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Phase transition in an Aubry-André system with a rapidly oscillating magnetic field
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We investigate a variant of the Aubry-André-Harper (AAH) model corresponding to a bosonic optical lattice of
ultracold atoms under an effective oscillatory magnetic field. In the limit of high-frequency oscillation, the system
maybe approximated by an effective time-independent Hamiltonian. We have studied localization-delocalization
transition exhibited by the effective Hamiltonian. The effective Hamiltonian is found to retain the tight-binding
tridiagonal form in position space. In a striking contrast to the usual AAH model, this non-dual system shows an
energy-dependent mobility edge—a feature which is usually reminiscent of Hamiltonians with beyond-nearest-
neighbor hoppings in real space. Finally, we discuss possibilities of experimentally realizing this system in optical
lattices.
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I. INTRODUCTION

Ever since its proposal by Anderson [1], localization, and
transitions between localized and extended states, have been
studied in a variety of systems [2]. Extensive analysis has been
undertaken to understand various aspects of metal-insulator
transitions, localization as well as the existence of mobility
edges in quasiperiodic or disordered one-dimensional (1D)
lattices using scaling and renormalization techniques [3–10].
A system which has served as a rich prototype for such
studies is the Hamiltonian, originally due to Harper [11], and
investigated for phase transitions by Aubry and André [12].

An important feature of the Harper Hamiltonian is the
existence of a metal-insulator transition [12] reminiscent of
an Anderson transition. However, a notable difference is the
absence of an energy-dependent mobility edge separating
the localized and extended states, which is a distinguishing
feature of the Anderson transition in three dimensions (3D).
The Aubry-André-Harper (AAH) Hamiltonian exhibits a
sharp, duality driven, transition at a unique critical value of
the lattice modulation strength for all energies [13–16]. An
ensuing trend in recent works has been to develop variations on
the model which manifest a Anderson-transition-like mobility
edge [17,18].

The quest is legitimized further by the substantial progress
made by the cold atom community in reproducing complex
condensed-matter phenomena including Anderson localiza-
tion [19,20].

The experimental investigation of localization in 1D
systems, especially of the incommensurate crystalline va-
riety has witnessed a sustained interest ever since such
lattices could be realized by using ultracold atoms in
a bichromatic optical potential, or photonic quasicrystals
[20–27]. These studies have ranged from direct experimen-
tal demonstration [20,22,28–31] to numerical calculations
[23–25] with accompanying proposals for observing the
appearance of localized phases and the metal to insulator
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or superfluid to Mott insulator transition (in the presence
of interactions). Here, the control on the degree of com-
mensurability has helped to identify the point of transition
which, in the AAH model is the self-duality-induced critical
point [27]. The Hofstadter variant and the AAH model
in a two-dimensional (2D) optical lattice have also been
successfully realized [32,33], in the context of simulating
homogeneous magnetic fields in optical lattices. The effects of
periodic driving on localization phenomena in 1D disordered
systems as a possible means of weakening localization and
arriving at extended or nonlocal states has shown encouraging
results [34,35]. Similar pursuits in AAH systems with a view
to analyzing diffusive transport behavior and wave-packet
dynamics in the presence of driving have been promising in
terms of appearance of delocalized states [36–38].

The technique of “shaking” of ultracold atoms in optical
lattices has risen to prominence as a flexible means of
generating new effective Hamiltonians which may replicate
the effects of disorder, curvature, stresses and strains, and
several other phenomena as synthetic gauge fields both Abelian
or non-Abelian [21,39–41]. Some recent studies in driven
cold atom setups have looked at induced resonant couplings
between localized states, thereby making them extended [42]
or at localization through incommensurate periodic kicks to
an optical lattice [43]. In these models, the phase transition,
instead of being driven by disorder, is a consequence of
deliberate incommensurate periodicity. Demonstration of this
behavior has also been sought in a phase-space analysis of the
transition [44,45].

However, conspicuous by their absence have been works
which look at the AAH model with a rapidly oscillating
magnetic field, using the extensive tunability of cold atom
setups. The existing study of AAH systems assumes the
magnetic field to be static in time. If the magnetic field is
periodic, then one may find a perturbative solution in the limit
of high-frequency driving. We address this neglected aspect by
employing a formalism based on Floquet analysis to obtain an
approximate effective time-independent Hamiltonian for the
system [46–51]. A pertinent enquiry about the effective system
would be to look for a metal-to-insulator phase transition with
an energy-dependent mobility edge.

In this work, we consider a high-frequency, sinusoidal
effective magnetic field which couples minimally to the AAH
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Hamiltonian. The effective Hamiltonian is obtained for this
system and its localization characteristics are compared with
the usual self-dual AAH model in real and Fourier space. An
energy-dependent mobility edge has already been studied in
the context of an AAH Hamiltonian with an exponentially
decaying strength of hopping parameters (beyond-nearest-
neighbor coupling) [17]. We explore the possibility of a
similar mobility edge in our physically motivated effective
Hamiltonian with only nearest-neighbor hopping. The non-
self-dual nature of our model is analyzed and some general
features are investigated. In the discussion section, we attempt
to reconcile our findings for the specific case with generic
features of such non-dual models thereby putting the results in
perspective. Finally, we discuss some possible experimental
techniques that could be adapted to realize a version of
the model presented here. Here, we highlight the difficulties
involved in doing so and compare our model to some other
driven cold atom AAH models in the literature.

II. FORMALISM

Recent successes in synthesizing tunable, possibly-time-
dependent artificial gauge fields for systems of ultracold
neutral atoms in optical lattices [52,53] has opened a gate-
way to the strong-field regime required for Hofstadter-like
systems [54]. The system to be studied here may also be
realized as an incommensurate superposition of two 1D optical
lattices [27], with the laser beams for one of them undergoing a
time-dependent frequency modulation. This shall be discussed
in detail later, under Experimental Aspects.

We consider a tight-binding Hamiltonian with nearest-
neighbor coupling that can be expressed as a time-dependent
Aubry-André-Harper Hamiltonian of the form H (t) = H0 +
V (t), where

H0 =
∑

n

|n〉〈n + 1| + |n〉〈n − 1|,

V (t) =V0

∑
n

cos[2πα0n cos(ωt) + θ ]|n〉〈n|.
(1)

The summation here runs over all lattice sites. The time-
dependent parameter α(t) = α0 cos(ωt) denotes the flux
quanta per unit cell. An irrational value of α0 renders the
on-site potential quasiperiodic. The harmonic time dependence
of α(t) owes its origin to a time-dependent magnetic field
B = B0 cos(ωt)ẑ. The other parameter θ is an arbitrary phase.
The |n〉 are the Wannier states pinned to the lattice sites which
are used as the basis for representing the Hamiltonian and
V0 denotes the strength of the on-site potential. The time
dependence in the argument of the cosine modulation of the
on-site potential is different from the usual time-dependent
AAH models where it is in the overall magnitude of the on-site

potential. The periodic time-dependent operator V (t) can be
expanded in a Fourier series as

V (t) = V̂0 +
∑

1�j<∞
V̂j e

ijωt +
∑

1�j<∞
V̂−j e

−ijωt . (2)

To obtain the effective time-independent Hamiltonian one
writes the time evolution operator as

U (ti ,tf ) = e−iF̂ (tf )e−iHeff (tf −ti )eiF̂ (ti ), (3)
where one introduces a time-dependent Hermitian operator F̂ .
The idea is to push all the time dependence to the initial and
final “kick” terms and render the main time evolution to be
dictated by a time-independent Hamiltonian. The systematic
formalism yields in the limit of large ω the following perturba-
tive expansion for the effective time-independent Hamiltonian
given by [50]

Heff = H0 + V̂0 + 1

ω

∞∑
j=1

1

j
[V̂j ,V̂−j ]

+ 1

2ω2

∞∑
j=1

1

j 2
([[V̂j ,H0],V̂−j ] + H.c.) + O(ω−3), (4)

where ω−1 is the small perturbation parameter, and the series
is truncated at O(ω−2). To find the effective approximate
Hamiltonian representing our system in the large-ω limit, one
needs to compute the Fourier coefficients in Eq. (2). This is
done by using the following commonly valid expansions [55]:

cos(r cos x) = J0(r) + 2
∞∑

p=1

(−1)pJ2p
(r) cos(2px),

sin(r cos x) = 2
∞∑

p=1

(−1)p−1J2p−1 (r) cos[(2p − 1)x], (5)

where J
n
(r) are Bessel functions of order n. The Fourier

coefficients of V (t) may be obtained by inverting Eq. (2) by
using these expansions. We obtain

V̂j =(−1)
j

2 V0 cos θ
∑

n

J
j
(2πα0n)|n〉〈n|, j = ±2,4,6, . . . ,

V̂j =(−1)
j+1

2 V0 sin θ
∑

n

J
j
(2πα0n)|n〉〈n|, j = ±1,3,5, . . . ,

V̂0 = V0 cos θ
∑

n

J0 (2πα0n)|n〉〈n|. (6)

We find that [V̂j ,V̂−j ] = 0 owing to the symmetric nature of
the Fourier coefficients (for real V ). Therefore, the O(ω−1)
correction to the effective Hamiltonian vanishes and the first
nontrivial correction is at O(ω−2). The O(ω−2) term of the
effective Hamiltonian would require the commutator bracket
[[V̂j ,H0],V̂−j ], which on evaluation yields

[[V̂j ,H0],V̂−j ] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
n −V 2

0 cos2 θ [(J
j
(2πα0(n + 1)) − J

j
(2πα0n))2|n〉〈n + 1|

+(J
j
(2πα0(n − 1)) − J

j
(2πα0n))2|n〉〈n − 1|] if j = ±2,4,6, . . .

∑
n −V 2

0 sin2 θ [(J
j
(2πα0(n + 1)) − J

j
(2πα0n))2|n〉〈n + 1|

+(J
j
(2πα0(n − 1)) − J

j
(2πα0n))2|n〉〈n − 1|] if j = ±1,3,5, . . ..

(7)
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By using the above expression in Eq. (4) we obtain the effective
Hamiltonian, Heff , for our system. We find that, up to O(ω−2),
the effective Hamiltonian yields a nearest-neighbor tight-
binding model with a zeroth-order Bessel function modulating
the site energies, and higher-order Bessel functions make their
appearance in the hopping terms. There have been works
which have looked at inhomogeneities in the hopping of the
AAH model, arising not from driving but from the choice
of next-nearest-neighbour hoppings in the corresponding 2D
quantum Hall model [56–59]. However, these models consider
situations where the off-diagonal modulations are quasiperi-
odic through incommensurate modifications of cosine kind of
terms. In our case above, the incommensurability is embedded
in higher-order Bessel functions, thereby variations in hopping
strength are far more erratic and with signatures bordering
on those of disorder. This is expected to have ramifications
for both localized or extended behavior of the eigenstates.
This is discussed in the next section and illustrated through
localization phase plots.

III. RESULTS

The simple AAH model has a well-studied transition from
a localized (insulating) to a delocalized (metallic) phase which
occurs at a critical value V0 = 2. To quantify the localization
property we use the inverse participation ratio (IPR), which
is defined as IPR = ∑L

n=1 |an|4/(
∑L

n=1 |an|2)2 where an are
the expansion coefficients of the energy eigenstates in a local
discrete-site basis and L is the number of lattice sites [60,61].
The IPR takes a value in the range 1 to 1/L with 1 indicating
a perfectly localized state and 1/L for completely extended
states. Figure 1(a) shows the transition in the real space IPR for
the ground state of the AAH system with choice of irrational α0
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FIG. 1. (upper panel) The metal-to-insulator transition of the
AAH Hamiltonian for the system’s ground state. Plot (a) shows the
IPR versus V0 in real space for L = 144, 1597 and 10 946 (top to
bottom). The inset shows the variation of D2 with V0 which also
exhibits a transition. Plot (b) exhibits the mirror behavior in the dual
space. (lower panel) The transition seen in the IPR versus V0 curve
for the Heff . Plots (c) and (d) are the real- and dual-space plots for the
ground state with phase θ = 0.

as inverse of the golden mean (
√

5 − 1)/2 and L = 144, 1597,
and 10 946. The inset in this plot indicates variation in the
magnitude of the quantity |D2| with V0, where IPR ∝ L−D2 .
For a given V0, D2 is obtained by fitting a linear regression
line between ln IPR and ln L and thereby obtaining the slope.
The regression fit is done by using several values of L, taken to
be large Fibonacci numbers. In all the plots discussed here the
transitions depicted are for some finite choice of system size
and hence not exactly “step” changes but ramp up or down over
some finite range of V0 values. Furthermore, the references to
such transitions as abrupt or occurring at a critical value have
to be interpreted within such numerical constraints. D2 values
shows an abrupt transition from 1 to 0 at the critical value
irrespective of lattice size. This establishes the transition to
be a integral feature of the model even in the thermodynamic
limit of infinite lattice size and the critical point is protected in
this limit. To switch to states in the Fourier domain, i.e., |m〉
from the position space kets |n〉, we use the transformation

|m〉 = 1√
L

∑
n

exp(−i2πmα0n)|n〉. (8)

This enables one to write the AAH Hamiltonian in Fourier
space and compute the IPR in this space. Figure 1(b) shows
the transition in Fourier space for a set of parameters identical
to those in Fig. 1(a). Here again, the characteristic transition
occurs at the critical point V0 = 2 and the curves in Fig. 1(a) are
a mirror reflection of the curves in Fig. 1(b) about V0 = 2. This
is due to the exactly-self-dual nature of the AAH Hamiltonian.
Thus, an extended regime in real space implies a localized one
in Fourier space and vice versa. The inset for D2 in Fourier
space accordingly mirrors its real-space counterpart.

In the case of our effective model, the IPR for the ground
state exhibits a similar trend, as shown in Fig. 1(c). The
transition in this case for this state occurs at a new critical
value V0 ≈ 4.6, all parameters being kept the same as in former
plots. Another distinguishing feature of this transition for the
driven case is the manner in which the IPR values approach
the critical value and depart from it, relative to the behavior
in the standard AAH model. In the extended regime, instead
of the perfectly flat value of IPR ≈ 0, a slow positive gradient
is observed, indicating weak localization that progressively
gets stronger until a sharp surge occurs at the critical point.
Even beyond the transition there is a fall in the IPR due to the
still imperfect nature of the localization. This unique behavior
can be partially attributed to the non-self-dual nature of the
effective Hamiltonian which shall be discussed later. D2, in
the inset, continues to retain its scale-invariant attributes and
manifests the imprint of the transition. The difference from
the simple AAH model lies in the fall in its value from 1
to a lower plateau before the transition. An indication of the
existence of a parameter regime where the state is neither
purely localized nor extended but a sort of composite, i.e.,
critical and possibly multifractal. This is due to the unusual
behavior of the wave function in the case of α0 being a Liouville
irrational number, whereby, for some lattice modulations, no
finite localization length may be found over which the state
could be said to appreciably decay [15,16]. Figure 1(d), which
shows the Fourier-space IPR for our model exhibits reciprocal
behavior of the kind seen in the simple AAH model but
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FIG. 2. The localization phase diagram with IPR in the (E,V0) phase plane, for lattice size L = 4181 and three values of the variable θ :
(a) θ = 0, (b) θ = π/4, (c) θ = π/2.

with the major difference that Figs. 1(c) and 1(d) are not
mirror reflected about the same critical value. This deviation
is expected on grounds of the non-self-dual nature of our
system’s Hamiltonian. In Fourier space, D2 analogously is
not an exact mirror image of its real-space version but all other
qualitative characteristics remain the same. There are features
in the driven system’s Fourier-space IPR which stand in
contrast to the AAH model, as seen in Figs. 1(b) and 1(d). Most
notably, the driven model shows a discrimination between the
different lengths because the curves in Fig. 1(d) transition from
localized to extended regimes at different rates. This is not the
case in the ordinary AAH model, where all lengths transition
together, as seen in Fig. 1(b). This difference is an indicator
of non-nearest-neighbor couplings in our dual-space effective
Hamiltonian and the accompanying anomalous behavior of the
wave functions in a certain parameter range.

To understand how the properties of the transition are
related to the normal modes of the effective driven system,
we look at the localization phase diagram, i.e., the variation of
IPR with V0 and the low-energy region of the spectrum at each
V0 . Figure 2 shows the IPR in the V0-E plane. We consider
three such plots for values of the phase, θ = 0, θ = π/4, and
θ = π/2 in Eq. (1) and lattice size L = 4181. The nature of
the variation of IPR reveals a sharp energy-dependent mobility
edge for our model. The portion of the energy spectrum
for which the IPR variation has been illustrated is chosen
to clearly indicate the appearance of localized states. The
choice of values for the phase is intended to isolate and
compare the relative effects of the modified onsite term and
the site-dependent hopping terms. In all three plots the sector
corresponding to low-V0 values and near to E = 0 shows a
dense region of extended states which [see Eq. (1)], reflects
the bare hopping structure.

The features in the these phase diagrams owe their origin to
the relative dominance of different terms in the driven effective
Hamiltonian for a given θ . The anisotropy of the zero-order
Bessel modulated on-site energy adds impurity or disorder-like
effects on top of the inherent quasiperiodicity of the model.
The falloff of this on-site energy with lattice sites diminishes
the actual system size to a reduced one. The modified hopping
strengths are also site dependent and vary in an oscillatory
manner, with a damping with increasing site index. When
the onsite potential damps out, the hopping terms from H0

survive. This is expected to contribute to an increase in the
IPR as the behavior tends to one of a lattice with disorder.

These factors collectively influence the spectral spread and
density along with the localized-delocalized behavior of the
various eigenstates.

Figure 2(a), for θ = 0, depicts the appearance of quasilocal-
ized states (yellow fringes) at the boundaries of the extended
(deep blue) region. As V0 increases, the dense region of
extended states near E = 0 begins to manifest traces of
localization in IPR values, introducing the mobility edges. This
can be noted from the bifurcations of the phase boundary that
begin to show up with increasing V0 with localized eigenstates
piercing into portions of the spectrum which at lower V0 were
dominated by extended states. For higher energy the IPR values
vary primarily between critical and extended behavior. This is
notably absent in the plots for θ = π/4 and θ = π/2 where
critical behavior is hardly observed, and that too in a very
narrow region around the phase boundary. The wider gapping
in the eigenvalues as compared with the other two cases can be
accorded to the overall stronger influence of the on-site term
as compared to the hoppings.

Figure 2(b), for θ = π/4, includes the effects of all
the terms of the effective Hamiltonian. The appearance of
localized states around E = 0 takes place as before. However,
there is a notable lack of appearance of well-localized states
in the higher-energy regions as compared with Fig. 2(a). This
indicates a closer competition between the on-site and hopping
terms of the driven model. The significant localization effects,
hence mobility edges, appear distinctly in a band around
E = 0 and that too at higher V0. This may be accounted
for by the fact that, for θ = π/4, both the sine and cosine
modulations are present in the modified hopping [see Eq. (7)],
unlike the previous θ = 0 case. Apart from contributing to
the predominance of extended states in most of the spectrum,
this more influential hopping part also makes the spectrum
relatively less gapped.

Figure 2(c), for θ = π/2 has been specifically shown to
illustrate how the hopping terms in the driven AAH model
behave in the absence of any on-site term. For this choice
of θ the V̂0 in Eq. (6) goes to zero. As expected in the
presence of just the hopping, the IPR values show an extended
behavior everywhere in the phase plot. However, one can
still note a phase boundary differentiating the region of the
purely extended states from somewhat less extended ones.
The appearance and nature of the bifurcations in the boundary
of this dense part of the phase plot with changing V0 indicates
the qualitative effects of the inhomogeneities in the hopping
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terms. Looking at Figs. 2(a)–2(c) it is clear that the role of the
modulated onsite has the effect of enhancing the localization
of states as well as creating a sharper mobility edge.

This indicates that the driven model shows a strong
sensitivity to the phase θ in terms of the localization behavior
and the appearance of mobility edges. The number of these
edges, as can be seen, is more for the θ = π/4 case and
is almost absent in the phase plot for θ = π/2. A recent
work [62] looks at a topological classification of AAH models
with cosine-modulated hoppings which differ by a phase factor
from the onsite modulation. This helps to realize topologically
distinct families of AAH Hamiltonians with the possibility
of topological phase transitions between the different classes
via a modification of the lattice modulations. Similar behavior
would be interesting to study in our driven context.

IV. DISCUSSION

To qualitatively analyze some of our results we consider a
simplified model comprising of a trivial constant hopping term
and an on-site potential T which is aperiodic or quasiperiodic.
The Schrödinger equation is given by

an+1 + an−1 + �T (α0n + φ)an = Ean, (9)

where � is the strength of on-site energy and E are the energy
eigenvalues. One can go to the dual space for the above system
by defining an expansion, as follows:

an = eikn

√
L

∑
m

ãmeim(α0n+φ), (10)

where the ãm are the dual-space amplitudes, and k is a wave
vector from the Bloch wave expansion ansatz. This allows T

to be expressed as

T (α0n + φ) = 1√
L

∑
ḿ

Tḿeiḿ(α0n+φ). (11)

Equations (10) and (11) yield an on-site term in the dual
space from the the hopping terms of Eq. (9) as

an−1 + an+1 = eikn

√
L

∑
m

ãmeim(α0n+φ) cos(α0m + k), (12)

with a cosine modulation of the on-site energy (as seen in
the Aubry-André model). Interestingly, the real-space on-site
energy term transforms as

�T (α0n + φ)an = �eikn

L

∑
ḿ

∑
m

Tḿãmei(m+ḿ)(α0n+φ). (13)

The right-hand side (RHS) can be slightly rearranged to give

�eikn

L

∑
ḿ�=±1

∑
m

Tḿãm+ḿeim(α0n+φ)

+ �eikn

L

∑
m

(T1ãm−1 + T−1ãm+1)eim(α0n+φ). (14)

In the above form, the second term clearly indicates the
apparent nearest-neighbor hopping terms in the dual-space
whose strength is modulated by the Fourier components of T .
It is the first term in the above expression which explicitly

breaks the exact duality. The form of Tḿ determines the extent
to which different m values in the dual space are coupled.
It is well known that, for decaying oscillatory functions
such as sinc and the Bessel function of the zeroth order,
Tḿ is a rectangular function, with possibly a ḿ-dependent
modulation, symmetric about the origin. Thus, in our case,
we expect a truncation effect in dual space which restricts
the range of couplings. This deviation from exact duality
is expected to have some impact on the probability of an
“analytic accident” along the lines of Ref. [12]. The appearance
of localized states (real eigenfunctions) happens when there
are superpositions of counterpropagating plane waves with
wave vectors of near-commensurate magnitude. This would
mean, in our model, some harmonics from the expansion of
T shall scatter the wave with wave vector k by an amount
commensurate with 2nπ . This has to be considered together
with the fact that, for a rational approximation of α0 as a
ratio of two large successive Fibonacci numbers, the true
momentum (Fourier) space eigenvalues κ are related to m as
κ = mFi−1modFi , where Fi−1 and Fi are successive Fibonacci
numbers [5,44]. Thus, what appear to be close neighbors in
m could possibly be well separated in the actual wave-vector
space. Furthermore, the range of m values that shall remain
coupled in the dual space will be dictated by the extent of
T in the real lattice, for example, the first zero in the Bessel
function. The set of m which conspires with a given k value to
yield a localized state shall be dictated by V0 and E(k). This
explains the energy-dependent mobility edge in Fig. 2.

In the dual space, where k acts as a phase [see Eq. (12)],
a state localized at few m values could be shifted by
large amounts for a small change in k. This allows for the
interpretation that a small change in φ could in effect cause
a state localized around some lattice site to localize about a
far-off site. In terms of symmetry, the absence of translational
invariance in Euclidean space of quasiperiodic structures
with two incommensurate periodicities can be restored in an
extended space by using the φ dimension [63,64]. This effect
of φ on localization properties leads to the differences between
the three plots in Fig. 2.

V. EXPERIMENTAL ASPECTS

The experimental realization of our system may be achieved
in several different ways, with ease and feasibility of imple-
mentation being the guiding criteria in the choice of method.
We will explore two options here, from recent literature, which
are promising. One way is to begin with a 2D optical lattice
and then proceed in the manner described in some recent
realizations of the Harper-Hofstadter Hamiltonian [32,33]. The
notion of simulating a synthetic magnetic field by means of
generating effective flux per plaquette of the lattice is a generic
feature. However, the true appeal of these methods compared
to others for generating artificial magnetic fields for ultracold
neutral alkali-metal atoms in optical lattices, is the absence of
coupling between different hyperfine states of the atoms. It is
possible therefore to proceed with a single internal state and
far-detuned lasers to achieve homogeneous magnetic fields by
a laser-assisted hopping process. A pair of far-detuned Raman
lasers is employed, while tunneling in a particular direction
is obstructed by means of a gradient or ramp in the site
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energies using gravity or magnetic fields, to restore resonant
tunneling between sites. The AAH Hamiltonian is obtained
in a time-independent effective way by averaging over the
high-frequency terms and the hopping energy is modified by
a complex position-dependent phase.

We suggest using Raman lasers of frequencies close to
those of the optical lattice lasers, as prescribed by the authors,
and to use the tunability of the flux per plaquette α0 offered
by such choice, to set it to an irrational value by adjusting
the angle between the Raman beams. Introducing the time
dependence is admittedly tricky. This is due to the fact that
the static Harper Hamiltonian in the above technique is itself
achieved by time averaging and we need it to have a further
residual time dependence. For this one would have to vary α0

periodically by say, modifying the angle between the Raman
lasers periodically with time together with simultaneous time
modulations of the detunings and the gradients in a fashion
that the overall effect is of a periodic change that is of a
rate slower than the oscillations to be averaged over while
resonant tunneling occurs, but fast enough to remain detuned
from the energy gap between the ground and excited Bloch
bands of the trapped atoms in the lattice potential. This yields
a timescale which survives the first averaging and gives one a
time-dependent AAH Hamiltonian effectively being driven by
an oscillating magnetic field. There are some obstacles to be
overcome here such as arranging the time-dependent detunings
and the angular variation of the Raman lasers so as to vary α0

sinusoidally as a function of time effectively, since there is a
good chance of getting high-frequency noisy components that
have to be averaged over. Another issue is that the scheme
does not realize the simple Landau gauge for a magnetic field.
We use this gauge in our analysis but the results, essentially
the nature and existence of the Metal-insulator transition, are
independent of any such choice through the gauge freedom
embodied in the choice of θ in the AAH Hamiltonian [12].
The analysis then would be modified only up to a gauge
transformation. It would indeed be interesting if the method
could be modified to include the Landau gauge.

On account of the multiple time-dependent modulations
in the realization just discussed, heating and spontaneous pho-
tonic emission processes are a legitimate source of concern. We
would like to outline another approach by using a quasiperiodic
1D optical lattice which may have better characteristics as
regards dissipative processes. Here we suggest using the
bichromatic 1D optical lattice realization of the AAH model as
described in Ref. [27] and suitably modifying it to implement
our model. Essentially, a bichromatic optical lattice setup
is one with a pair of superposed standing waves wherein
one provides the tight-binding structure to the Hamiltonian
and the other, a weak secondary perturbing potential which,
through adjustable noncommensurability of its wavelength
with that of the first, offers a quasiperiodic or pseudorandom
potential for the ultracold gas of atoms even to the extent of
mimicking quasidisorder in the lattice [20]. The two standing
waves have wavelengths in the ratio of two consecutive
Fibonacci numbers. This helps to realize a workable notion
of incommensurability in a finite lattice system by tending
the value of the α0 to near the inverse of the golden mean.
As suggested in Ref. [27], this is the key requirement for the
observation of a transition from extended to localized states,

i.e., to keep a large number of lattice sites in a single period of
the on-site potential for finite systems.

The next step is to systematically introduce the driving. This
is done by introducing a time dependence in the ratio of the
wavelengths of the two standing-wave lattices. More precisely,
to do this we suggest generating the two standing waves by
using beam splitting and retroreflection by mirrors. If now the
reflecting mirror corresponding to the primary tight-binding
lattice is shaken according to a protocol which mimics a
sinusoidal drive say, by mounting it on a piezoelectric motor,
it should be in principle possible to generate a sinusoidal time
dependence in the irrational flux term. It would be preferable
to use actuators that move the mirrors so as to produce
acceleration effects on the lattice such that one may achieve
time-dependent Doppler shifts in the frequency and hence
wavelengths of the stationary waves (where one averages
over the fast oscillations in the amplitudes to get the hopping
terms) which could be controlled in a sinusoidal fashion. This
may be technically demanding under the present capabilities
of shaking in optical lattice systems but is definitely worth
exploring as a powerful instrument for studying effective
Hamiltonians in a new time-dependent regime.

In the two approaches highlighted above, the respective
works [32] and [27] provide a clear map between the
parameters of the simulated model and the experimental pa-
rameters such as laser intensities, recoil energies of the trapped
neutral atoms, and the energy gap between the ground state
and lowest-excited Bloch band in the lattice. This mapping
translates readily to the formalism of calculating the effective
Hamiltonian. For instance, in the case of the bichromatic
construction the mapping of the continuous optical potential
to a tight-binding picture has been carried out in Ref. [27]
by using a set of local Wannier basis states. As per this
construction our time-dependent model, see Eq. (1) would have
V0 be a ratio of product of the height of the weak perturbing
lattice with the time-dependent ratio of the wavelengths of
the two standing waves and an integral term, to the hopping
element of the primary optical lattice. The term α0 is just the
ratio of the wavelengths of the two standing waves, made time
dependent by shaking, which are two consecutive Fibonacci
numbers. From the expressions in Eqs. (6) and (7) it can
be readily seen how the experimental parameters enter into
the modified on-site and nearest-neighbour hopping energy
terms of the high-frequency effective static Hamiltonian for
the driven system.

Thus the relation between parameters of the setup and the
derived model Hamiltonian can be traced in a straightforward
manner. It is true that this manner of constructing the system
will make the strength of the on-site modulation (or its ratio
with the hopping energy) also a sinusoidal function of time but
this is not expected to alter the system’s features studied here
in any significant way. We propose studying this more general
form of time dependence, with the strength of the on-site to
off-site energy also taken to be a function of time alongside
the periodicity in α0, as a future line of work.

Briefly, we would like to survey how our work contrasts
with other early and recent work, which has emphasized
periodic driving through additional potentials [42] and shak-
ing [21] in AAH systems. In Ref. [21], shaking introduces a
time-dependent phase in the cosine term of the on-site energy.
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This phase is separate from the incommensurate position
dependence. The effect is a renormalization of the hopping
energy so as to make it a function of the driving amplitude. This
enables one to tune across the metal-insulator transition by
varying the amplitude of the driving. Whereas in our system the
driving is provided through an oscillatory effective magnetic
field which manifests itself through the periodicity in α0, and
hence is present in the incommensurate position-dependent
term.

This is again different from Ref. [42], which employs a
driving that is a weak space quasiperiodic and time periodic
perturbation onto the AAH system modeled as a quasiperiodic
optical lattice. Here, the driving is a weak perturbation to the
original AAH Hamiltonian. In our case, however, the manner
in which the AAH model is driven is nonperturbative by
its very nature. An oscillating magnetic field, even of small
amplitude, is in no way a weak perturbation and cannot be
treated as such; it has to be looked upon in the Floquet picture
of periodic time-dependent Hamiltonians. The high-frequency
nature of the driving permits a Floquet theoretic treatment
of a slightly analytical variety through the high frequency
expansion available for the Floquet Hamiltonian. Only here,
in the parameter 1/ω, is one allowed to use a perturbative
treatment. This is formally different from Ref. [42] in that
our modifications significantly alter the AAH model for which
there is limited analytical footing in the high-frequency regime.
It would do well to regard the newly obtained static effective
Hamiltonian as an independent system in its own right, with
features that are not to be expected in the undriven or weakly
driven AAH models. This in fact merits looking into, because
it would not be unjustified to anticipate exotic modifications
to the traditional AAH metal-insulator transition under these
circumstances.

Also worth noting are the differences between the model
in Ref. [42] and our system from a reciprocal-space point of

view. While our model is also non-self-dual it has an exact
1D structure with couplings that are beyond nearest neighbor.
In Ref. [42], the dual Hamiltonian is not exactly 1D and the
extended states appear due to resonant couplings of localized
states that are driving induced. This differs considerably from
the mechanism (discussed in the previous section) that causes
localization-delocalization behavior in our driven system. In
fact, the non-self-duality of our model sets it apart even from
undriven variations on the AAH model (with mobility edges)
which are self-dual by construction [17,18], irrespective of the
real-space couplings being nearest neighbor or beyond it.

VI. CONCLUSION

In this work we have studied the Aubry-André-Harper
problem with an oscillatory magnetic field in the promising
cold atom-optical lattice scenario. The problem is signif-
icantly simplified by going into an effective Hamiltonian
which approximately represents the system in the limit of
high-frequency magnetic field. We find that this effective
Hamiltonian is non-self-dual, and although it exhibits a metal-
insulator transition, it differs from the classic Aubry-André
model in the emergence of an energy-dependent mobility
edge. The nearest-neighbor coupling form of the effective
Hamiltonian yields this feature which is commonly observed
in disordered 3D systems or Aubry-André-like models with
hoppings extending beyond nearest neighbor.
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