,x2, . . . ,xN ), with x,x ′
belonging to the same species ν; the normalization condition
then reads

∫
nν(k) dk = Nν . In the limiting case of infinite

interactions, we obtain the momentum distribution from an
exact solution for the many-body wave function. The latter is
based on the mapping of the multicomponent mixture onto
a noninteracting Fermi gas with N particles (see Sec. IV
and Appendix A). In the case of finite interactions, we
search for the ground state of the Hamiltonian Eqs. (1)
and (2) using a MPS algorithm for an equivalent lattice
problem, where we adopted a limiting procedure of the
lattice discretization (see Appendix B). We then evaluate the
two-point correlators involved in Eq. (5) in order to obtain the
momentum distribution.

The momentum distribution of each species, nν(k), is a
quantity of primary theoretical and experimental interest, since
it is routinely detected in cold-atom setups via spin-selective
time-of-flight techniques, i.e., by release of the trapping
potential and mapping of the in-trap momenta onto after-flight
positions [1,2]. The theoretical interest in the momentum
distribution resides in the wealth of information that can
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be extracted therefrom. In the case of a noninteracting gas,
thanks to the duality of spatial and momentum coordinates
in the harmonic oscillator Hamiltonian, nν(k) has the same
shape as the density profile nν(x) ≡ ρν(x,x). Therefore, it
displays a number of peaks coinciding with the number of
fermions of that component [39–41], with the amplitude
of these Friedel-like oscillations decreasing as the inverse
of the number of fermions. Also for an interacting gas, it was
found that in a two-species mixture the momentum distribution
displays as many peaks as the number of fermions in each
component [42], although this form does not correspond
anymore to the real-space distribution.

Among all momentum distribution features, the most
striking one is the power-law behavior at large momenta.
Similarly to the case of a bosonic gas [25,26], such a k−4

behavior of the high-momenta tails of the distribution can be
directly deduced from the cusp condition (3). The weight of the
momentum distribution tails is fixed by the Tan’s contact Cν =
limk→∞ nν(k)k4. The Tan’s contact is a two-body quantity
associated with the interaction energy for a system with contact
interaction that appears in many properties of the many-body
system, e.g., in the adiabatic theorem linking the contact to the
variation of ground-state energy with respect to the s-wave
scattering length, in the virial theorem, and in the rate of
depletion of the gas by inelastic collisions [22–24,29,43].
In the case of multicomponent mixtures, the Tan’s relation
reads

Cν = g1Dm2

2π�4
〈Hint,ν〉 ≡ g1Dm2

2π�4

κ∑
ν ′ 
=ν

〈Hint,(ν,ν ′)〉. (6)

We notice that, in general, each component has a different Tan’s
contact, while for the special cases of two-component mixtures
(any N1,N2) or of balanced mixture (pν ≡ Nν/N = 1/κ ∀ ν)
we get the same contact for all species. The Tan’s contacts are
also related to the slope of the energy K = −(∂E/∂g−1

1D )
g1D→∞

by virtue of the Hellman-Feynman theorem, as

Ctot =
∑

ν

Cν = m2

π�4
K. (7)

We plot our results for the momentum distribution nν(k)
for a balanced mixture in Fig. 1. We first consider the case
of a three-component mixture. At increasing interactions, we
observe a narrowing of the momentum distribution in its
central part (also noticed for the two-component mixture [42])
and an enhancement of the high-momentum tails. As we
shall discuss in Sec. III, the increase of the Tan’s contact
indicates the onset of correlation effects. The middle panel
shows the momentum distribution at infinite interactions for
various choices of the number of components (κ = 2,3,6, with
N = 6), and the bottom panel emphasizes on the momentum
distribution tails for the same mixtures by displaying k4n(k).
We notice that different mixtures with the same total particle
numbers display different values for the Tan’s contact. We will
show below in Sec. IV that this can be univocally associated
to the different symmetry under permutation, thus disclosing a
path for the investigation of magnetic structures via standard
time-of-flight techniques.
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FIG. 1. Normalized momentum distributions nν(k)/Nν (top and
middle panels), in units of aho, and the function k4nν(k)/Nν (bottom
panel), in units of a−3

ho as a function of kaho, for the case of balanced
mixtures with N = 6. (Top panel) All curves correspond to the
mixture with κ = 3. The dotted line corresponds to g1D = 0, the
long-dashed line to g1D = 1�ωaho, the short-dashed line to g1D =
10�ωaho, and the continuous line to g1D → ∞. (Middle and bottom
panels) From the highest curve to the lowest, κ = 6 (red), κ = 3
(coral), and κ = 2 (orange). The horizontal lines in the bottom panel
correspond to the exact solution for the contacts given in Eq. (A4).

III. SCALING APPROACH AND LOCAL-DENSITY
APPROXIMATION

As a first step in our investigations, we analyze the depen-
dence of the Tan’s contact of the harmonically trapped mixture
on the interaction strength and total population, deriving a very
general scaling approach from a few basic assumptions. Then
we show its validity via a density-functional approach within
the local-density approximation, still valid for any kind of
mixture (balanced or not). Finally, for the sake of simplicity
and closeness to the experiments of Ref. [14], we provide
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explicit predictions for the case of a balanced mixture and we
compare them with the numerical and analytical results in the
trap.

Due to their fermionic nature, the particles occupy a number
of harmonic orbitals which scales with N in both extreme
regimes of free particles (κ independent gases, filling the
lowest pνN orbitals each) and infinitely interacting ones (as
if there was a single-component gas of N particles filling
the lowest N orbitals, as predicted by the exact solution
in Sec. IV below). Consequently, we can write the total
energy of the system as E = �ω N2 f (α,N,{pν}), where α =
2aho/|a1D|, pν = Nν/N , and f is a dimensionless function of
its arguments (see Appendix C for details). For large systems,
the thermodynamic limit of this expression is achieved by
keeping the Fermi energy at α → ∞, i.e., E

(∞)
F = N�ω

fixed [44,45] and therefore rescaling the interaction parameter
into α0 = α/

√
N (see Appendix C for details). In this limit we

conclude that

E/N = E
(∞)
F f (α0,{pν}) = N �ω f (α/

√
N,{pν}). (8)

From the scaling expression of Eq. (8) we can easily derive
the expected scaling for the Tan’s contact, by using its
definition (7) and the relation g1D = �ωahoα0

√
N ,

Ctot(α0) = 1

πa3
ho

N5/2 α2
0
∂f (α0,{pν})

∂α0
, (9)

and similar ones for the single Cν’s. The above equation shows
that the contact displays a scaling behavior as a function of

the parameter α0. Such a behavior has been recently noticed in
numerical Monte Carlo simulations by [35]: We provide here
a theoretical ground for this observation.

We show in fact (details in Appendix D ) that Eq. (8) holds
exactly within a density functional approach under a LDA
based on the Bethe-ansatz (BA) solution of the homogeneous
problem [33], E/L = (�2/2m)ρ3e(γ ), with γ = mg1D/�

2ρ.
This yields indeed an equation for the inhomogeneous density
profile ρ(x) in an external potential Vext(x) = mω2x2/2,

3

2

�
2

m
ρ2e(γ ) − 1

2
g1Dρe′(γ ) = μ − Vext(x), (10)

as well as an equation for the contact

Ctot = g2
1D

2π

∫
dxρ2(x)e′(γ ), (11)

which, properly rescaled by the typical length aho and energy
�ω, lead to the above Eqs. (8) and (9). In particular, in the
regime of strong interactions we resort to a strong-coupling
series’ expansion for the homogeneous Bethe-ansatz energy
functional [33] (see Appendix D). For a balanced mixture we
obtain the LDA expression for the Tan’s contact at infinite
interactions,

Cν(∞) = 1

a3
ho

128
√

2

45π3

Z1(κ)

κ
N5/2, (12)

as well as at finite large interactions, up to O(1/α2
0),

Cν(α0) = N5/2

πκa3
ho

{
128

√
2Z1(κ)

45π2
+ 2(315π2 − 4096)Z1(κ)2

81π4α0
− 64

√
2[25(1437π2 − 14 336)Z1(κ)3 + 1728π4Z3(κ)]

14 175π6α2
0

}
, (13)

where Z1(κ) = − 1
κ

[ψ( 1
κ

) + CEuler], Z3(κ) = [ζ (3,1/κ) −
ζ (3)]/κ3, ψ being the digamma function, CEuler the Euler
constant, and ζ the Riemann functions. We stress here that
in the limit of infinite numbers of components [46], recalling
that limκ→∞ Z1(κ) = 1, we readily obtain the expression for
the bosonic Tan’s contact in LDA generalizing the result
of Ref. [26] for α0 → ∞. Moreover, this expression also
generalizes the results of Ref. [18] for a two-component Fermi
gas (Gaudin-Yang model in a harmonic trap) and complement
the ones of Ref. [47] for the polaron case.

Figures 2 shows the results for the Tan’s contact at
various interaction strengths as well as for various numbers of
components as obtained by the exact solution in the infinitely
repulsive limit (see Sec. IV and Appendix A ), the numerical
MPS approach (see Appendix B for details), and the LDA.
Quite remarkably, the LDA is in excellent agreement with
the numerically exact data at strong interactions, where the
Bethe-ansatz series expansion holds. In order to properly
describe weaker interactions, one would need higher-order
terms in the Bethe-ansatz equation of state. We also find that
the scaling of Eq. (9) is satisfied to a high degree of precision
by the numerical MPS simulations in all interaction regimes,
and the dependence on the number of components is essentially
captured for homogeneous mixtures by the prefactor Z1(κ)/κ
in Eq. (12).

By virtue of Eq. (12) and the numerical observation in
Fig. 2, we then provide an analytical prediction (even at
finite interactions) for the growth of the nν(k) tails with the
number of components κ , by keeping fixed the population per
component Nν :

Cν ∝ N5/2
ν Z1(κ)κ3/2. (14)

This prediction qualitatively explains the experimental obser-
vation [14] of an increase of the momentum distribution tails
with increasing number of components [48]. A direct compar-
ison to experimental data would require a (yet unavoidable)
convolution average among several 1D tubes with different
total population: However, provided the balanced nature of
the mixture is preserved across the sample, the dependence on
the number of components κ factorizes out of the integrals and
would be readily verifiable.

IV. SYMMETRY SPECTROSCOPY

Exact solution and ground-state degeneracy. In the
limit g1D → ∞ the gas further fermionizes due to repul-
sion [11,49,50], and the ground and first excited states
merge into a vastly degenerate manifold. This degeneration
is related to the emergent SN symmetry under permutation
of all the particles among each other [51–53]. To obtain the

053614-4



HIGH-MOMENTUM TAILS AS MAGNETIC-STRUCTURE . . . PHYSICAL REVIEW A 94, 053614 (2016)

0

 0.2

 0.4

 0.6

 0.8

1

 0.1 1  10  100

 0.01

 0.02

 0.03

 0.04

100 102 104

aho/(|a1D|N1/2)

C ν
/C

ν
(∞

)

C ν
/N

5
/
2

FIG. 2. Exact and MPS results for Cν for balanced mixtures
with different number of fermions (up to N = 12), components,
and interaction strengths, as functions of the parameter α0/2 =
aho/(|a1D|N 1/2). The blue circles correspond to κ = 2, the orange
squares to κ = 3, the green diamonds to κ = 4, the red up-triangles to
κ = 5, and the violet down-triangles to κ = 6. The data are compared
with the perturbative LDA expression (13) to first and second order
in 1/α0 (dashed and continuous lines, respectively). The inset shows
the data collapse on the same κ-dependent curve when the N5/2

dependence of Cν is taken away; the main panel then displays the
very weak dependence on κ once the limiting value at g1D → ∞ of
Eq. (12) is also factorized away.

many-body wave functions for the manifold we start from
the totally antisymmetric wave function �A(x1, . . . ,xN ) =

1√
N!

det[φi−1(xj )]i,j=1,...,N , which satisfies by construction the
cusp condition (3). Here φ0, . . . ,φN−1 are the eigenfunctions
of the single-particle Hamiltonian H

(1p)
j,ν in Eq. (1). We then

write the full many-body wave function as [11–13]

�(X) =
∑
P∈SN

aP χP (X)�A(X), (15)

where X = (x1, . . . ,xN ), SN is the permutation group of N

elements, and χP (X) is equal to 1 if xP (1) < · · · < xP (N)

and 0 otherwise. Imposing the antisymmetry condition to
the fermions belonging to each given component, we have
that the number of independent aP coefficients is given by
DN,κ = N !/(N1!, . . . ,Nκ !), which corresponds also to the di-
mension of the degenerate ground-state manifold (often called
a “snippet” basis). In order to identify within the manifold the
wave function which corresponds to the unique ground state at
finite, large interactions, we use degenerate perturbation theory
to order 1/g1D and determine the set of coefficients aP which
maximizes K = −(∂E/∂g−1

1D )
g1D→∞ [11,13] (see Appendix A

for details).
Symmetry identification. The underlying symmetry is the

equivalent of magnetic structures for spinor systems in the
sense that the effective interaction Hamiltonian [restricted
to the first degenerate manifold (see Appendix A )] can
always be mapped onto a spin chain Hamiltonian [9–12].
The permutation symmetry is at the heart of the fermionized

0

10

20

30

5+1 4+2 3+3 3+2+1 2+2+2

K
/(

h̄
2 ω

2 a
ho

)

mixture

FIG. 3. The interaction energy parameter K (or equivalently Ctot)
for different mixtures: 5 + 1, 4 + 2, 3 + 3, 3 + 2 + 1, and 2 + 2 + 2.
The different colors correspond to different symmetries characterized
by their Young’s tableaux defined in the main text and Table I: Y−15

(black), Y−9 (red), Y−5 (green), Y−3,−8 (blue), Y−3,4 (magenta), Y0

(gray), Y3 (orange). For the sake of visibility, the symbols are shifted
with the same order of appearence (from left to right) than the colors.

solution (15): All the particles may be permuted and occupy all
the single-particle orbitals. Here we extend the results of [13]
and show that each state of the many-body wave function
in Eq. (15) can be associated with a single Young tableau,
or equivalently a single symmetry, and that the ground state
corresponds to the most symmetric configuration compatible
with the imbalance. This constitutes a generalization of the
well-known Lieb-Mattis’ theorems about magnetic ordering
of 1D two-component fermions and spin chains [37].

Furthermore, considering various possible mixtures at fixed
total number of fermions, the value of the interaction energy
parameter K is the largest for the most symmetric mixture, i.e.,
the one with the largest number of components. Using these
facts together with Eq. (7), we obtain that the most symmetric
mixture will display the largest tails in the momentum
distribution. This is confirmed by the exact calculation of the
momentum distribution, as illustrated in Fig. 1.

The relation between the K parameter or, equivalently,
the contact Ctot [see Eq. (7)] and the symmetry of the
corresponding state is shown in Fig. 3 for the case of different
mixtures. For a specific mixture, the symmetry of each state
is labeled on the one hand by calculating the expectation
value of the transposition class-sum operator �(2) = [(2)]N =∑

i<j (ij ) [54–56] and on the other hand by constructing all
the Young tableaux compatible with the Pauli principle in the
mixture (see Appendix E ). Indeed, each Young tableau Yγ2 cor-
responds to a unique eigenvalue γ2 of �(2), via the expression

γ2 = 1

2

∑
i

λi(λi − 2i + 1), (16)

where i and λi refer, respectively, to the line and number of
boxes in this line of Young tableau. For the cases when γ2

corresponds to different Young tableaux, we calculate the ex-
pectation value of the three-cycle class-sum operator �(3) [54]
too, and we univocally identify the corresponding Young
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TABLE I. Young’s tableaux Yγ2,γ3 corresponding to the eigenval-
ues γ2 and γ3. Boxes belonging to the same line (column) correspond
to a symmetric (antisymmetric) exchange of particles. The color code
is the same as in Fig. 3.

Y−15 = Y−9 = Y−5 =

Y−3,−8 = Y−3,4 =

Y0 = Y3 =

tableaux Yγ2,γ3 by means of the eigenvalues γ2 and γ3 related
to the operators �(2) and �(3). Note that the degeneracies of
the couples γ2,γ3 as eigenvalues of the class-sum operators are
equal to the number of states with the corresponding symmetry,
and are also equal, in terms of group theory, to the dimension
of the corresponding irreducible representation [57].

The graphics in Fig. 3 show that the (interaction) energy
slope K , and thus the total contact Ctot, are determined by
the state symmetry, regardless of the number of components
and fermions per component, at fixed number of particles.
Indeed, the sets of K values corresponding to one specific
Young tableau are the same for each mixtures, as long as this
symmetry is possible. An interesting open problem would be to
quantitatively link the values of (γ2,γ3) to the energy slope K ,
further elucidating the information content of the symmetries.
Independently of the analytic relation, however, we can already
highlight the deep relation between the Tan’s contact(s) and
the magnetic structure of the multicomponent SU(κ) fermionic
gas: Although the momentum distribution shape does not
anymore reflect the spatial density (as commented before),
the tails encode some even more precious information about
the spin arrangement.

At finite interactions, the symmetry under permutation is
only approximately satisfied since the cusps among fermions
belonging to different components are not equivalent to the
nodes in the fermionic many-body wave-function for particles
belonging to the same component. Nevertheless, the good
agreement of the numerical results as compared with the ones
at infinite interactions, both for the momentum distribution
function (see Fig. 4), as well as of the density profiles at
interaction strength α0 � 40 (see Appendix F ), suggests
that the consequences of the permutation symmetry persist at
finite, large interactions. We therefore put forward the precise
measurement of momentum distribution tails via standard
time of flight as a diagnostic tool (complementary to in situ
cloud imaging) in the yet largely unexplored arena of quantum
magnetism.

Temperature dependence on the Tan’s contact. At finite
temperature, for large interaction strength g1D, one may
identify two different temperature regimes: At temperature
lower than the energy level splitting of the quasidegenerate
ground-state manifold, scaling as �E ∼ K/g1D, one may
recover a behavior close to the zero-temperature one, where
only the lowest-energy state is considerably populated and the
mixture has a well-defined symmetry. This regime corresponds
to the spin-coherent regime described for a two-component
Fermi gas [58]. For temperatures higher than �E the whole
manifold is thermally populated, and the state of the system
is described as an incoherent mixture with various symmetry
components. For this high-temperature regime we estimate the
Tan’s contact for the gas using a thermodynamic form of the
Tan’s relation [24,28,29],(

d��ν

da1D

)
μ,T

= π�
2

m
Cν, (17)

where ��ν is the contribution of the ν component of the
mixture to the grand thermodynamic potential � = �(1) +∑

ν ��ν . Using a virial expansion for ��ν , we obtain the
high-temperature behavior for the contact of a multicomponent
fermionic mixture in the limit g1D → ∞ (see Appendix A for
details)

Cν = 1

π3/2a3
ho

√
kBT

�ω
N2pν(1 − pν)

= 1

π3/2a3
ho

√
kBT

E
(∞)
F

N5/2pν(1 − pν). (18)

It is important to notice that, as in the bosonic case [27], in
the fermionized limit the mixture displays universal properties,

1e-06

0.01

0.1 1 10 100

n
ν
(k

)/
(a

h
o
N

ν
)

k aho

FIG. 4. Numerical evidence for the existence of a generalized
Tan’s relation in a fermionic multicomponent balanced mixture at
finite interactions: g1D = 1�ωaho (violet), 10�ωaho (dark violet),
100�ωaho (orange). As in Figs. 1(b) and 1(c), we display the case of
κ = 3 and N = 6, with the momentum distributions normalized to the
species’ population and plotted in units of aho versus the momentum
in units of 1/aho. The solid curves are the momentum distributions
nν(k) obtained by MPS numerics, while the dashed straight lines are
Cνk

−4 where no free parameter is adjusted and Cν are extracted from
the interaction energies measured in the same simulations.
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FIG. 5. Contact Cν/N
2, in units of a−3

ho , as a function of the
temperature T , in units of �ω/kB, for the case of balanced mixtures
with N = 6. The lines correspond to large-temperature behavior given
in Eq. (18) and the points to the exact solution at T = 0 given in
Eq. (12). From top to bottom: κ = 6 (red), κ = 3 (coral), and κ = 2
(orange).

analog to those of a unitary Fermi gas in three dimensions. This
is seen in the fact that the second virial contact coefficient c2

(see Appendix A for details) is a constant: c2 = 1/
√

2.
The temperature dependence of the Tan’s contact for a

multicomponent mixture in harmonic trap is shown in Fig. 5.
In this high-temperature regime, for all mixtures, the contact
increases with temperature: This is a phase-space effect
due to the fact that the mixtures are one-dimensional (see
Appendix A for details). Second, we remark that also at
finite temperature the contact increases with the number of
components of the mixture, again in agreement with the ex-
perimental observations [14]. In the high-temperature-regime,
balanced mixture, from Eq. (18) one has Cν ∝ N2

ν (κ − 1). This
dependence of the contact on the number of components is
different from the quantum-degenerate case given by Eq. (14),
further emphasizing the relation between the contact and the
interaction energy. As a last remark, we notice that if the
temperature is rescaled by E

(∞)
F , Cν scales as N5/2 as in the

zero-temperature regime [Eq. (18)].

V. CONCLUSIONS

In this work we have studied the high-momentum tails
of the momentum distribution, an observable of primary
experimental interest, for the case of strongly correlated
multicomponent fermions under harmonic confinement. The
weight of the tails, denoted as the Tan’s contacts, conveys
a wealth of information on the many-body system under
study. In particular, the Tan’s contacts are fingerprints of
fermionization effects as the weight of the tails increases
rapidly as the strongly correlated regime is entered. Using
a local-density approach in the Bethe-ansatz equation of state,
which agrees surprisingly well with the numerical MPS results,
we have demonstrated and checked on the numerical results
that the Tan’s contact scales as a function of the parameter
α0 = 2aho/|a1D|√N . This scaling allows us also to predict the

behavior of the momentum distribution tails as a function of
the number of components of the gas at fixed population, both
at zero and at finite (large) temperature. In both regimes we
predict an increase of the tails with the number of components,
which is observed in the Florence experiment [14]. Our
analytical approach also provides a theoretical explanation for
the N5/2 scaling of the Tan’s contact observed in Monte Carlo
simulations [35].

Multicomponent Fermi gases at strong repulsive interac-
tions display an enhanced permutation symmetry stemming
from the further fermionization induced by interactions. The
ground and excited states of the system in particular can be
characterized by unique Young Tableaux, indicating magnet-
iclike properties of the mixture and satisfying a generalized
Lieb-Mattis theorem [13,37]. We show in this work the
contact’s dependence on the symmetry (magnetic ordering),
at zero temperature and infinite interactions. This relation not
only holds for the ground state, but for the whole spectrum.
This makes it possible to draw a one-to-one correspondence
between the symmetry and the contacts, independently of
the type of mixture and of the state (ground state and
excited states). At fixed number of particles, the Tan’s contact
therefore identifies the magnetic ordering. This suggests a
“symmetry-spectroscopy” approach through an accurate mea-
surement of the momentum distribution tails, thereby making
abstract concepts of group symmetries directly detectable
in experiments. Even if the precision required to verify our
predictions in terms of Young tableaux might be out of reach
to date for large populations, a stringent benchmark could be
readily offered by experiments building quantum magnetic
simulators in a “bottom-up” approach like the ones of Ref. [8].
On the other hand, the a priori knowledge of the symmetry
of the ground-state wave function could considerably lighten
the complexity of the numerical simulations [59].

Our results therefore pave the way to a wide range of
further theoretical and experimental studies about the profound
interplay between permutation group symmetries and strong-
correlation effects, at the heart of the microscopic origin of
magneticlike structures. We believe that this will constitute an
ideal test bed for quantum simulations with ultracold gases.

ACKNOWLEDGMENTS

We acknowledge discussions with T. Busch, L. Fallani,
A. Foerster, and M. Gattobigio and useful comments from
P. van Dongen. A.M. acknowledges financial support from
ANR projects Mathostaq (Grant No. ANR-13-JS01-0005-01)
and SuperRing (Grant No. ANR-15-CE30-0012-02). J.J. also
thanks Studienstiftung des Deutschen Volkes and Excellence
Initiative (DFG/GSC 266) for financial support. The MPS
simulations were run by J.J. and M.R. on the Mogon cluster
of the JGU (made available by the CSM and AHRP),
with a code based on a flexible Abelian Symmetric Tensor
Networks Library, developed in collaboration with the group of
S. Montangero at the University of Ulm.

APPENDIX A: DETAILS ON THE EXACT SOLUTION

Determination of the ground-state wave function. In order
to find the ground state at infinitesimal 1/g1D, we employ a
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degenerate perturbation theory at first order, starting from the
wave-function ansatz of Eq. (15), where both �A and � are
normalized to unity. Using the definition K = −∂E/∂g−1

1D and
the Hellmann-Feynman theorem we get

K =
∑

P,Q∈SN

(aP − aQ)2αP,Q, (A1)

where the matrix element is the integral αP,Q = αk =∫
dx1, . . . ,dxNχ1,...,N δ(xk − xk+1)[∂�A/∂xk]2 if P and Q are

equal up to a transposition τk of two consecutive coordinates at
positions k and k + 1 belonging to different spin components,
and zero otherwise. Note that K = g1D〈Hint〉, where Hint =
g1D

∑
i<j δ(xi − xj ) is the interaction part of the Hamiltonian,

so that αk can be seen as the contribution of an exchange
at positions k and k + 1 to the interaction energy. Once
these weights are computed (see also [12]), we obtain the
ground-state energy and wave function by maximizing K

with respect to the aP coefficients, i.e., finding the minimal
eigenvalue of the matrix αP,Q. We then use the correspondent
eigenvector to study the equilibrium properties of the mixture
and, in particular, its momentum distribution. We also notice
that this methods makes it possible also to characterize all
the excited states corresponding to the degenerate manifold at
g1D = ∞ by considering the higher eigenvalues of the matrix
αP,Q [13], thus obtaining the other K values plotted in Fig. 3.

Determination of the one-body density matrix. It is con-
venient to organize the permutations in the following way:
Each P ∈ SN is denoted Pik , where i is the position of the first
particle and k ∈ {1, . . . ,(N − 1)!} denotes the permutation of
the remaining N − 1 particles. We can write � as �(X) =∑N

i=1

∑(N−1)!
k=1 aikχPik

(X)�A(X). Let us suppose that x1 � x ′
1,

which we can do since the one-body density matrix is
symmetric, ρ(x1,x

′
1) = ρ(x ′

1,x1). We observe that

ρν(x1,x
′
1) = Nν

∑
1�i�j�N

ρ(ij )
ν (x1,x

′
1), (A2)

where ρ
(ij )
ν (x1,x

′
1) is the integral in (5), choosing the limits

of the integral such that (i − 1) coordinates [(j − 1)] of
{x2, . . . ,xN } are smaller than x1 [x ′

1]. Moreover, noticing than∫
dx2, . . . ,dxNχPik

(X)χPil
(X′) · · · 
= 0 only if k = l, using

the permutational symmetry of �A and its expression as a
Vandermonde determinant [13,60], we finally get

ρν(x1,x
′
1)

= NνGN

∑
1�i�j�N

Cij

∑
P,Q∈SN−1

ε(P )ε(Q)

N∏
l=2

∫ Uij

Lij

dz(z − x1)(z − x ′
1)φP (l)−1(z)φQ(l)−1(z), (A3)

where GN = 2N−1√
πN!(N−1)! , Cij =

∑(N−1)!
k=1 aik

ajk

(i−1)!(j−i)!(N−j )! , and
(Lij ,Uij ) = (−∞,x1) if l � i, (x ′

1,+∞) if l > j , and (x1,x
′
1)

otherwise.
Determination of the Tan’s contacts. Similarly to Eq. (A1),

the contact for each species can also be expressed in terms of

the coefficients introduced in Eq. (A1), by

Cν = 1

2π

κ∑
μ=1
μ 
=ν

N−1∑
k=1

∑
P∈σN (μ,ν,k)

(aP − a(τk◦P ))
2αk, (A4)

where σN (μ,ν,k) is the set of all permutations such that
particles in k and k + 1 positions are from the species μ and
ν, and τk is the transposition of these two particles. We remark
here that Eq. (A4) naturally generalizes the one obtained in
Ref. [27] for a Tonks-Girardeau gas.

Determination of the large-temperature behavior for the
contact. In order to obtain the finite-temperature behavior
of the contacts Cν via Eq. (17), we evaluate ��ν by a
virial approach [27,28], by writing the grand thermodynamic
potential as a function of the grand partition function Z ,
� = −kBT lnZ , kB being the Boltzmann constant and T the
temperature. The first step is to make a second-order expansion
of Z in terms of the fugacities zν = exp(μνNν/kBT ), which
tend to zero at high temperature (μν being the chemical
potential of the ν species),

Z = 1 + Q1,0

∑
ν

zν +
⎛
⎝Q2,0

∑
ν

z2
ν + Q2,1

∑
μ 
=ν

zμzν

⎞
⎠,

(A5)

where Qn,n′ is the partition function of a cluster containing
n − n′ fermions of species ν and n′ of species μ [61]. Thus, the
interacting components of the grand thermodynamic potential
can be written

��ν = −2kBT Q2,1zν

∑
μ 
=ν

zμ (A6)

and, by using Eq. (17), the contact for species ν takes the form

Cν = 4Q1,0

�3
dB

c2zν

∑
μ 
=ν

zμ, (A7)

where �dB =
√

2π�2/mkBT is the thermal de Broglie wave-
length and

c2 = −∂(Q2,1/Q1,0)

∂(a1D/�dB)
(A8)

is the dimensionless second virial coefficient [28]. As we
have already shown in Ref. [27], in the strongly interacting
regime and in the high-T limit �ω/kBT � 1, the following
limits hold: c2 → 1/

√
2, Q1,0 → kBT / �ω = 2π (aho/�dB)2,

and zν � Nν�ω/kBT . Finally, we find

Cν = 1

π3/2a3
ho

√
kBT

�ω
Nν

∑
μ 
=ν

Nμ. (A9)

In the peculiar case of a balanced mixture, we obtain

Ctot = 1

π3/2a3
ho

√
kBT

�ω

κ − 1

κ
N2, (A10)

and if κ → ∞, one recovers the result of [27] for the Tonks-
Girardeau gas.
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APPENDIX B: DETAILS ON THE
MATRIX-PRODUCT-STATE (MPS) CALCULATION

Method. In order to determine density/momentum distribu-
tions and contacts in the finitely interacting model, a variational
two-site optimization ansatz (DMRG) based on MPS was
employed for ground-state finding [62]. The code is based on
the Abelian Symmetric Tensor Networks Library (developed in
collaboration with the group of S. Montangero in Ulm), which
encompasses multiple Abelian symmetries (particle number
conservation for each fermionic species).

Discretization of the problem. To be able to do MPS
calculations on a discretized lattice, we transfer the original,
continuous Hamiltonian into its tight-binding equivalent. We
therefore choose a region of the trap which is sufficiently
large to contain the full ground state (ζaho) and cover it with a
grid (in adimensional units, the region y ∈ [−ζ/2,+ζ/2]). The
lattice contains L sites, i.e., we set yj = [j − (L + 1)/2]�y

with �y = ζ/L and j ∈ {1, . . . ,L} labeling the j th site in the
lattice. The discretized equivalent of the model in Eqs. (1)
and (2) then reads

Ĥ /�ω = − t

2

L−1∑
j=1

∑
σ

(c†j,σ cj+1,σ + H.c.)

+
L∑

j=1

∑
σ

[
v

2

(
j − L + 1

2

)2

+ t

]
c
†
j,σ cj,σ

+U

L∑
j=1

∑
σ 
=σ ′

nj,σ nj,σ ′ , (B1)

where the index j labels the lattice site and σ labels the
κ internal SU(κ)-invariant levels (species). The operators
cj,σ and c

†
j,σ are the creation and annihilation operators,

respectively, for a fermion at site j and of species σ , and
nj,σ measures the occupation of the site, nj,σ = c

†
j,σ cj,σ .

The coefficients of this model relate to the ones of the
dimensionless continuum model as t = 1/�y2, v = �y2, and
U = α/�y. Subsequently, the fermionic model is mapped to
a spin model.

All calculations were then performed with increasing
numbers of sites (i.e., diminishing lattice spacing, �y → 0)
and the quantities of interest were finite-size scaled to recover
the continuum limit.

The maximum number of lattice sites considered was
216 (ζ ∼= 12 and �y ∼= 0.055aho), and depending on the
configuration, the virtual bond dimension of the MPS was
chosen m = 200–500, corresponding to maximally discarded
probabilities �10−6.

Observables. The Tan’s contacts were calculated through
measurement of the interaction component in the ground-state
energy. Density distributions were forthrightly determined
through measurement of site occupation in the discretized
model; momentum distributions were obtained by Fourier
transformation of measured (fermionic) two-point correlators:

n(k) = 1

L

L∑
j,l=1

ei(j−l)k 〈c†j cl〉 . (B2)

In the numerical (spin) implementation, the fermionic two-
point correlators are measured as a multipoint observable
containing a Jordan-Wigner string.

Outlook. Incidentally, we notice that the identification of
the proper Young tableau associated to the ground state thanks
to the generalized Lieb-Mattis theorem (explained above)
would be of utmost utility as soon as our MPS libraries will
encompass non-Abelian symmetry groups as well (work in
progress), implying both a huge speed-up and a large memory
saving [59].

APPENDIX C: DETAILS ON THE SCALING RESULTS

We start by rescaling the Hamiltonian H = H0 + Hint of
Eqs. (1) and (2) in terms of the harmonic energy �ω and
length aho; i.e., we define a new dimensionless coordinate
yj = xj/aho and write

H = �ω

⎡
⎣ N∑

j=1

(
−1

2

∂2

∂y2
j

+ 1

2
y2

j

)
+ α

∑
j<j ′

δ(yj − yj ′ )

⎤
⎦,

(C1)

where α = ahomg1D/�
2 = 2aho/|a1D| is the natural choice for

a dimensionless parameter describing the relation between two
typical lengths of the problem, namely the 1D interaction and
the harmonic oscillator ones [3]. The O(N ) orbitals occupied
by the fermions give a contribution O(N2)�ω to the nonin-
teracting energy and therefore make the energy per particle
diverge in the thermodynamic limit (TL) N → ∞, unless we
keep constant the Fermi energy at α0 → ∞, i.e., E(∞)

F = N�ω.
This corresponds to keeping the density ρ = N/L fixed in the
Bethe-ansatz solution of the homogeneous system of length
L [9,10,30–33] (kF = πρ and E

(∞)
F = �

2k2
F/2m there). The

TL is then best studied then by introducing a further rescaling
yj → yj/

√
N ,

H = E
(∞)
F

⎡
⎣ N∑

j=1

−1

2

∂2

∂y2
j

+ 1

2N2
y2

j + α0

∑
j<j ′

δ(yj − yj ′ )

⎤
⎦,

(C2)

where the Hamiltonian in square brackets can now only
give origin to a energy per particle which is a intensive
dimensionless function of α0 only (and, strictly speaking, of
the single-species polarization pν , too),

E/N = E
(∞)
F f (α0,{pν}) = N�ωf (α/

√
N,{pν}), (C3)

as provided in the main text, Eq. (8). This can be easily
verified in the extreme regimes α0 = 0 and α0 → ∞, where,
respectively, f (0,{pν}) = ∑

ν p2
ν/2 and f (∞,{pν}) = 1/2,

but remains at this stage a conjecture for intermediate regimes.
We remark, however, that the above corresponds also to taking
the ratio between the interaction coefficient and the effective
average density: The latter can be estimated by the number
of particles N divided by the rms length of the highest
occupied orbitals, which scales as

√
N . This procedure is

analogous to that encountered in the Bethe-ansatz solution
for the homogeneous system [9,10,30–33] in order to write
E/N ∝ ρ2e(γ ), with γ = mg1D/�

2ρ, which turns out to be
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valid at all values of γ . Therefore, we have found reasons to
expect its validity in a large regime of α0.

APPENDIX D: DETAILS ON THE BETHE-ANSATZ
LOCAL-DENSITY APPROXIMATION (BALDA)

General features. Here we show the full derivation of
the local-density approximation to the density-functional
approach theory, under which the above-conjectured scaling
of Eq. (C3) is formally exact for any N . Practically, it is exact
up to corrections to LDA, indeed. First, we can stay general
about the composition of the mixture with total density ρ(x)
and define the energy functional

E[ρ] =
∫

{ε[ρ,γ ] + [Vext(x) − μ]ρ(x)}dx, (D1)

where Vext = mω2x2/2 and

ε[ρ,γ ] = �
2

2m
ρ3e(γ ), (D2)

with γ = mg1D/�
2ρ and e(γ ) is the dimensionless equation

of state for the mixture which can be obtained from Bethe-
ansatz [9,10,30–33]. The density profile is then obtained by
minimizing the energy, i.e., δE[ρ]/δρ = 0 or equivalently
∂ε/∂ρ = μ − Vext. Using Eq. (D2) we have

3

2

�
2

m
ρ2e(γ ) − g1D

2
ρe′(γ ) = μ − Vext(x). (D3)

The density is obtained by inversion of the above equation
together with the normalization condition

∫
ρ(x)dx = N ,

which fixes the chemical potential, and the positiveness of the
right-hand side, which fixes a compact support x ∈ [−R,R],

with R = aho

√
2Nμ/E

(∞)
F the Thomas-Fermi radius.

In order to obtain the contact, we use the Hellmann-
Feynman theorem Eint = g1D∂E/∂g1D, together with the Tan’s
relation (7), Ctot = Eintg1Dm2/π�

4:

Ctot = g2
1Dm2

2π�4

∫
dxρ2(x)e′

[
mg1D

�2ρ(x)

]
. (D4)

The combined solution of Eqs. (D4) and (D3) yields the LDA
expression for the contact.

The scaling property (C3) becomes apparent by the follow-
ing change of variables in Eq. (D3): μ ≡ μ̃E

(∞)
F , z = x/R,

and r(z) = ahoρ(x)/
√

N (where we conveniently leave out a
factor

√
2μ̃), giving

3r(z)2e

[
α0

r(z)

]
− α0r(z)e′

[
α0

r(z)

]
= 2μ̃(1 − z2), (D5)

with normalization condition
√

2μ̃
∫ 1
−1 r(z)dz = 1. It is indeed

immediate to see that any dependence on N drops out from
the solution, apart from the factors involved in the change of
variables and that everything will be a function of α0 only.
The total energy can be computed by formally integrating
E = �ω

∫
Nμ̃(α/

√
N )dN , which by taking α0 as integration

variable is equivalent to

fBALDA(α0,{pν}) ≡ α4
0

∫ −2μ̃(α0)

α5
0

dα0, (D6)

and this concludes our proof.

Balanced mixture. For the strong-coupling regime α0 →
∞, in the specific case of a balanced mixture we can resort to
a series’ expansion of the dimensionless equation of state [33],

e(γ ) = π2

3

[
1 − 4Z1(κ)

γ
+ 12Z1(κ)2

γ 2

− 32

γ 3

(
Z1(κ)3 − Z3(κ) π2

15

)
+ O

(
1

γ 4

)]
(D7)

(with Z1 and Z3 defined in the main text), and similarly expand
μ̃ and r(z) as function of 1/α0 to solve Eq. (D5) [63]. By
then plugging the results into Eq. (D4), we finally obtain
the perturbative expressions for the contacts (12) and (13).
We remark here that the leading term (12) can be readily
obtained by employing the well-known analytical LDA profile
at infinite interactions, ρ(x) = √

2N
√

1 − (x/R)2/πaho, and
the lowest nonzero order of the derivative e′ � 4π2Z1(κ)/3γ 2

inside Eq. (D4).
Finally, we stress that strong-coupling expansions have

also been provided in Ref. [33] for imbalanced mixtures, and
they can be plugged into the above procedure to extract the
expressions for the contacts of each species for the specific
experimental setup.

APPENDIX E: CONSTRUCTION OF THE YOUNG
TABLEAUX

Here we specify how to determine which Young tableaux
are possible given a specific Fermi mixture and provide
some examples in the case of N = 6 fermions. We recall
that, in a Young tableau, boxes belonging to the same
line (column) correspond to a symmetric (antisymmetric)
exchange of particles [57]. The only restriction is that two
fermions belonging to the same component must follow the
Pauli principle. Trivially, for a single-component mixture, the

only possible tableau is . In nontrivial cases, the following

procedure is employed: First, we label the species by a letter,
starting from a for the most populated species and ordering
them by decreasing order of population. We then build the
tableaux by labeling their boxes with the previous species

0

0.1

0.2

0.3

-4 -2 0 2 4

n
(x

)
a

h
o
/N

x/aho

FIG. 6. Normalized density distributions n(x)/N in units of
1/aho, as a function of x/aho, for the case of balanced mixtures with
N = 6 and κ = 3. From the highest curve to the lowest: g1D = 0,
g1D = 1�ωaho, g1D = 10�ωaho, g1D = 100�ωaho, and g1D → ∞.
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labels, imposing that each label must appear only one time per
row. For example, in the case of a two-component balanced

mixture, the possibilities are
a b
a b
a b

,
a b
a b
a
b

,
a b
a
a
b
b

and
a
a
a
b
b
b

. Note that

when summing the dimensions of these tableaux (which are
given by the hook-length formula [57]), one recovers exactly
the dimension of the degenerate manifold: In the previous
example, 5 + 9 + 5 + 1 = 20 = 6!

3!3! .

APPENDIX F: DENSITY PROFILES AT FINITE
INTERACTIONS

We illustrate here the density profiles of the multicom-
ponent mixtures at various interaction strengths, as com-
pared with the density profiles obtained from the exact
solution. As shown in Fig. 6, at reduced interaction strength
α0 = 41 (g1D = 100�ωaho), the profiles are almost indistin-
guishable from the ones of the exact solution at infinite
interactions.
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