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We theoretically investigate the dynamics of a gas of strongly interacting Rydberg atoms subject to a time-
domain Ramsey interferometry protocol. The many-body dynamics is governed by an Ising-type Hamiltonian
with long-range interactions of tunable strength. We analyze and model the contrast degradation and phase
accumulation of the Ramsey signal and identify scaling laws for varying interrogation times, ensemble densities,
and ensemble dimensionalities.
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I. INTRODUCTION

Strongly interacting many-body systems are at the focus
of modern quantum physics [1,2]. Recent progress has seen
the developing of techniques leading to the achievement of
an outstanding level of control over quantum states and even
nonequilibrium dynamics in systems exhibiting long-range
interactions [3–10]. One of the extremely successful methods
of investigating the effect of interactions in a many-body
system is the Ramsey technique [3,7,10–12] as it allows the
monitoring of the evolution of coherences and correlations.
This consists in an initialization process that brings the
many-body system into a well-defined nonequilibrium state
followed after some interrogation time by a mapping of
the evolved many-body coherence into a population signal.
The scanning of the interrogation (delay) time produces
fringes with amplitude and phase strongly dependent on the
characteristic interactions of the system.

In this paper, we restrict our treatment to Ramsey inter-
ferometry applied to Rydberg atom ensembles [13–18]. This
occurs without loss of generality as we employ an Ising-
type Hamiltonian applicable to a variety of distinct systems
where only the particularities of the interaction strength differ
[19–23]. The technique consists in the application of a first
(pump) excitation pulse followed by a second (probe) pulse.
For the particular example of the experiment described in
Ref. [18], the pulses are obtained from a Michelson interferom-
eter and are aimed at performing time-domain interferometry.
An adjustable length of one interferometer arm allows one to
set the delay τ between the pulses. This results in two identical
pulses with envelopes E(t) and E(t − τ ). By scanning the
delay between the pump and probe excitations we obtain the
interferogram with fringes showing modulation at frequencies
close to optical frequencies (at the frequency difference be-
tween ground and Rydberg-excited levels). This is in contrast
with standard Ramsey interferometry where the fringes occur
with periodicity given by the difference between the laser and
atomic frequencies. The signal is obtained by monitoring the
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population in the eigenstates, which in the absence of the
interaction would oscillate at exactly the frequency difference
between the initial and the final state. Most importantly, this
technique allows the access of time scales in the picosecond
to attosecond range, where the ultrafast electron dynamics can
be probed directly [18,24–26]. By choosing sufficiently short
pulses exhibiting a broad frequency spectrum, interactions at
short internuclear distances are accessible and the blockaded
regime [18,27–31] can be avoided.

As the key result of this manuscript we show that analytical
results are possible for the general solution of the Ramsey
signal of the interacting Rydberg system described by a
many-particle Ising model [19,20]. These results directly
apply to experimental results [18]. This is done in a purely
coherent regime where the delay τ between the pump and
probe excitations is a few orders of magnitude shorter than
the radiative decay or the mean free time between collisions
in the ensemble. In particular, we show that the behavior of
both contrast decay and phase shift of the signal can be derived
essentially analytically under a continuous limit assumption.
Our findings show that the decay of the coherence due to
phase degradation depends strongly on the type of interaction
and the dimension of the atomic distribution (we particularize
to 1D, 2D, and 3D situations). The corresponding decay
constants show particular density dependencies for different
dimensions and types of interaction that can be directly tested
in experiments.

We proceed by introducing the details of the interactions
in Rydberg ensembles in Sec. II and the specifics of the
Ramsey technique in Sec. III. We then summarize general
analytical results for the population signal in Sec. III and
compare them with mean-field results obtained in Sec. IV.
The general formulas are then particularized for discrete and
continuous configurations in Secs. V and VI, respectively.

II. MODEL

Let us consider a simplified model for Rydberg atoms as
two-level systems where the ground |g〉 and excited Rydberg
state |e〉 are separated by an energy ω (in the following
we set � to unity). For a generic atom indexed with j we
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define projection operators for the excited state (spin-up)
σ̂

(j )
e = |e〉j 〈e|j = (1 + σ̂

(j )
z )/2 and the ground state (spin-

down) σ̂
(j )
g = |g〉j 〈g|j = (1 − σ̂

(j )
z )/2. Transitions between

levels are governed by lowering and raising operators defined
as σ̂

(j )
− = |g〉j 〈e|j and its Hermitian conjugate σ̂

(j )
+ = |e〉j 〈g|j ,

respectively. A freely evolving atom j is then subjected to a
Hamiltonian H0 = ωσ̂

(j )
z /2, with σ̂

(j )
z = σ̂

(j )
e − σ̂

(j )
g .

Motivated by experiments [18], we consider the following
Hamiltonian for N Rydberg atoms coupled by long-range
(“all-to-all”) interactions

H =
∑

j

ω

2
σ̂ (j )

z +
∑
j,k

Ujk

2
σ̂ (j )

e ⊗ σ̂ (k)
e , (1)

where the interaction between atoms j and k is included in
the term Ujk (nonzero only for k �= j ). For the case of van
der Waals interactions, Ujk has the form Ujk = C6/r

6
jk where

rjk is the separation between the atoms. In the following
we will mainly consider this particular dependence of the
interaction strength on distance. For illustration purposes we
will focus on typical particle-particle separations of the order
of μm and an interaction parameter C6 = 2π×13.7 GHz μm6,
which has been measured for the 53D3/2 Rydberg state
of 87Rb atoms [32]. In addition, in the continuous limit,
where analytical results are possible, we will also consider
the case of an effective dipole-dipole interaction given by
Ujk = C3/r

3
jk , which in a simplified approach governs the

interaction between particles at close internuclear distances.
Here, the measured parameter C3 = 2π×2.1 GHz μm3 for the
59D3/2 Rydberg state of 87Rb has been taken into account
for illustration purposes [33]. Finally, we will also consider
a hybrid model where the interactions have a dipole-dipole
character at distances below r1 (a given crossover distance),
while for distances larger than r1 interactions are of the van
der Waals type.

III. GENERAL EXPRESSION FOR THE TIME-DOMAIN
RAMSEY SIGNAL

We start by illustrating the Ramsey procedure for a single
atom. In a first step, the atom is driven into a superposition
of ground and excited states with coefficients cg and ce. This
is achieved by a unitary 2×2 matrix transformation (denoted
by A) applied to the initial state which is given by the ground
state (spin down) |g〉, here identified with the vector (1,0)�.
The application of the matrix A represents the application
of the first (pump) pulse in the experiment. Up to a global
phase the most general form for this matrix is A11 = cg and
A12 = ice, A22 = c∗

g and A21 = ic∗
e (see Appendix A). The

system is allowed to freely evolve at the natural frequency ω

for a time τ after which driving described by transformation
A is applied again (corresponding to the probe pulse in the
experiment), resulting in the final-state vector

|�(τ )〉 = Ae−iH0τA|g〉. (2)

In experiments, the observable is given by the Ramsey
signal that quantifies the Rydberg-state population P (τ ) =
〈�(τ )|e〉〈e|�(τ )〉. The latter has in general a sinusoidal profile
as a function of the delay time τ . Defining pg = c∗

gcg and
pe = c∗

e ce, the signal for a single atom can be readily expressed

as (see Appendix A)

P (τ ) = 2pgpe[1 + cos(ωτ + φ)], (3)

where φ (defined as the phase of the complex cg) is a trivial
ac-Stark shift acquired during the pulse excitation.

For an ensemble of interacting Rydberg atoms, we make
the assumption that the duration of the Ramsey pulses is short
compared to the characteristic interaction time defined as the
inverse of the particle-particle interaction strength at the mean
interparticle distance. This is typically fulfilled in experiments
with field-induced interactions [10,12] or ultrafast lasers [18].
In such a case we can neglect the effect of interactions during
the pulse and can immediately generalize Eq. (2) to the many
atom case by writing the state of the system right before the
application of the probe pulse as

|�(τ )〉N = e−iHτA⊗N |g〉⊗N . (4)

By calculating the corresponding density operator ρ̂1...N =
|�(τ )〉N 〈�(τ )|N and taking traces over N − 1 particles except
particle j we obtain the following analytical expression for the
single-particle density operator (see Appendix B):

ρ̂j = pgσ̂
(j )
g − i

N∏
k �=j

(pg + eiUjkτpe)eiωτ cgceσ̂
(j )
−

+ i

N∏
k �=j

(pg + e−iUjkτpe)e−iωτ c∗
e c

∗
gσ̂

(j )
+ + peσ̂

(j )
e . (5)

The population in the excited state |e〉 following the
application of the probe pulse is then described by Pj (τ ) =
〈e|Aρ̂jA

∗|e〉 for a single atom. As shown in Appendix B we
then obtain the signal:

Pj (τ ) = 2pgpeRe{1 + α(τ )Gj (τ )}, (6)

with α(τ ) = ei(ωτ+φ) and the information acquired from the
interactions is contained in the following term:

Gj (τ ) =
∏
k �=j

(pg + pee
iUjkτ ). (7)

Notice that Gj (τ ) is an interaction-induced modulation of
the signal that directly reflects the coherences established in
the system right before the probe pulse is applied [see the
term

∏N
k �=j (pg + eiUjkτpe)eiωτ cgce in Eq. (5)]. This kind of

expression has been previously presented in the framework
of a general Ising model in [19–22] and is fully derived in
Appendix B. The signature of the interactions is fully contained
in Gj (τ ), and in the following sections we will monitor the
contrast degradation and phase accumulation of the Ramsey
signal defined as

μj (τ ) = |Gj (τ )| contrast, (8)

νj (τ ) = −i ln(Gj (τ )/|Gj (τ )|) phase. (9)

Notice that in the absence of interactions (i.e., for independent
particles) the function Gj (τ ) converges to unity and the
population has the same expression as in the single-particle
case [Eq. (3)] predicting no contrast degradation [μj (τ ) = 1]
or phase accumulation [νj (τ ) = 0]. These two quantities are
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central as they can be experimentally accessed [18] and we will
evaluate them both for discrete and continuous distributions.

We notice that so far we have treated the case of the signal
obtained for a given particle j (i.e., single particle level). The
experimentally observed quantity is of course a many particle
signal obtained from the averaging over contributions coming
from all individual atoms:

P (τ ) = 1

N

N∑
j=1

Pj (τ ). (10)

This latter averaging will be important in the case of inhomo-
geneous distributions of Rydberg atoms, such as the case of
finite atomic samples in the presence of external magnetic or
optical quadratic confining potentials.

IV. COMPARISON TO THE LINEARIZED
APPROACH (MEAN-FIELD MODEL)

We now introduce a mean-field approach and compare its
validity to the full many-body solution obtained in the previous
section. We first shift the full Hamiltonian of Eq. (1) by a
constant energy term and proceed by the usual assumption
characteristic of mean-field techniques that the nonlinear terms
can be linearized around some common value 〈σ̂e〉 by ignoring
smaller contributions and replace σ̂

(j )
e σ̂ (k)

e with 〈σ̂e〉(σ̂ (j )
e +

σ̂ (k)
e − 〈σ̂e〉). The linearized Hamiltonian in a separable form

becomes H mf = ∑
j H mf

j , where

H mf
j =

[
ω +

(
1 − 〈σ̂e〉

2

)
�ωj

]
σ̂ (j )

e − 〈σ̂e〉�ωj

2
σ̂ (j )

g , (11)

with �ωj = ∑
k Ujk defined as a frequency shift of atom j

owed to the background field produced by all the other atoms.
We now analyze the dynamics of particle j where 〈σ̂e〉 = pe

to obtain

Gmf
j (τ ) =

∏
k �=j

eipeUjkτ . (12)

Contrast degradation. As obvious from the above expres-
sion that predicts a unit modulus for Gmf

j (τ ) at all times,
the mean-field approach predicts no contrast degradation for
individual particles. This is in contrast to the full solution
prediction which allows degradation even at the single-particle
level. This becomes evident by recasting Eq. (7) in the
following form:

Gj (τ ) =
∏
k �=j

√
1 − 4pgpe sin2

(
Ujkτ

2

)

× e
i
∑

k

Ujk τ

2 +arctan
(

(pe−pg ) tan
(

Ujkτ

2

))
. (13)

Each term in the product has a modulus less than 1 thus leading
to a total amplitude reduction of the Gj (τ ) function at nearly
all times.

Generalizing to the many-particle level we see that the
mean-field solution can also not account for contrast degra-
dation in the case of regularly spaced ensembles (e.g., atoms
trapped in an optical lattice with even interatomic spacings).
This follows from the fact that the ensemble-averaged signal
includes the same �ωjτ for all atoms j = 1, . . . ,N and the
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FIG. 1. Comparison between the mean-field and exact-model
phase shift. In (a), (b), and (c) the phase shift obtained from the
mean-field solution (dashed line) and the exact-model solution (solid
line) for two interacting atoms at a distance of 1 μm is plotted against
the population in the excited state pe and presented for a pump-probe
delay of τ = 5 ps, τ = 20 ps, and τ = 35 ps, respectively. The
interaction strength is given by C6 = 2π × 13.7 GHz μm6 [32]. Only
at early delay times τ both solutions agree. Irrespective of the
population pe the two solutions deviate strongly from each other
with increasing delay time.

many particle signal becomes effectively a single particle
signal. However, disordered ensembles can show degradation
in the mean-field approach after performing an averaging over
all atoms; this comes from the fact that for a large degree
of randomness in the interparticle spacing Gmf

j (τ ) �= Gmf
k (τ )

for j �= k can lead to destructive interference in the sum over
Gmf

j (τ ).
Phase accumulation. We now focus on the evolution of the

accumulated phase for different time delays and excited-state
populations. The comparison between mean-field (dashed
line) and the full solution (continuous line) predictions is
illustrated in Fig. 1 for three different times. At times smaller
than the inverse of the characteristic interaction time scale
[τ < mink(1/Ujk)] the two solutions coincide in the whole
population range. This is easily explained via a linearization
of the expressions in the argument of Eq. (13)

Gj (τ ) ≈ Gmf
j (τ )

⎛
⎝1 − pgpe

2

∏
k �=j

(Ujkτ )2

⎞
⎠, (14)
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showing perfect agreement for the predicted phase accumu-
lation. The disagreement in predicted phases occurs with
increasing τ , for essentially all τ .

V. DISCRETE DISTRIBUTIONS

Let us now consider ordered atomic configurations in d

dimensions (d = 1,2,3), which can be realized for example
by trapping Rydberg atoms by optical means [8,34–37] or in
arrays of magnetic traps [38,39]. For lattice configurations
of lattice constant a we evaluate the results of the theory
developed in the previous section particularized to isotropic
van der Waals and dipole-dipole interactions.

We assume that the sample is large and each atom is
equivalent to its neighbors. This allows us to reduce the whole
problem to that of a single given atom surrounded by N − 1
atoms. In a first step we numerically evaluate the expression
in Eq. (7) for three lattices containing the same number of
atoms N = 729 in one, two (27×27), and three (9×9×9)
dimensions. We then plot the Ramsey contrast degradation and
phase accumulation signals in Fig. 2. The contrast and phase
signals show characteristic oscillations. By inspection, we find
that the latter originate essentially from the interaction with the
nearest and next nearest neighbors. The trend of the oscillatory
curves agrees very well with the results obtained from a
numerical simulation of Eq. (7) averaged over a randomized
disordered system of the same density and atom number. In
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FIG. 2. Ramsey interferogram for a one-, two-, and three-dimensional lattice. In (a) and (c) the Ramsey contrast is shown for van der
Waals and dipole-dipole interacting atoms, respectively, where each atom has a population of pe = 4% in the Rydberg state. The Ramsey
contrast is compared to the Ramsey contrast of a randomized homogeneous atom distribution of the same dimension, density, and population,
which has been obtained from Eq. (7) using a Monte Carlo simulation for the atomic distribution. The lattice constant is a = 3 μm for the
van der Waals and a = 1 μm for the dipole-dipole interaction scenario. The interaction strengths are defined by C6 = 2π × 13.7 GHz μm6

(a),(b) and C3 = 2π × 2.1 GHz μm3 (c),(d), which are obtained from [32] for the 53D3/2 Rydberg level and [33] for the 59D3/2 Rydberg level,
respectively. The number of atoms considered for each simulation is given by N = 729 = 27×27 = 9×9×9. In (b) and (d) the corresponding
phase signals for the van der Waals and dipole-dipole interaction are presented, respectively.
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this latter case, however, averaging results in a loss of the fast
oscillations.

In the 1D situation, owing to the rapid fall-off of the
interaction strength with distance in the van der Waals
interaction case, a nearest-neighbor treatment seems to be
sufficient to describe the dynamics [as inferred from the single
frequency oscillation of the upper green curves in Figs. 2(a)
and 2(b)]. This is not given in the dipole-dipole interaction
scenario displayed in Figs. 2(c) and 2(d), where contributions
from the next-nearest neighbors enter significantly earlier due
to the less rapid fall-off of the interaction strength with distance
for the dipole-dipole interaction in comparison with the van
der Waals interaction case. Especially for higher dimensions,
the plotted behavior shows beatings of competing frequencies,
clearly suggesting that a simplified model including both the
nearest and the next-nearest neighbors does not suffice. Similar
oscillations have been presented and discussed in [7,40].

VI. CONTINUOUS DISTRIBUTIONS

Let us now consider a general formulation for disordered
distributions of atoms that allows us to perform a transition to
the continuum to find elegant expressions for Eq. (7) particular-
ized for 1D, 2D, and 3D situations. This formulation is geared
towards the treatment of ultracold gases in dipole traps [18,41];
however, it can also be applied to regular arrangements of
atoms with a controlled level of disorder (such as for atoms
trapped in optical lattices). As before, we consider a simplified
but realistic scenario (applicable, for example, to experiments
with ultrafast lasers [18]) where the delay τ between the pump
and probe excitations is a few orders of magnitude shorter than
the radiative decay or the mean free time between collisions
in the ensemble. This allows us to focus on the Ramsey signal
for the coherent part of the dynamics of the interacting spins,
for which we derive analytic expressions.

The key point in our procedure is the expansion of the
product in Eq. (7) into sums, followed by the transformation
of sums into integrals allowed by the continuous distribution
limit. In the following, for simplicity we will refer to the
particle of interest by the index j = 1 (clearly the results are
independent of this labeling). The binomial expansion reads

G1(τ ) = pN−1
g + pN−2

g pe

(
N∑

i1=2

eiU1i1 τ

)

+pN−3
g p2

e

(
N−1∑
i1=2

N∑
i2>i1

ei(U1i1 +U1i2 )τ

)
+ · · ·

+pN−1
e

⎛
⎝N−(N−2)∑

i1=2

· · ·
N∑

i(N−1)>i(N−2)

e
i(U1i1 +···+U1i(N−1) )τ

⎞
⎠.

(15)

We have assumed that the atoms are arranged as a function
of increasing separation |rj | from the atom of interest (atom
1 situated in the origin) and can be indexed by a number
j running from 2 to N . A generic term in the expression
Eq. (15) containing contributions from m neighboring atoms
will contain m sums running over a set of m indexes denoted
by i1, . . . ,im.

We now perform a transition to the continuum where the
sums in Eq. (15) are substituted by integrals:

∑
i1,i2,...,im

· · · →∫
Vi1

· · · ∫
Vim

dVi1 · · · dVimfm · · · . The term of rank m is properly
weighed with a conditional distribution function fm which
depends on the characteristic of the system: for example,
we will contrast homogeneous random distributions (such as
those usually found with ultracold atomic gases) to regular
distributions (such as those resulting from atoms trapped in
an optical lattice). The normalization condition with a general
usefulness (both for random as well as ordered distributions)
is immediately obtained by substituting unity in the above
sums-integrals transformation to obtain∫

V1

· · ·
∫

Vm

dV1 · · · dVmfm =
(

N − 1

m

)
, (16)

and making the observation that the implicit ordering of the
indexes in the sum of rank m leads to

∑
i1,i2,...,im

1 = (
N − 1

m

)
.

Particularizing for example to regular arrays with small levels
of fluctuations in the equilibrium positions, the distribution
functions that fulfill the normalization condition can be
approximated with Gaussians centered around the atomic
position with a waist reflecting the positioning uncertainty
fm = ∑

i1,i2,...,im

∏
ik

(
√

πw)−de−(r−rik
)2/w2

. In the purely or-
dered case, one can take the limit w → 0 which leads to
fm = ∑

i1,i2,...,im

∏
ik

δ(r − rik ). This reproduces the situation
of a “frozen” optical lattice and the continuous and discrete
descriptions coincide.

As a next particular case which we will focus on in the
following sections, we will consider the homogeneous density
distributions within a volume V0 = N0n(R) around the atom
indexed by j = 1 with position now shifted from the origin to
R. Here N0 is the number of atoms in the volume V0 around
atom 1 that participate with a non-negligible contribution to
G1(τ ). In experiments, this cutoff volume V0 is a function
of the total interrogation time: for longer τ more and more
atoms contribute a considerable shift U (r,θ,φ)τ to the Ramsey
signals. In this case, for an ensemble in d dimensions we
can approximate the function fm locally with a constant
value fm ≈ 1/V m

0

(
N0 − 1

m

)
. This description is valid for terms

with m � N0. The homogeneity condition also imposes the
restriction on density variations |∇n(R)|r0/n(R) � 1, where
r0 is the radius determined from the local spherical volume
N0/n = V0 = πd/2rd

0 /�(d/2 + 1).
Let us now further simplify our treatment to consider an

isotropic case, such that the integrals over angular dependence
are trivial. We furthermore introduce a (short-range) Rydberg-
blockade volume with radius rB � r0 that determines a short-
range limit in the integration range, which is physically mo-
tivated by the finite (however large) bandwidth of the driving
laser in experiments [18]. Under these conditions, the first sum
of the expansion in Eq. (15) turns into a fairly simple integral:

γ (τ ) = d

rd
0 − rd

B

∫ r0

rB

dr rd−1eiU (r)τ , (17)

where we have restricted the discussion here and in the
following to the treatment of isotropic interaction potentials.
A general treatment for anisotropic van der Waals and
dipole-dipole interactions is presented in Appendix D, which

053607-5



CHRISTIAN SOMMER et al. PHYSICAL REVIEW A 94, 053607 (2016)

shows that the solutions for γ (τ ) agree up to a prefactor with
the ones derived for isotropic potentials when rB = 0. The
next terms are in general harder to evaluate. However, in
the limit of large N0, we can ignore the different integration
boundaries and evaluate a term of rank m as

(
N0 − 1

m

)
γ (τ )m. We

then observe that Eq. (15) can be recast in a binomial form:

G(τ ) ≈ (pg + peγ (τ ))N0−1. (18)

This is a main result of our analysis as it allows us on
one hand to perform faster numerical simulations and on the
other hand to extract scaling laws for the contrast degradation
and phase accumulation with density and interrogation time.
We proceed by analyzing different interaction regimes char-
acterized by ∼r−6 (van der Waals) or by ∼r−3 (dipole-dipole)
scalings as well as a hybrid regime.

A. Van der Waals interactions

For the van der Waals interaction regime described by
U (r) = C6/r6 we can simplify the function γ (τ ), by eval-
uating the integral in Eq. (17) in the limit of rB approaching
zero. Using a set of transformations and the asymptotes of the
general Fresnel integrals [42] (see details in Appendix C) we
find a general form holding for any dimension d ∈ {1,2,3}:

γ dD
vdW(τ ) ≈ 1 + iσd�

(
6−d

6

)
N0

e
i(6−d)π

12 τ d/6. (19)

After the replacement of the above expression into Eq. (18)
and using pg + pe = 1, we notice that in the limit N0 → ∞
the expression coincides with an exponential from which we
can now immediately deduce the corresponding decay of the
contrast μ(τ ) in an arbitrary dimension d as

μdD
vdW(τ ) ≈ e

−peσd�

(
6−d

6

)
sin
(

(6−d)π
12

)
τ d/6

. (20)

The phase of the Ramsey signal is given by

νdD
vdW(τ ) ≈ peσd�

(
6 − d

6

)
cos

(
(6 − d)π

12

)
τ d/6. (21)

From Eq. (20) we observe that the exponential decay follows
with the sixth root e−α̃1

6√τ , the cube root e−α̃2
3√τ , and the

square root e−α̃3
√

τ of the delay time τ for one, two, and three
dimensions, respectively. Also, for the decay time τdec, which
is defined by μdD

vdW = 1/e we find the relation

τdec ∝ 1

n6/d
, (22)

which displays the characteristic density dependence of the
decay for different dimensions for van der Waals interacting
atoms.

Including a finite blockade radius (and corresponding
blockade energy ωB = C6/r6

B) allows us to deduce more
general expressions for the contrast and phase function as

μdD
vdW(τ,ωB) ≈ e

−peσd

[
cos(ωBτ )−1

ω
d/6
B

+ 6
d
τ d/6S̃d

(
(ωBτ )d/6

)]
(23)

and

νdD
vdW(τ,ωB) ≈ −peσd

sin(ωBτ )

ω
d/6
B

+peσd

6

d
τd/6C̃d

(
(ωBτ )d/6

)
, (24)
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FIG. 3. Ramsey interferogram for a homogeneous atom distri-
bution. In (a), (c), and (e) the Ramsey contrast and in (b), (d), and
(f) the Ramsey phase is presented for pe = 5% (a),(b), pe = 20%
(c), (d), and pe = 50% (e), (f). The interaction strength is given
by C6 = 2π × 13.7 GHz μm6 [32] and densities are adjusted for
comparison. The exact solutions from Eq. (7) are given by the solid
lines for N = 5650 atoms, while the gray dashed lines following
Eq. (23) (contrast) and Eq. (24) (phase) show the solutions derived
by the continuum approximation for N → ∞.

where we have used the following Fresnel integrals
S̃d (x) = S(3−d)2,6/d (x) = ∫ x

0 t (3−d)2
sin(t6/d )dt and C̃d (x) =

C(3−d)2,6/d (x) = ∫ x

0 t (3−d)2
cos(t6/d )dt . In Fig. 3 we compare

these results with those derived from a Monte Carlo simulation
using the exact solution presented in Eq. (7) for three different
populations in the excited state. The densities are adjusted for
comparison and are defined by the characteristic length a with
n = 1/ad . Here, we have chosen a = 1.6 μm, a = 2.5 μm,
and a = 3.4 μm for pe = 5%, pe = 20%, and pe = 50%,
respectively. The Monte Carlo simulation is constrained by
the condition to form a homogenous density distribution in
a sphere of size N/n with N = 5650 atoms and n being the
constant density. By calculating the distance to the center of
the sphere we obtain the interaction contribution C6/r6 from
each particle. Additionally, we average over 1000 simulations
for pe = 5%, 5000 simulations for pe = 20%, and 10000
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simulations for pe = 50% to obtain the contrast and phase
signals displayed in Fig. 3.

B. Dipole-dipole interactions

Similar to the van der Waals interaction, we define now a
blockade energy ωB = C3/r3

B. In 1D we obtain a simple result
showing that γ 1D

DD is equivalent to γ 2D
vdW, when σ2 is exchanged

with κ1 = 2n 3
√

C3 (see Appendix C). For higher dimensions
we find the following (more involved) expressions:

γ 2D
DD ≈ 1 + κ2

ω
2/3
B N0

[1 − (1 − 3iωBτ )eiωBτ )]

+ 9κ2τ
2/3

N0
[C3,3( 3

√
ωBτ ) + iS3,3( 3

√
ωBτ )], (25)

where κ2 = πn(C3)2/3 and notice that ωB needs to remain
finite to avoid divergence. This results in

μ2D
DD(τ ) ≈ e

−peκ2

[
cos(ωBτ )+3ωBτ sin(ωBτ )−1

ω
2/3
B

−9τ
2
3 C3,3( 3√ωBτ )

]
(26)

and

ν2D
DD(τ ) ≈ −peκ2

ω
2/3
B

[sin(ωBτ ) − 3ωBτ cos(ωBτ )]

+ 9peκ2τ
2
3 S3,3( 3

√
ωBτ ), (27)

showing a mixture of an exponential decay with a linear e−α̂1τ

and a square of a cube root eα̂2τ
2/3

component.
For the solution in three dimensions we use the integrals

Si(x) = ∫ x

0 dt sin(t)/t and Ci(x) = − ∫∞
x

dt cos(t)/t and we
obtain

γ 3D
DD ≈ 1 + κ3τ

N0

[
i

(
1 − γ − ln

κ3τ

N0

)
− π/2

]
(28)

for the dipole-dipole interaction with κ3 = 4πnC3
3 , the Euler-

Mascheroni constant γ , and ωB → ∞. The function G1(τ ) for
the dipole-dipole interaction is given by

G3D
DD(τ ) ≈

{
1 + peκ3τ

N0

[
i

(
1 − γ − ln

κ3τ

N0

)
− π/2

]}N0

.

(29)

The term ln(κ3τ/N0) leads to a divergent oscillatory part
for increasing N0 in the expression enclosed by brackets.
The decay amplitude, on the other hand, is well defined
and remains finite. Ignoring the oscillatory part we obtain
[1 − πpeκ3τ/(2N0)]N0 , which results in the limit of large N0

in

μ3D
DD(τ ) = e− π

2 peκ3τ . (30)

This shows that the coherence follows an exponential decay
with linear dependence in the time delay and a decay constant
proportional to the density and the interaction strength C3.

C. Hybrid interaction regime

With the solutions of the integrals in Eq. (C4) and Eq. (C5)
in Appendix C for the dipole-dipole and van der Waals
potentials, respectively, we can find a solution for a hybrid
potential that has a spatial dependence proportional to r−3

below a given radius r1 and to r−6 above r1, with ω1 =
C3/r3

1 = C6/r6
1 . This choice is an approximation of realistic

interaction potentials with Rydberg atoms [18]. Here, this is
exemplified for three dimensions. For ωB → ∞ the resulting
expression is

γ 3D
Hyb(τ ) = 1 − i

κ3τ

N0
Ci(ω1τ ) − κ3τ

N0

[
π

2
− Si(ω1τ )

]

+ 2σ3

N0

√
τ [iC0,2(

√
ω1τ ) − S0,2(

√
ω1τ )]. (31)

The contrast and phase are readily found as

μ3D
Hyb(τ ) ≈ e−peκ3τ[ π

2 −Si(ω1τ )]−2peσ3
√

τS0,2(
√

ω1τ ) (32)

and

ν3D
Hyb(τ ) ≈ peκ3τCi(ω1τ ) + 2peσ3

√
τC0,2(

√
ω1τ ). (33)

This result shows that the contrast and phase signal for the
hybrid potential are changing from the dipole-dipole solutions
at an early delay to the van der Waals solutions at longer delay.
Also, by choosing ω1 sufficiently small the solution for the
hybrid potential can be used as a substitute for the solution for
the dipole-dipole interaction in three dimensions, where for the
hybrid model the phase is clearly defined. Solutions for one
and two dimensions can be obtained analogously.

D. Averaging over the dipole trap

For a sufficiently large and arbitrary shaped ensemble of
atoms that locally exhibits a homogenous density distribution
we can obtain the Ramsey signal of the whole ensemble by
averaging over contributions coming from the individual atoms
[see Eq. (10)], which in the continuous limit becomes

P (τ ) = 1

N

∫
V

dV n(R)P (n(R),τ ). (34)

Here, P (n(R),τ ) is equivalent to the solution found by the
continuum approximation presented in this paragraph. For
example, for a Gaussian atom distribution we obtain

P (τ ) = 2√
πnp

∫ np

0
dn

√
ln
(np

n

)
P (n,τ ), (35)

where np is the peak density.

VII. CONCLUSIONS

We have theoretically investigated Ramsey dynamics of
an interacting Rydberg gas for the purpose of identifying
the mechanism which leads to experimentally observed decay
of signal contrast and phase accumulation [18]. Our analysis
provides a full formal solution to the Ramsey signal on which
another approach involving a transition to the continuum
is based. The analytical results obtained allow us to derive
interesting scaling laws of direct experimental interest. We
plan to extend our treatment in the future to describe interacting
systems of quantum emitters undergoing coherent dynamics
under diverse Hamiltonians (Ising, Heisenberg, etc). While in
this paper we focused on the single-atom coherence, the results
for the decay, phase shift, and the corresponding scaling laws
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can be applied to many-particle correlation functions which
are presented in Appendix E.
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APPENDIX A: DETAILS ON RAMSEY PULSES

The pump and probe laser pulses E(t) and E(t − τ ) in the
time-domain Ramsey interferometry are produced with a beam
splitter in an optical interferometer and originate from one
common laser pulse. For a two-level system as presented in
the main text with a ground state |g〉 and an excited state |e〉
and by neglecting interactions between the atoms in the excited
state |e〉 during the pulse excitation we can describe the effect
of a pulse on the state population and coherence by a unitary
transformation A.

The transformation can be obtained by solving the time-
dependent Schrödinger equation for the first pulse excitation
E(t)

i
∂

∂t
|ψ〉 =

(
ω

2
σ̂z − deg · E(t)σ̂+ − d∗

eg · E(t)σ̂−

)
|ψ〉, (A1)

where |ψ〉 = Cg(t)|g〉 + Ce(t)|e〉 is the atomic state, deg =
〈e|d|g〉 is the transition dipole-matrix element, and E(t) =
E0(�(t − t0) − �(t − t1)) cos(ωl(t − t0)) a rectangular elec-
tric pulse with ωl and �(t) being the laser frequency and the
Heaviside step function, respectively. Finally, the evolution by
the pulse excitation is described by(

Cg(t1)
Ce(t1)

)
=
(

cg ice

ic∗
e c∗

g

)(
Cg(t0)
Ce(t0)

)
. (A2)

Here, cg = (cos(�δt/2) − i �
�

sin(�δt/2))eiωlδt/2 and ce =
−�R

�
sin(�δt/2)eiχeiωlδt/2 with � =

√
�2

R + �2 , � = ω −
ωl being the detuning, �̃R = �Reiχ = −d∗

eg · E0e
−iωt0 is the

Rabi frequency, and δt = t1 − t0 is the pulse duration.
Solving the Schrödinger equation for the delayed pulse

E(t − τ ) we obtain exactly the same matrix A describing the
state transformation.

Using these definitions one can show that the phase φ first
presented in the Ramsey signal of Eq. (3) results from the
ac-Stark shifted time evolution during the pulse excitation.

APPENDIX B: DERIVATION OF THE GENERAL
EXPRESSION OF THE RAMSEY SIGNAL

In the following paragraph we describe the derivation of the
time-domain Ramsey signal for an interacting many-particle
system following an Ising type Hamiltonian H as presented
in Eq. (1). With all atoms being initially in the ground state

|g〉 we obtain the state |�(τ )〉N = exp(−iHτ )A⊗N |g〉⊗N after
a single pulse excitation, which transfers population to the
strongly interacting excited state |e〉. The pumping is described
by the N -particle tensor product of the matrix A. This is a
viable description in the case the excitation happens on a much
faster time scale than the interaction.

Using an N -particle basis set which is defined by |j1 . . . jN 〉
with jl ∈ {1,2},l ∈ Ñ = {1, . . . ,N}, where |g〉 = |1〉 and
|e〉 = |2〉, we can describe |�(τ )〉N by

|�(τ )〉N =
∑

j1,...,jN

e−iHj1 ,...,jN
τAj11 . . . AjN 1|j1 . . . jN 〉. (B1)

Here, Hj1,...,jN
= 〈jN . . . j1|H |j1 . . . jN 〉 can be written as

Hj1,...,jN
=
(

−
N∑

l=1

ωl

2

)
+
∑
l∈I

j
N

ωl +
∑
l∈I

j
N

∑
k∈I

j
N

Ulk

2

= ηN +
∑
l∈I

j
N

ωl +
∑
l∈I

j
N

∑
k∈I

j
N

Ulk

2
, (B2)

with I
j
N = {l ∈ Ñ |jl = 2}, j = (j1, . . . ,jN ), and ηN =(

−∑N
l=1

ωl

2

)
. This allows us to write down the density

operator for the pure N -particle state

ρ̂1...N = |�(τ )〉N 〈�(τ )|N
=

∑
j1...jN k1...kN

e−i(Hj1 ,...,jN
−Hk1 ,...,kN

)τ

× (
Aj11A

∗
k11

)
. . .

(
AjN 1A

∗
kN 1

)|j1 . . . jN 〉〈kN . . . k1|.
(B3)

The reduced density operator for N − 1 particles can be
obtained by taking the trace over the terms from the N th
particle, where we choose N without loss of generality. This
is given by

ρ̂1...N−1 =
∑

j1...jN−1k1...kN−1

(e−i(Hj1 ,...,jN−1 ,1−Hk1 ,...,kN−1 ,1)τ |A11|2

+ e−i(Hj1 ,...,jN−1 ,2−Hk1 ,...,kN−1 ,2)τ |A21|2)

× (
Aj11A

∗
k11

)
. . .

(
AjN−11A

∗
kN−11

)|j1 . . . jN−1〉
× 〈kN−1 . . . k1|. (B4)

Since

Hj1,...,jN−1,1 − Hk1,...,kN−1,1 = Hj1,...,jN−1 − Hk1,...,kN−1 (B5)

and

Hj1,...,jN−1,2 − Hk1,...,kN−1,2

= Hj1,...,jN−1 − Hk1,...,kN−1 +
∑

a∈I
j
N−1

UaN −
∑

c∈I k
N−1

UcN,

(B6)
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we obtain for the reduced density operator

ρ̂1...N−1 =
∑

j1...jN−1k1...kN−1

(
pg + e

−i

(∑
a∈I

j
N−1

UaN−∑
c∈Ik

N−1
UcN

)
τ
pe

)
e−i(Hj1 ,...,jN−1 −Hk1 ,...,kN−1 )τ

× (
Aj11A

∗
k11

)
. . .

(
AjN−11A

∗
kN−11

)|j1 . . . jN−1〉〈kN−1 . . . k1|. (B7)

This procedure can be continued for other particles. In the limit we obtain the reduced density operator for single particles in the
interacting N -particle ensemble. Here, without loss of generality the reduced density operator of the first particle is given by

ρ̂1 =
∑
j1k1

N∏
l=2

(
pg + e

−i

(∑
a∈I

j
1
Ual−

∑
c∈Ik

1
Ucl

)
τ
pe

)
e−i(Hj1 −Hk1 )τ

(
Aj11A

∗
k11

)|j1〉〈k1|

= |cg|2|g〉〈g| − i

N∏
l=2

(pg + eiU1l τ pe)eiωτ cgce|g〉〈e| + i

N∏
l=2

(pg + e−iU1l τ pe)e−iωτ c∗
e c

∗
g|e〉〈g| + |ce|2|e〉〈e|, (B8)

for j = 1. This density operator gives the populations and coherences of a mixed state if τ �= 0. The second pulse which arrives
at the delay time τ rotates the signal of the nondiagonal terms which represent the coherence of a single particle interacting with
N − 1 surrounding atoms as shown in Eq. (B8) into the population of the ground- and Rydberg-state atoms. When we define
G(τ ) = ∏N

l=2 (pg + pee
iU1l τ ) the double-pulse time-domain Ramsey process can be described by

ρ̂
2p
1 = Aρ̂1A

∗ = (1 − 2pgpeRe[1 + ei(ωτ+φ)G(τ )])|g〉〈g| − icgce(pg(1 + ei(ωτ+φ)G(τ )) − pe(1 + e−i(ωτ+φ)G∗(τ )))|g〉〈e|
+ ic∗

gc
∗
e (pg(1 + e−i(ωτ+φ)G∗(τ )) − pe(1 + ei(ωτ+φ)G(τ )))|e〉〈g| + (2pgpeRe[1 + ei(ωτ+φ)G(τ )])|e〉〈e|. (B9)

By evaluating the population in the excited state |e〉 after a Ramsey experiment we obtain the signal

P (τ ) = 2pgpeRe[1 + ei(ωτ+φ)G(τ )] = 2pgpeRe

[
1 + ei(ωτ+φ)

N∏
l=2

(pg + pee
iU1l τ )

]
. (B10)

APPENDIX C: DETAILS ON THE DISCRETE TO CONTINUUM TRANSFORMATION

For a large atom number N the sums in Eq. (15) can be substituted by integrals and we obtain oscillation terms given by

B1 =
N∑

i1=2

eiU (r1,i1 )τ = 4π

∫
r2dr f1(r)ei U (r)τ , B2 =

N−1∑
i1=2

N∑
i2>i1

ei(U (r1,i1 )+U (r1,i2 ))τ

= (4π )2
∫ ∫

r2
1 dr1r

2
2 dr2f2(r1,r2)ei(U (r1)+U (r2))τ , B3 = · · · . (C1)

The functions fm are constrained by ∫
V1

· · ·
∫

Vm

dV1 · · · dVmfm =
(

N − 1
m

)
. (C2)

For an ensemble with a large number of atoms N which is locally described by a homogenous atom distribution we can

approximate the function fm with a constant value fm ≈ (1/Vd (r0))m
(
N0 − 1

m

)
where Vd (r0) = N0

n
= πd/2rd

0
�(d/2+1) is a local spherical

volume in d dimensions that encompasses N0 atoms.
Using the identity pg + pe = 1 and the convergence of the Ramsey signal for distances r � r0 obtained by incorporating

large enough atom numbers N0 allowing us to ignore interactions beyond r0 we can substitute N by N0, which leads to

G(τ ) ≈ (pg + peγ (τ ))N0−1, (C3)

where we ignore the index of the atom in the following text of the paragraph. We use γ (τ ) = d

rd
0 −rd

B
I (τ ) where I (τ ) =∫ r0

rB
dr rd−1eiU (r)τ . The radius rB can be used to describe the restriction due to the limited bandwidth of the pump and probe

excitation and is equivalent to the Rydberg-blockade radius. In the case of a van der Waals and dipole-dipole interaction described
by U (r) = C6/r6 and U (r) = C3/r3 we can simplify this function γ (τ ) even further by evaluating the integrals:

I dD
6 (τ ) =

6/d
√

C6τ

d

([
− eis

6/d
√

s

]sB

s0

+ i

(
6

d

)
(C̃d (xB) − C̃d (x0)) − 2(S̃d (xB) − S̃d (x0))

)
(C4)
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and

I 1D
3 (τ ) = C

1/3
3

([
eiωτ

ω1/3

]ω0

ωB

+ 3τ
1
3 (i(C1,3( 3

√
ωBτ ) − C1,3( 3

√
ω0τ )) − (S1,3( 3

√
ωBτ ) − S1,3( 3

√
ω0τ )))

)
, (C5)

I 2D
3 (τ ) = C

2/3
3

2

([
eiωτ

ω2/3

]ω0

ωB

+ i3τ [ 3
√

ωeiωτ ]ωB
ω0

+ 9τ
2
3 ((C3,3( 3

√
ωBτ ) − C3,3( 3

√
ω0τ )) + i(S3,3( 3

√
ωBτ ) − S3,3( 3

√
ω0τ )))

)
, (C6)

I 3D
3 (τ ) = C3

3

([
−eiωτ

ω

]ωB

ω0

+ iτ (Ci(ωBτ ) − Ci(ω0τ )) − τ (Si(ωBτ ) − Si(ω0τ ))

)
. (C7)

For the van der Waals interaction with ω = C6/r6 we have used s = ωτ , x = 6/d
√

s and the Fresnel integrals S̃d (x) =
Sm=(3−d)2,n=6/d (x) = ∫ x

0 tm sin(tn)dt and C̃d (x) = Cm=(3−d)2,n=6/d (x) = ∫ x

0 tm cos(tn)dt . For the dipole-dipole interaction we
have used ω = C3/r3, the Fresnel integrals C1,3, C3,3, S1,3, S3,3 and Si(x) = ∫ x

0 dt sin(t)/t and Ci(x) = − ∫∞
x

dt cos(t)/t .
For the prefactor of the integral we derive

d

rd
0 − rd

B

= d
6/d

√
1

C6

(
6/d
√

ωBω0

6/d
√

ωB − 6/d
√

ω0

)
vdW, (C8)

d

rd
0 − rd

B

= d
3/d

√
1

C3

(
3/d
√

ωBω0

3/d
√

ωB − 3/d
√

ω0

)
DD. (C9)

This leads to

γ dD
vdW(τ ) =

(
6/d
√

ωBeiω0τ − 6/d
√

ω0e
iωBτ

6/d
√

ωB − 6/d
√

ω0

)
+
( (

6
d

)
6/d
√

ωBω0τ

6/d
√

ωB − 6/d
√

ω0

)(
i
(
C̃d ( 6/d

√
ωBτ ) − C̃d ( 6/d

√
ω0τ )

) − (
S̃d ( 6/d

√
ωBτ ) − S̃d ( 6/d

√
ω0τ )

))
(C10)

γ 1D
DD(τ ) = γ 2D

vdW, (C11)

γ 2D
DD(τ ) =

(
ω

2/3
B eiω0τ − ω

2/3
0 eiωBτ

ω
2/3
B − ω

2/3
0

)
− i3τ

(
ω

2/3
B ω0e

iω0τ − ω
2/3
0 ωBeiωBτ

ω
2/3
B − ω

2/3
0

)
(C12)

+ 9τ 2/3(ω0ωB)2/3(
ω

2/3
B − ω

2/3
0

) ((C3,3( 3
√

ωBτ ) − C3,3( 3
√

ω0τ )) + i(S3,3( 3
√

ωBτ ) − S3,3( 3
√

ω0τ ))), (C13)

γ 3D
DD(τ ) =

(
ωBeiω0τ − ω0e

iωBτ

ωB − ω0

)
+
(

ωBω0τ

ωB − ω0

)
(i(Ci(ωBτ ) − Ci(ω0τ )) − (Si(ωBτ ) − Si(ω0τ ))). (C14)

In contrast to ωB which is a constant number ω0 depends on the number of atoms N0. This follows from the relations N0/n =
Vd = πd/2

�(d/2+1) r
d
0 and r0 = (Ck/ω0)1/k resulting in

ω
d/6
0 = πd/2nC

d/6
6

�(d/2 + 1)

1

N0
= σd

1

N0
vdW, (C15)

ω
d/3
0 = πd/2nC

d/3
3

�(d/2 + 1)

1

N0
= κd

1

N0
DD. (C16)

For increasing atom number N0 and the condition ω
d/6
B > σd and ω

d/3
B > κd , the beginning terms of γvdW(τ ) and γDD(τ ) can be

approximated by

(
6/d
√

ωBeiω0τ − 6/d
√

ω0e
iωBτ

6/d
√

ωB − 6/d
√

ω0

)
≈ 1 + σd (1 − cos(ωBτ ) − i sin(ωBτ )))

N0
6/d
√

ωB
(C17)
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and (
3
√

ωBeiω0τ − 3
√

ω0e
iωBτ

3
√

ωB − 3
√

ω0

)
≈ 1 + κ1(1 − cos(ωBτ ) − i sin(ωBτ ))

N0
3
√

ωB
, (C18)

(
ω

2/3
B eiω0τ − ω

2/3
0 eiωBτ

ω
2/3
B − ω

2/3
0

)
− i3τ

(
ω

2/3
B ω0e

iω0τ − ω
2/3
0 ω

2/3
B eiωBτ

ω
2/3
B − ω

2/3
0

)
≈ 1 + κ2(1 − (1 − i3ωBτ ) exp(iωBτ ))

N0ω
2/3
B

, (C19)

(
ωBeiω0τ − ω0e

iωBτ

ωB − ω0

)
≈ 1 + i

κ3τ

N0
+ κ3(1 − cos(ωBτ ) − i sin(ωBτ ))

N0ωB
. (C20)

Here, the prefactors of the last terms follow: ( (
6
d

)
6/d
√

ωBω0τ

6/d
√

ωB − 6/d
√

ω0

)
≈
(

6

d

)
σd

N0

6/d
√

τ , (C21)

(
(ωBω0τ )d/3

ω
d/3
B − ω

d/3
0

)
≈ κd

N0
τ d/3 (C22)

for large N0.
In the case of a van der Waals interaction we acquire the relation

γ dD
vdW(τ ) = 1 + σd (1 − cos(ωBτ ) − i sin(ωBτ ))

N0
6/d
√

ωB
+ 6σd

N0d

6/d
√

τ (i(C̃d ( 6/d
√

ωBτ ) − C̃d ((σd/N0) 6/d
√

τ ))

− (S̃d ( 6/d
√

ωBτ ) − S̃d ((σd/N0) 6/d
√

τ )))

≈ 1 + σd (1 − cos(ωBτ ) − i sin(ωBτ ))

N0
6/d
√

ωB
+ 6σd

N0d

6/d
√

τ (i(C̃d ( 6/d
√

ωBτ )) − (S̃d ( 6/d
√

ωBτ ))). (C23)

For ωB → ∞ this results in

γ 1D
vdW ≈ 1 + σ1�(5/6)

N0

6
√

τ

(
i exp

(
i5π

12

))
, (C24)

γ 2D
vdW ≈ 1 + σ2�(2/3)

N0

3
√

τ

(
i exp

(
iπ

3

))
, (C25)

γ 3D
vdW ≈ 1 + 2σ3

N0

√
π

8

√
τ (i − 1). (C26)

Similarly, for the dipole-dipole interaction we obtain

γ 1D
DD(τ ) = 1 + κ1(1 − cos(ωBτ ) − i sin(ωBτ ))

N0
3
√

ωB

+ 3κ1

N0

3
√

τ (i(C1,3( 3
√

ωBτ ) − C1,3((κ1/N0) 3
√

τ )) − (S1,3( 3
√

ωBτ ) − S1,3((κ1/N0) 3
√

τ )))

≈ 1 + κ1(1 − cos(ωBτ ) − i sin(ωBτ ))

N0
3
√

ωB
+ 3κ1

N0

3
√

τ (iC1,3( 3
√

ωBτ ) − S1,3( 3
√

ωBτ )), (C27)

γ 2D
DD(τ ) = 1 + κ2(1 − (1 − i3ωBτ ) exp(iωBτ ))

N0ω
2/3
B

+ 9κ2

N0
τ 2/3((C3,3( 3

√
ωBτ ) − C3,3(

√
κ2/N0

3
√

τ )) + i(S3,3( 3
√

ωBτ ) − S3,3(
√

κ2/N0
3
√

τ )))

≈ 1 + κ2(1 − (1 − i3ωBτ ) exp(iωBτ ))

N0ω
2/3
B

+ 9κ2

N0
τ 2/3(C3,3( 3

√
ωBτ ) + iS3,3( 3

√
ωBτ )), (C28)

γ 3D
DD(τ ) = 1 + i

κ3τ

N0
+ κ3(1 − cos(ωBτ ) − i sin(ωBτ ))

N0ωB

+ κ3

N0
τ (i(Ci(ωBτ ) − Ci((κ3/N0)τ )) − (Si(ωBτ ) − Si((κ3/N0)τ )))

≈ 1 + i
κ3τ

N0
+ κ3(1 − cos(ωBτ ) − i sin(ωBτ ))

N0ωB
+ κ3

N0
τ (i(Ci(ωBτ ) − Ci((κ3/N0)τ )) + Si(ωBτ )). (C29)
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Additionally, by using the approximation Ci(x) = γ + ln(x) + · · · valid for small x where γ is the Euler-Mascheroni constant,
we obtain for ωB → ∞ the approximation

γ 3D
DD ≈ 1 + i

κ3τ

N0
− κ3

N0
τ (i(γ + ln(κ3τ/N0)) + π/2). (C30)

The coherence terms G̃(τ ) = α(τ )G(τ ) for the van der Waals interaction are easily obtained by taking the limit for large atom
numbers N0 given by

G̃dD
vdW(τ ) ≈ α(τ )

(
1 + peσd�

(
6−d

6

)
N0

6/d
√

τ

(
i exp

(
i(6 − d)π

12

)))N0

(C31)

≈ e
i

(
ωτ+φ+peσd�

(
6−d

6

)
cos
(

(6−d)π
12

)
6/d
√

τ

)
e
−peσd�

(
6−d

6

)
sin
(

(6−d)π
12

)
6/d
√

τ
, (C32)

which results in the Ramsey signal

P (n,τ ) = 2pgpeRe
{

1 + e
i

(
ωτ+φ+peσd�

(
6−d

6

)
cos
(

(6−d)π
12

)
6/d
√

τ

)
e
−peσd�

(
6−d

6

)
sin
(

(6−d)π
12

)
6/d
√

τ
}
. (C33)

The functions G̃(τ ) for the dipole-dipole interaction are given by

G̃1D
DD(τ ) ≈ e

i

(
ωτ+φ+peκ1�

(
2
3

)
cos
(

π
3

)
3√τ

)
e
−peκ1�

(
2
3

)
sin
(

π
3

)
3√τ

, (C34)

G̃2D
DD(τ ) ≈ e

i

(
ωτ+φ−peκ2

(
sin(ωBτ )−3ωBτ cos(ωBτ )

ω
2/3
B

−9τ
2
3 S3,3( 3√ωBτ )

))
e
−peκ2

(
cos(ωBτ )+3ωBτ sin(ωBτ )−1

ω
2/3
B

−9τ
2
3 C3,3( 3√ωBτ )

)
(C35)

in one and two dimensions. For three dimensions where the coherence is described by

G̃3D
DD(τ ) ≈ α(τ )

(
1 + i

peκ3τ

N0
− peκ3

N0
τ (i(γ + ln(κ3τ/N0)) + π/2)

)N0

, (C36)

the limit is more difficult to obtain due to the ln(κ3τ/N0) term in the phase component. By only considering the amplitude we
can at least obtain the decay relation in the limit N0 → ∞, which is given by

∣∣G3D
DD(τ )

∣∣ = e− π
2 peκ3τ (C37)

and shows a simple exponential decay.
With the solutions of the integrals in Eq. (C5) and Eq. (C4) for the dipole-dipole and van der Waals potentials, respectively,

we can find a solution for a hybrid potential of these two defined by

U (r) =
{

C3
r3 r < r1
C6
r6 r � r1

}
, (C38)

with ω1 = C3

r3
1

= C6

r6
1

. Here, we restrict ourselves to the three-dimensional case. The formulation for the function γHyb(τ ) is given

by

γHyb(τ ) =
(

3

r3
0 − r3

B

)(∫ r1

rB

dr r2ei(C3/r3)τ +
∫ r0

r1

dr r2ei(C6/r6)τ

)
(C39)

=
(

ωBeiω1τ − ω1e
iωBτ

ω1(ωB − ω0)

)
ω0 +

(
ωBω0τ

ωB − ω0

)
(i(Ci(ωBτ ) − Ci(ω1τ )) − (Si(ωBτ ) − Si(ω1τ )))

+
(√

ω̃1e
iω̃0τ − √

ω̃0e
iω̃1τ

√
ω̃1(

√
ω̃B − √

ω̃0)

)√
ω̃B +

(
2
√

ω̃Bω̃0τ√
ω̃B − √

ω̃0

)
[i(C0,2(

√
ω̃1τ ) − C0,2(

√
ω̃0τ ))

− (S0,2(
√

ω̃1τ ) − S0,2(
√

ω̃0τ ))], (C40)
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where ω0 = κ3
1

N0
and

√
ω̃0 = σ3

1
N0

. Since ω1 = C3

r3
1

= C6

r6
1

= ω̃1 we find
√

ω̃B = ωB√
ω1

and
√

ω̃0 = ω0√
ω1

, which give us the relation
√

ω̃0√
ω1

= ω0
ω1

that is equal to κ3
ω1

= σ3√
ω1

. Using these relations we obtain for

(
ωBeiω1τ − ω1e

iωBτ

ω1(ωB − ω0)

)
ω0 +

(√
ω̃1e

iω̃0τ − √
ω̃0e

iω̃1τ

√
ω̃1(

√
ω̃B − √

ω̃0)

)√
ω̃B = e

i
ω2

0
ω1

τ

⎛
⎜⎝1+ω0

(
1 − e

i

(
ωB− ω2

0
ω1

)
τ )

ωB − ω0

⎞
⎟⎠ ≈

(
1+κ3(1 − eiωBτ )

N0ωB

)
. (C41)

With the relations of Eq. (C22) and Eq. (C21) we acquire

γHyb(τ ) =
(

1 + κ3(1 − cos(ωBτ ) + i sin(ωBτ ))

N0ωB
+ κ3

N0
(iτ (Ci(ωBτ ) − Ci(ω1τ )) − τ (Si(ωBτ ) − Si(ω1τ )))

+ 2σ3

N0
(i

√
τ (C0,2(

√
ω̃1τ ) − C0,2(

√
ω̃0τ )) − √

τ (S0,2(
√

ω̃1τ ) − S0,2(
√

ω̃0τ )))

)
. (C42)

For ωB → ∞ the resultant expression is

γHyb(τ ) = 1 − i
κ3τ

N0
Ci(ω1τ ) − κ3τ

N0

(
π

2
− Si(ω1τ )

)
+ 2σ3

N0

√
τ (iC0,2(

√
ω1τ ) − S0,2(

√
ω1τ )). (C43)

For the function G̃Hyb(τ ) we can write

G̃Hyb(τ ) ≈ α(τ )

(
1 − i

peκ3τ

N0
Ci(ω1τ ) − peκ3τ

N0

(
π

2
− Si(ω1τ )

)
+ 2peσ3

N0

√
τ (iC0,2(

√
ω1τ ) − S0,2(

√
ω1τ ))

)N0

(C44)

≈ ei(ωτ+φ−peκ3τCi(ω1τ )+2peσ3
√

τC0,2(
√

ω1τ ))e
−peκ3τ

(
π
2 −Si(ω1τ )

)
−2peσ3

√
τS0,2(

√
ω1τ ) (C45)

and the corresponding Ramsey signal is given by

P (n,τ ) = 2pgpeRe
{
1 + ei(−peκ3τCi(ω1τ )+2peσ3

√
τC0,2(

√
ω1τ ))α(τ )e−peκ3τ

(
π
2 −Si(ω1τ )

)
−2peσ3

√
τS0,2(

√
ω1τ )}

,

where −peκ3τCi(ω1τ ) + 2peσ3
√

τC0,2(
√

ω1τ ) is the dynamical phase shift, while the decay is described by

e
−peκ3τ

(
π
2 −Si(ω1τ )

)
−2peσ3

√
τS0,2(

√
ω1τ )

.

APPENDIX D: ANISOTROPY

The treatment presented in the previous section is not limited to an description of isotropic interactions between particles.
Anisotropic interactions of the kind

U (r,θ,φ) =
{

C3f (θ,φ)
r3 DD,

C6f̂ (θ,φ)
r6 vdW

(D1)

result in similar expressions as derived in the previous section. For an anisotropic van der Waals interaction U (r,θ,φ) =
C6f̂ (θ,φ)/r6 we obtain

γ 1D
vdW(τ ) ≈ 1 + σ1(1 − exp(iωBτθ,φ))

N0
6
√

ωB
+ 6σ1

N0

6
√

τθ,φ(i(C̃1( 6
√

ωBτθ,φ)) − (S̃1( 6
√

ωBτθ,φ))), (D2)

γ 2D
vdW(τ ) ≈ 1 + 1

2π

∫ 2π

0
dφ

(
σ2(1 − exp(iωBτθ,φ))

N0
3
√

ωB
+ 3σ2

N0

3
√

τθ,φ(i(C̃2( 3
√

ωBτθ,φ)) − (S̃2( 3
√

ωBτθ,φ)))

)
, (D3)

γ 3D
vdW(τ ) ≈ 1 + 1

4π

∫ 2π

0

∫ 1

−1
dφ d(cos(θ ))

(
σ3(1 − exp(iωBτθ,φ))

N0
√

ωB
+ 2σ3

N0

√
τθ,φ(i(C̃3(

√
ωBτθ,φ)) − (S̃3(

√
ωBτθ,φ)))

)
, (D4)

where τθ,φ = f̂ (θ,φ)τ . The results for the dipole-dipole interaction and in the case of the hybrid model are obtained analogously
by substituting τ with τθ,φ and by leaving the angular integration untouched.

For example, in the case of a three-dimensional ensemble with a homogeneous atom distribution where the interaction is given
by an anisotropic van der Waals interaction, where f̂ (θ,φ) = (1 − 3 cos2(θ ))2 [18], and where we take ωB → ∞, we obtain

γ 3D
vdW ≈ 1 + σ3

N0

√
π

8

√
τ (i − 1)

∫ 1

−1
d(cos(θ ))

√
f̂ (θ ) (D5)

= 1 + 8σ3

3
√

3N0

√
π

8

√
τ (i − 1), (D6)

where in contrast to a factor of two in the isotropic case [Eq. (C26)] we get a factor of 8/(3
√

3).
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APPENDIX E: CORRELATIONS

To obtain further information of the state after the Ramsey process different projection operations on eigenstates need to be
performed on the system. This could be realized in an experiment with single site resolution where the population content in an
eigenstate of a particular atom can be easily discriminated from all the other atoms. For simplicity and without loss of generality
we set the phase φ of the pumping matrix A to zero. Also for more clarity the frequency ω is accompanied by the index of the
atom of origin and written as ωj for atom j .

For example, the signal for measuring two atoms in the excited state is given by

P
(N)
jk (τ ) = 〈�(τ )|e〉j 〈e|j ⊗ |e〉k〈e|k|�(τ )〉N

= 2p2
gp

2
eRe

⎡
⎢⎢⎢⎣2 + ei(ωj −ωk)τ

N∏
l=1

l �=j �=k

(
pg + pee

i(Ujl−Ukl )τ
) + eiωj τ (1 + eiUjkτ )

N∏
l=1

l �=j �=k

(pg + pee
iUjlτ )

+ eiωkτ (1 + eiUjkτ )
N∏

l=1
l �=j �=k

(pg + pee
iUklτ ) + (ei(ωj +ωk+Ujk)τ )

N∏
l=1

l �=j �=k

(
pg + pee

i(Ujl+Ukl )τ
)
⎤
⎥⎥⎥⎦. (E1)

The expression in Eq. (E1) can be used to obtain the signal for two simultaneously measured spins, which is described by
〈�(τ )|σ̂ (j )

z ⊗ σ̂ (k)
z |�(τ )〉N = 22P

(N)
jk (τ ) − 2P

(N)
j (τ ) − 2P

(N)
k (τ ) + 1, where σ̂

(j )
z = |e〉j 〈e|j − |g〉j 〈g|j . This allows us to derive

the spin-spin correlation dependence in an N -particle ensemble given by

Cjk(τ ) = 〈�(τ )|σ̂ (j )
z ⊗ σ̂ (k)

z |�(τ )〉N − 〈�(τ )|σ̂ (j )
z |�(τ )〉N 〈�(τ )|σ̂ (k)

z |�(τ )〉N = 22
(
P

(N)
jk − P

(N)
j P

(N)
k

)
, (E2)

which in the case where all interactions are set to zero results in Cjk(τ ) = 0 [10,20,22].
The results for |e〉j 〈e|j ⊗ |g〉k〈g|k as well as |g〉j 〈g|j ⊗ |e〉k〈e|k and |g〉j 〈g|j ⊗ |g〉k〈g|k can be constructed analogously.
Setting all interactions to zero results in P

(N)
jk (τ ) = 2p2

gp
2
e [2 + cos((ωj − ωk)τ ) + 2 cos(ωjτ ) +2 cos(ωkτ )

+ cos((ωj + ωk)τ )], which for ωj = ωk = ω leads to 2p2
gp

2
e [3 + 4 cos(ωτ ) + cos(2ωτ )].

This can be generalized further on to the results to simultaneously measure m atoms out of an ensemble of N in the excited
state which is given by

P
(N)
j1,...,jm

(τ ) = 〈�(τ )|e〉j1〈e|j1 ⊗ · · · ⊗ |e〉jm
〈e|jm

|�(τ )〉N (E3)

= 2pm
g pm

e Re

⎡
⎢⎢⎢⎣2m−1 +

∑
I⊂{j1, . . . ,jm}

|I |>0

∑
λ∈�I

∏
a∈I

eiλaωaτ
∏

J={b,c}
J⊂I

ei(λb+λc) Ubc
2 τ

×
∏

d∈{j1,...,jm}\I
(1 + ei

∑
f ∈I λf Uf dτ )

∏
h∈{1,...,N}\{j1,...,jm}

(pg + pee
i
∑

k∈I λkUkhτ )

⎤
⎥⎥⎥⎦, (E4)

where �I = {λ = (λk1, . . . ,λk|I | )|k1 < · · · < k|I | ∧ λ ∈ {1} × {−1,1}×|I |−1}. The corresponding signal for m simultaneously
measured spins is defined by

〈�(τ )|σ̂ (j1)
z ⊗ · · · ⊗ σ̂ (jm)

z |�(τ )〉N =
m∑

k=0

(−1)k2m−k
∑

I⊂{j1, . . . ,jm}
|I |=m−k

PI (τ ). (E5)

Analogous to the procedure in Eq. (E2), the correlation function for m spins can be obtained from these measurements.
Again, setting all interaction terms to zero agrees well with the general result of the Ramsey signal for measuring m

noninteracting atoms simultaneously in the excited state with ωa = ω, which is

Pm(τ ) = 2pm
g pm

e

[(
2m − 1

m

)
+

m∑
k=1

(
2m

m + k

)
cos(kωτ )

]
. (E6)

Furthermore, it is not difficult to derive the Ramsey signal for initial states that are different than |g〉⊗N . Choosing from the
separable many-particle states described by |�〉I = ⊗

j∈I |g〉j
⊗

k∈Ñ\I |e〉k for the initial state, where I ⊂ {1, . . . ,N} = Ñ , we

053607-14



TIME-DOMAIN RAMSEY INTERFEROMETRY WITH . . . PHYSICAL REVIEW A 94, 053607 (2016)

obtain for

|�(τ )〉N :I = A⊗N exp(−iĤ τ )A⊗N |�〉I (E7)

in the case of |e〉j 〈e|j and j ∈ I

P
(N)
j :I (τ ) = 2pgpeRe

⎡
⎢⎢⎢⎣1 + eiωj τ

∏
k∈I

k �=j

(
pg + pee

iUjkτ
) ∏

k∈Ñ\I

(
pge

iUjkτ + pe

)
⎤
⎥⎥⎥⎦, (E8)

while for j ∈ Ñ\I we derive

P
(N)
j :I (τ ) = 1 − 2pgpeRe

⎡
⎢⎢⎢⎣1 + eiωj τ

∏
k∈I

(
pg + pee

iUjkτ
) ∏

k∈Ñ\I
k �=j

(
pge

iUjkτ + pe

)
⎤
⎥⎥⎥⎦. (E9)

This leads to more complex expressions [similar to Eq. (E5)] for higher evaluation operators like |e〉j1〈e|j1 ⊗ |e〉j2〈e|j2 if the
readout state and the initial state have coinciding state components as given in Eq. (E9). To overcome this problem it is best
to use only complementary state components with respect to the initial state for the readout operation. For example, this was
already done in the initial discussion to derive the result in Eq. (E3), where the initial state is |g〉⊗N and the readout operator
with |e〉j1〈e|j1 ⊗ · · · ⊗ |e〉jm

〈e|jm
| contains no ground-state state components. For example, for |�〉I with I ⊂ Ñ we derive for a

two-particle readout operator |e〉j1〈e|j1 ⊗ |g〉j2〈g|j2 with j1 ∈ I and j2 ∈ Ñ\I the analogous formulation to Eq. (E1) with

Q
(N)
j1j2:I (τ ) = 〈�(τ )|e〉j1〈e|j1 ⊗ |g〉j2〈g|j2 |�(τ )〉N :I

= 2p2
gp

2
eRe

⎡
⎢⎣2 + ei(ωj1 −ωj2 )τ

∏
l∈I

l �=j1

(
pg + pee

i(Uj1 l−Uj2 l )τ
) ∏

l∈Ñ\I
l �=j2

(
pge

i(Uj1 l−Uj2 l )τ + pe

)

+ eiωj1 τ (1 + eiUj1j2 τ )
∏
l∈I

l �=j1

(
pg + pee

iUj1 l τ
) ∏

l∈Ñ\I
l �=j2

(
pge

iUj1 l τ + pe

)

+ eiωj2 τ (1 + eiUj1j2 τ )
∏
l∈I

l �=j1

(
pg + pee

iUj2 l τ
) ∏

l∈Ñ\I
l �=j2

(
pge

iUj2 l τ + pe

)

+(ei(ωj1 +ωj2 +Uj1j2 )τ )
∏
l∈I

l �=j1

(
pg + pee

i(Uj1 l+Uj2 l )τ
) ∏

l∈Ñ\I
l �=j2

(
pge

i

(
Uj1 l+Uj2 l

)
τ + pe

)⎤⎥⎦. (E10)

Using the identity |e〉jk
〈e|jk

+ |g〉jk
〈g|jk

= 1 all other solutions to readout operators, where maximally two particles are
simultaneously measured in an ensemble of N , can be constructed. For example, for the spin measurement σ̂

(j1)
z ⊗ σ̂

(j2)
z =

−22|e〉j1〈e|j1 ⊗ |g〉j2〈g|j2 + 2|e〉j1〈e|j1 + 2|g〉j2〈g|j2 − 1 we obtain

〈�(τ )|σ̂ (j1)
z ⊗ σ̂ (j2)

z |�(τ )〉N :I = −22Q
(N)
j1j2:I (τ ) + 2Q

(N)
j1:I (τ ) + 2Q

(N)
j2:I (τ ) − 1, (E11)

where Q
(N)
j1:I (τ ) = P

(N)
j1:I (τ ) since j1 ∈ I and the sign is changed in comparison to the spin-spin average value derived from

Eq. (E1). This is caused by the particle j2 initially being in the excited state. The Ramsey signal for many initially entangled
states can be calculated by first solving the Ramsey signal for the separable many-particle basis and superposing the solutions
with the corresponding coefficients. Nevertheless, for increasing N this construction becomes an impossible task due to the
exponentially growing basis set with respect to the particle number.
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