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Extended states in disordered one-dimensional systems in the presence of
the generalized N-mer correlations
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We have been investigating the problem of the Anderson localization in a disordered one-dimensional tight-
binding model. The disorder is created by the interaction of mobile particles with other species, immobilized
at random positions. We introduce a method of creating correlations in the optical lattices with such a kind of
disorder by using two different lattices with commensurate lattice lengths to hold two species of the particles.
Such a model, called the generalized random N -mer model, leads to the appearance of multiple extended states
in contrast to a localization of all states usually expected in one dimension. We develop a method, based on
properties of transfer matrices which can be used to determine the presence of extended states and their energies
for that class of correlations. Analytical results are compared with the numerical calculations for several cases
which can be realized in cold-atom experiments.
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I. INTRODUCTION

The phenomenon of the Anderson localization (AL)—a
suppression of transport in disordered systems—has been
extensively studied theoretically for over 50 years [1,2]. In
a disordered medium a wave function of a particle, after
multiple random scatterings, interferes destructively and as
a result the particle localizes with exponential profile. In
three-dimensional systems the localization appears only above
some critical amplitude of the disorder, thus the metal-insulator
transition is present; on the other hand in one dimension,
the localization occurs always—even for an arbitrarily weak
disorder [3]. An important exception is the case of correlated
disorder where extended states can appear even in one
dimension. As those states are separated and do not form
a continuous conducting phase, there is no phase transition.
Nevertheless, if the system is finite, transport is possible in the
windows of energy around extended states [4–9].

As AL is a one-particle interference effect, the strong
electron-electron and electron-phonon interactions make it
impossible to observe it in the solid-state systems, for which
it has been originally devised [although, for strong interacting
bosons it could be mapped to a system of noninteracting
fermions (which localizes) [10], also a vividly developing
field of many-body localization shows that interacting systems
could show Anderson-like localization effects [11,12]]. Media,
which allow investigation of AL as well as many other
solid-state physics models, are ultracold atomic gases in
electromagnetic fields. Particularly, periodic structures as crys-
tals can be simulated with optical lattices allowing unprece-
dented tunability of parameters, especially when supported
with techniques as the fast periodic modulation enabling a
modification of tunneling amplitudes or the methods allowing
tuning of interaction strengths (as Feshbach resonance or
confinement-induced resonances) [13–22]. Thus the optical
lattices are thought as the best up-to-date realization of
the idea of a quantum simulator—a system easy to control
experimentally which is mimicking physics of another system
hard to investigate.

AL has been observed in the ultracold atomic systems in
several setups (for the first time eight years ago) [23–25]. One-

particle limit, crucial for the localization has been obtained,
whether by using small density of particles or by turning
interactions down with the Feshbach resonances. One way
of creating disordered potential is the usage of the second
species of atoms, immobilized in the lattice at random positions
and acting as a static potential, which in the simplest setup
realizes as diagonal disorder with values taken from a binary
uncorrelated distribution [26–30]. Although in an experiment
correlations could appear as a result of a specific preparation
procedure, but it is hard to create more complex forms of them.

The main aim of this work is to find a class of disordered
systems which, being experimentally realizable, exhibits
nonstandard localization properties, i.e., for most energies
atoms are strongly localized but for several resonant energies
they travel freely throughout the system. Such setups could
be treated as tuneable band-pass filters for particle energies,
trapping all but a few atoms with precisely specified energies.
Thus, they could be used to shape matter waves leaving a
system in a way similar to shaping light pulses described
in [31].

Starting point for a study was random N -mer model, which
is well described theoretically and provides many delocalized
modes. However, in the experiment only short chains, giving
one or two extended states, could be easily generated. We
investigated the extension of the N -mer model into the gener-
alized N -mer model, which seems to be easier to create in the
experiment and also exhibits many delocalized modes. We also
provide a description of the transport properties of a wide class
of systems (including the N-mer model and its generalization),
giving better insight into reasons of appearance of extended
states and allowing analytical determination of their energies.

The article is structured as follows. First, we describe the
model we are using: one-dimensional tight-binding with the
disordered on-site energies and optionally with renormalized
tunneling amplitudes obtained via a fast periodic modulation
of on-site energies. We introduce also correlations in the form
of generalized N -mers. Next, we depict the general method
used for a determination of extended states energies. Finally,
we present the method of creating generalized N -mers in
optical lattices and apply our method to several experimentally
realizable systems. We show the numerical results confirming
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the existence of resonances and discuss viability of used
approximations for the case of long-range interactions.

II. MODEL

Let us consider a one-dimensional tight-binding model of
noninteracting bosons in an optical lattice described by the
Hamiltonian (with � set to 1):

H =
∑

i

(εini − ti(a
†
i ai+1 + H.c.)), (1)

where ni is the particle number operator at site i, ai(a
†
i ) denotes

bosonic annihilation (creation) operators, while εi is the on-site
energy and ti the tunneling amplitude between sites i and
i + 1. The disorder in on-site energies εi can be introduced by
using two species of atoms repulsively interacting with each
other (with intraspecies interaction still set to zero). The first
fraction, called mobile, has nonvanishing tunnelings, whereas
the second kind, called frozen (denoted with f superscript),
is immobilized in deep lattice and acts as the source of static,
randomly distributed potential. Such a system can be realized,
for example. by using two overlapping lattices with different
polarization and atoms in two hyperfine states each seeing
only one of the lattices [26] (lattice constants of those two
lattices will be denoted b and bf , lattice for mobile particles is
called main lattice, and all sites numbering is made referring
to it). This general scheme can lead to a wide range of different
models as one can choose the density of frozen particles, b/bf

ratio, and the range of interspecies interactions.
An inhomogeneity in tunnelings ti is present from the bare

fact that on-site energies are different (precise calculations can
be found in [9]), but this effect in our case is negligible. A
significant off-diagonal disorder can be introduced into the
system, by a fast periodic modulation of on-site energies
εi → εi(t) = εi + δεi sin(ωt), where εi is the mean energy
and δεi the amplitude of modulation (in our model it can
be obtained by modulation of interspecies interaction). In the
scope of the Floquet theory, if only modulation frequency
is much higher than the other energy scales in the system
(as the tunneling amplitude), one can find a time-independent
effective Hamiltonian, which governs dynamics of the system
for times much larger than the modulation period [16,32–34].
In the presented case, the result is well known [35]; one gets
the Hamiltonian with renormalized tunnelings:

ti = J0

(
δεi+1 − δεi

ω

)
, (2)

where J0 is the zeroth-order Bessel function (we used the
unperturbed tunneling rate as the energy scale).

Due to the Anderson theory of localization, if εi or ti
are taken from a random uncorrelated distribution, all states
of the Hamiltonian should be exponentially localized (with
the exception of a somewhat special case of the band center
for a purely off-diagonal disorder [36]). As it was shown in
numerous works, extended states could appear if the disorder
distribution is correlated [4–9]. In this paper one special
class of correlations will be considered: generalized N-mers
(gnmers). In this type of correlation we assume that the system
is composed of a finite number of different block types (ranging

FIG. 1. One-dimensional lattice with disorder in the form of
generalized N-mers (gnmers). Boxes denotes different blocks, for
each block type set of on-site energies, and tunnelings is always
the same, so it is possible to calculate transfer matrix through block
T (E) for particle with energy E. The whole system is composed of
randomly ordered blocks.

over many lattice sites). The internal structure of each block
type is fixed, only ordering of the blocks is random (see Fig. 1).

III. METHOD OF FINDING EXTENDED STATES

In the system given by the Hamiltonian (1), transport
through the site i can be described by a transfer matrix Ti

defined by the equation:(
ψi+1

ψi

)
=

(
εi−E

ti
− ti−1

ti

1 0

)(
ψi

ψi−1

)
≡ Ti

(
ψi

ψi−1

)
, (3)

where E is an energy of a state and ψi is a value of a wave
function on site i. By iterating the procedure (3) one can get
the transfer matrix describing transport through an arbitrarily
chosen part of the system (from site i to j ),(

ψj+1

ψj

)
= Tj · . . . · Ti

(
ψi

ψi−1

)
≡ T

j

i

(
ψi

ψi−1

)
. (4)

Alternatively, one can focus not on a specific position in
the lattice, but rather on one isolated block—a specific set
of on-site energies eX = {εX

1 , . . . ,εX
lX

} and tunnelings tX =
{1,tX1 , . . . ,tXlX−1,1} where lX is the length of the block. We
assume that tunnelings at block edges are equal to one and
the same for all block types—we will show later that this
assumption is reasonable for considered systems. The transfer
matrix for given structure reads

TA(E) = T (eA,tA,E) =
lA∏
i

(
εA
i −E

tAi
− tAi−1

tAi

1 0

)
. (5)

For case of the gnmers the transfer matrix for the whole system
T can be decomposed into the product of the transfer matrices
for different blocks (as in Fig. 1):

T (E) =
∏
X

TX(E),

TX(E) ∈ T = {TA(E),TB(E) . . .} − finite set. (6)

If it is possible to find energy ER , for which all transfer matrices
commute pairwise,

[TX(ER),TY (ER)] = 0 ∀TX(ER),TY (ER) ∈ T, (7)

the state with energy ER will be extended. For this energy one
matrix diagonalizing all transfer matrices in T could be found
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(denoted C):

T = C(C−1T C)C−1 = C

(∏
i

C−1Ti(ER)C

)
C−1

= C

(∏
i

Di(ER)

)
C−1, (8)

where Di(E) is a diagonal form of Ti(E). As long as ER lies
within the band for all types of blocks,

Di(ER) =
(

αi 0
0 α∗

i

)
, (9)

and |αi | = 1 ∀i. Subsequent multiplication of Di’s preserves
the length of α changing its phase. It is a behavior characteristic
for a plane wave propagation rather than for the Anderson
localization, when we will expect the exponential growth and
fall of eigenvalues [37].

In the further analysis we will restrict ourselves to the case
of two structures TA(E) and TB(E). Then there is only one
commutator and we search for ER for which

[TA(ER),TB(ER)] = 0. (10)

In this case, even if some parameters change slightly, if only
a perturbation is weak enough, ER could change but the
resonance will not vanish. On the other hand, although, it
is in principle possible to construct an arbitrary large set
of 2 × 2 matrices commuting pairwise, it is much harder to
observe resonance then. In an ideal case resonant energy will
be the same for every commutator E

(j )
r = ER ∀j , but in

the perturbed system those energies could change differently:
E

(j )′
r = E

j
r + εj and the resonance will vanish. This can be

possibly a method of making some very precise measurements
as we get a strong signal only for fine-tuned parameters, but
in this paper we will not continue this thread.

Equation (10) could be simplified if the distribution of on-
site energies and tunneling amplitudes in both structures is
symmetric (which is the case discussed here but does not have
to be true, for example, for ratchet potentials [38]), then,

T
(11)
A − T

(22)
A

T
(11)
B − T

(22)
B

= T
(21)
A

T
(21)
B

, (11)

where T
(ij )
X denotes the element ij of the matrix TX.

IV. POSSIBLE REALIZATIONS

As we have stated, there are numerous scenarios that can be
simulated by the general scheme sketched above; here we will
focus only on a few of them. Let us assume that at most one
frozen particle is allowed on each site, which can be realized by
using spin polarized fermions or strongly repelling (hardcore)
bosons. From now on we fix the energy scale by setting the
unperturbed tunneling rate to 1 [ti = 1, for all i unless changed,
for example, by fast periodic modulation as in (2)].

A. Binary disorder (bd)

Binary disorder (bd) can be created if the lattice constants
are equal (b = bf ) and the species interact only on-site. Then

the εi in (1),

εbd
i = V n

f

i , (12)

where V is the interspecies interaction energy, thus effective
on-site energies could take two randomly distributed values
0 and V . In principle, the distribution of frozen particles is
uncorrelated and no extended modes appear, yet there exists
a simple and theoretically well-described form of correlations
that can exist in such systems—N -mers. In a random N -mer
model we assume that the frozen particles always come in
rows of a given length. Although, it is possible to create
this kind of correlation by careful setup of an experiment,
as described in [39] for the case of random dimers or in [9] for
the similar case of dual random dimers (frozen particles are
always separated by at least one empty site), generating longer
chains using such methods is cumbersome. The analytical
expression for the positions of delocalized modes in N -mer is
well known and can be found using several methods [8,40–43].
It is, however, worth checking how our method works with it
and what additional information we can obtain. By T l

ε (E) we
denote the transfer matrix through the block of length l, with
on-site energy ε. It can be shown that such a matrix reads

T l
ε (E) =

(
Ul(ε/2) −Ul−1(ε/2)

Ul−1(ε/2) −Ul−2(ε/2)

)
, (13)

where Ul is the lth Chebyshev polynomial of the second
kind and ε = ε − E [43]. If we have a system composed of
rows with on-site energy ε (TA = T l

ε (E)) and empty spaces of
arbitrary length (TB = T 1

0 (E)), it is straightforward to check
that [T l

ε ,T
1

0 ] = 0 if Ul−1 = 0. Knowing zeros of Chebyshev
polynomial we can get resonant energies,

ER = ε + 2 cos
(π

l
i
)
, for i ∈ {1, . . . ,l − 1}. (14)

For us the fact that for those energies T l
ε (ER) = I is more

important. The identity matrix commutes with everything,
therefore in systems in which one of structures is N -mer, we
will always obtain a set of resonant energies given by (14)
regardless of the other structure. In such a case we can
also use recurrence properties of the Chebyshev polynomials
(Ul+1(x) = 2xUl(x) − Ul−1(x)) to simplify the relation (11)
into

T
(11)
B (E) = εT

(21)
B (E) + T

(22)
B (E), (15)

where TB is a transfer matrix for the other (not necessarily
N -mer) type of structure.

B. Generalized N-mers

Generalized N-mers (gnmers) can be created in setups with
bf = lb where l ∈ N. In such a case one site for the frozen
atoms range over l sites for the mobile ones and we can
distinguish two types of structures (as in Fig. 2):

(1) Empty rows (TA(E) = T l
0 (E)).

(2) Structures with an inhomogeneous set of energies eB

and/or tunnelings tB [TB(E)].
As TA(E) describes an empty row—special case of N -

mer—it will provide l − 1 resonances (14) (albeit some of
them may be suppressed due to falling out of the band for
structure B).

053613-3



JAN MAJOR PHYSICAL REVIEW A 94, 053613 (2016)

FIG. 2. Setup for gnmer (with length l = bf /b = 3): two over-
lapping optical lattices (shifted on picture). The first lattice affects the
mobile particles, the latter the frozen ones. If the interactions between
the species falls with the distance fast enough, we can decompose
such a system into two types of blocks of length l. When the frozen
particle is absent l corresponding sites of the main lattice have zero
on-site energy, when it is present (depicted as red disk), it effectively
changes energies in l sites of the main lattice in a fixed way.

The structure of the block B is crucial for the existence
of additional resonances. We will focus on examples possible
to create in the presented setup. An interaction with a frozen
atom will be the strongest at the central site of the structure
and it will fall towards the edges of the block. We assume
that the interactions become negligible for distances bigger
than the width of one block. In this scope N -mers presented
in the preceding paragraph could be treated as one limiting
case of gnmers: with interactions constant for the whole range
of one block (square wall), which is a rather unphysical
setting.

The opposite case (yet physical) are short-ranged interac-
tions (sr), when interaction between the frozen and the mobile
particles is nonzero only in one central site of the block. Thus
esr is defined by εsr

0 = V and εsr
i = 0 for i �= 0 (for the sake of

clarity, from now on we will use only gnmers with odd l and
adopt intuitive numbering with i = 0 in the central site of the
block and i ∈ [−(l − 1)/2,(l − 1)/2].). For this case

Tsr(V,l,E) = T l
0 (E) + T

(l−1)/2
0 (E) ·

(
V 0
0 0

)
· T

(l−1)/2
0 (E).

(16)

It is straightforward to show using recurrence properties of
Chebyshev polynomials that (15) for Tsr is satisfied only for
V = 0. Thus in this simple case we do not have any additional
resonant energies. In this setup an additional extended mode
could be created by changing the tunneling amplitudes by
using the fast periodic modulation of interaction strength as
mentioned in the model description. In this case it will result in
changing ti only around central site i = 0 [namely t sr

0 = t sr
−1 =

t ′, where t ′ = J0(δV/ω) and δV is the amplitude of interaction
strength modulation and ω modulation frequency]; the rest of
the tunnelings are unaffected. We denote the transfer matrix
for this kind of block by Tsr′(V,t ′,l,E). For this model the
extended state appears (same as in DRDM model [9,35,43])
with ER = V/(1 − t ′2). In Fig. 3 we present the localization
length calculated numerically using the standard transfer
matrix method [37] (the localization length is given in units

FIG. 3. The localization length (in units of lattice constant) in the
function of the energy (in units of tunneling amplitude) calculated
numerically by the transfer matrix method for gnmer with TA =
T l

0 (E) and TB = Tsr(V,t ′,l,E) for l = 7, V = 1. Upper panel shows
results for t ′ = 0.5, the lower panel for t ′ = 0.6. Resonances are very
narrow and asymmetric as most of them lie at the edges of gaps in the
spectrum of Tsr; one resonance changes its position due to the change
of t ′.

of a lattice constant, i.e., a distance between the j th and ith
sites is |i − j |). The results are shown for TB = Tsr(V,t ′,l,E)
with V = 1, l = 7 and for two different t ′ ∈ {0.5,0.6} (upper
and lower panels). All predicted extended modes are present;
one of them (created by the presence of t ′ �= 1) can be
moved relatively to others. The chosen parameters could be
attained in an experiment. The necessity of using two optical
lattices with lattice constants differing by a large factor (in
our case 7) seems to be the most demanding experimental
requirement, but it could be met (even solely in infrared),
with the use of the CO2 laser (with wavelength 10.6 μm) [44]

FIG. 4. Solutions of Eq. (15) for TB = Tdim(V,Vd,l,E) for l = 7
and Vd = 0.9V in the function of energy and interaction strength (V )
(both in units of tunneling amplitude). Blue solid lines represent real
solutions—for those parameters extended states exist; black dashed
lines are complex solutions, and in the vicinity of them localization
length could be large (especially if the imaginary component is small)
however is finite; red dotted lines are band edges for T A = T l

0 .

053613-4



EXTENDED STATES IN DISORDERED ONE-DIMENSIONAL . . . PHYSICAL REVIEW A 94, 053613 (2016)

FIG. 5. The localization length (in units of lattice constant)
in the function of the energy (in units of tunneling amplitude)
calculated numerically by the transfer matrix method. Black line
is the result of disorder in the form of gnmer with TA = T 7

0 (E) and
TB = Tdim(V,Vd,l,E) for l = 7, Vd = 0.9, and V = 1. Red dashed
line is the result of the same system but without interaction range
cutoff assumed in the case of gnmer. Green dotted vertical lines
represent predicted resonances, and some of them are out of the
band.

and lasers with frequencies from the telecommunication band
(1260–1675 nm) or similar [45].

For cases of exponentially or polynomially falling interac-
tions, resonant energies can be found by numerical solution
of (15) for given TB . As for most of the investigated models
results were qualitatively similar; we present only one case of
interactions falling with the third power of distance, namely
εB

0 = V , εB
i = Vd

|i|3 for i �= 0. Resonant energies calculated for
the blocks with TB = Tdim(V,Vd,l,E) (l = 7 and Vd/V = 0.9)
are plotted in Fig. 4; solid lines represent resonant energies
(real solutions), while dashed lines denote complex solutions.
Results of numerical calculations of localization length for this
model with V = 1 are shown in Fig. 5. In this system most
of the resonances appear on predicted positions. Three of the
resonances are absent as they are lying out of the bands. The
resonance for E ≈ 0.02 could be moved relatively to rest by
changing V or Vd .

Finally we will comment on the assumption that blocks are
separable. The situation is clear for short-ranged interactions,
moreover it automatically satisfies another assumption we
made—that tunnelings at block edges are always the same.
It is so as tunneling amplitudes depend on the difference of
on-site energies, thus if on-site energies have negligible values,
the change of tunneling can also be neglected.

For long-range interactions we could check if eliminating
the assumption that blocks are separable qualitatively changes
the numerical results. For the case presented above, we
calculated propagation of particle in potential with the same
cubic decay and the same parameters as for edim but without the
cutoff on block edges (practically in calculations cutoff was
set for interaction strength smaller than 2 × 10−5). Results
are plotted in Fig. 5 with red dashed line. Although some
features differ and we could not prove that resonances are
infinite, qualitatively the plots are the same. It shows that at
least in some cases resonances do not vanish immediately
if interactions are long ranged and the assumption of block
separability is not well preserved.

V. CONCLUSIONS

We described the one-dimensional tight-binding model
with the correlated disorder of a specific type, created by
using two species of ultracold atoms in two optical lattices
with perpendicular polarization. In such a setup, if lattice
constants of two lattices are commensurable (but not equal),
the correlations of a type of generalized N -mer appear—the
system is composed of randomly ordered blocks of two
types. For such a system, there can exist extended states and
we devised a simple formula allowing the determination of
their energies. We showed that for experimentally attainable
parameters there exist systems with multiple extended modes
and confronted analytical predictions with numerical calcu-
lations of localization length for such systems. Furthermore,
we checked that even for long-ranged interactions, cutting
interaction range at the edge of one block gives qualitatively
good results. Presented systems could be used as tunable
band-pass filters for particle energies, trapping all atoms but
those with very specific energies, thus allowing creation of
a multimode “gun” for matter waves. The general scheme
presented in Sec. III could also be used to engineer systems
with narrow bands of conductance in other media such as
optical waveguides [46] or semiconductor nanostructures [47].
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