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Topological defect dynamics of vortex lattices in Bose-Einstein condensates
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Vortex lattices in rapidly rotating Bose-Einstein condensates are systems of topological excitations that arrange
themselves into periodic patterns. Here we show how phase-imprinting techniques can be used to create a
controllable number of defects in these lattices and examine the resulting dynamics. Even though we describe our
system using the mean-field Gross-Pitaevskii theory, the full range of many-particle effects among the vortices
can be studied. In particular we find the existence of localized vacancies that are quasistable over long periods
of time and characterize the effects on the background lattice through the use of the orientational correlation
function and Delaunay triangulation.
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I. INTRODUCTION

Ultracold gases have proven to be a valuable resource
for building simulators of condensed-matter and solid-state
systems [1–3]. This is due to the fact that they are low-energy
systems that can be trapped in periodic settings using optical
lattices and that a large number of techniques exist to control
and change all terms of the corresponding Hamiltonians.
Control over the lattice depths, and therefore the tunneling
strength, gives a handle on the kinetic-energy term [4];
superlattices allow us to adjust the on-site energies [5], and
different external lattice geometries lead to changes in the
band structure [6,7]. Most recently, artificial gauge fields have
been added to the toolbox [8–10].

One of the most interesting topics in solid-state physics is
the study of impurities and their effect on the background
system. Studying impurities in Bose-Einstein condensates
(BECs) is a promising and rich topic, and the first experiments
in this area have recently been carried out [11–13]. Given
the clean and highly controllable nature of condensates, they
allow a study of the fundamental physics of impurities, which
is paramount to creating models of realistic condensed-matter
systems, which are never truly impurity or defect free. By
now impurities have been used to investigate the atomic
density distribution [11], as well as exotic quasiparticles
such as Fröhlich polarons [12]. These results show that
impurities are very robust and reliable tools to investigate
the underlying condensate behavior, and many proposals for
further investigations exist [14–18].

Another ultracold system in which solid-state-like periodic
structures appear is vortex lattices in rotating Bose-Einstein
condensates. BECs react to high rotation frequencies by
creating a large number of vortices with single winding, which
arrange themselves into a triangular Abrikosov geometry,
similar to the ones observed in type-II superconductors [19].
These lattices have been investigated for their collective
excitations and have been shown to exhibit Tkachenko
mode behavior [20,21]. More recently, the focus has shifted
towards looking at perturbations of these lattices. For example,
applying a kicked potential with a spatial geometry similar to
the vortex lattice was shown to create transient superlattice
structures in the density [22]. Quantifying the disorder of
vortex lattices has recently become an active topic of inter-
est [23,24]. These topics are particularly useful as they can

allow the study of quantum turbulence in highly controllable
systems [25–27].

All the studies up to now have focused on collective
behavior of the vortex lattices, as the introduction of a single
impurity into a vortex lattice is hard to achieve. In this work
we suggest an experimentally realistic method to do this and
examine the behavior of a vortex lattice in the presence of a
defect or impurity. For this we start from a perfect vortex lattice
at a fixed rotation frequency and will selectively either remove
single vortices or introduce additional rotation at localized
positions. The easiest and experimentally most realistic way
to do this is via phase imprinting, and we will show that this is
a highly controllable and precise way to manipulate vorticity
in a rapidly rotating Bose-Einstein condensate.

This paper is organized as follows. In Sec. II we introduce
the system of a rapidly rotating Bose-Einstein condensate
featuring a vortex lattice. We then proceed to investigate the
dynamics of removing a vortex from the condensate using
the phase-imprinting method in Sec. III and conclude in
Sec. IV.

II. MODEL

For this work we consider the system of an Abrikosov
vortex lattice in a rapidly rotating Bose-Einstein condensate
within the mean-field regime. To investigate the evolution of
a perturbed vortex lattice we numerically solve the Gross-
Pitaevskii equation in two dimensions, assuming a strong
confinement along the third axis. This allows us to restrict the
dynamics to the x-y plane and focus fully on the Abrikosov
lattice geometry. Experimentally, this corresponds to a system
with a very strong confinement in only one direction [28–30],
and in the frame corotating with the condensate, the nonlinear
mean-field equation governing the BEC wave function is given
by

i�∂t�(r,t) =
[
− �

2

2m
∇2 + V (r) + g|�(r,t)|2 − �Lz

]
�(r,t).

(1)

Here V (r) is the harmonic trapping potential with a frequency
ω⊥ = 2π × 1 Hz. The trap rotation frequency is given by
�, and Lz is the angular momentum operator along the z

direction. The effective interaction strength in two dimensions
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is characterized by g, and we assume we have N = 9.8 × 105

atoms of 87Rb, with a singlet-state s-wave scattering length
of as = 90rb ≈ 4.76 × 10−9 m, where rB is the Bohr radius.
For the rapidly rotating case, � = 0.995ω⊥, the vortices form
an ordered triangular lattice with spacing av ≈ 2.1 × 10−5 m,
which rotates like a solid body in the large-number limit [31].
Simulating a large vortex lattice is a difficult numerical
problem, as large grid sizes are required to resolve all aspects
of the system in both position and momentum space. Thus, an
advanced numerical technique is necessary to obtain solutions
in a reasonable time scale. We have developed and made use
of GPUE, an open-sourced, graphics-processing-unit (GPU)
enabled Gross-Pitaevskii equation solver [32]. This software
allows us to integrate linear and nonlinear Schrödinger systems
in significantly shorter times than alternative implementa-
tions [33,34].

To quantify the order of the vortex lattice the position of
each vortex was found by summing the wave-function phase
over adjacent grid sites and looking for a 2π winding. This gave
a vortex position estimated to the numerical grid. A linear least-
squares fit was then performed to more accurately determine
the vortex core position to subgrid resolution by locating the
real and imaginary zeros of the wave function within this
region. This allows for the detected core position to take on
a continuous range of spatial values within the condensate.
As tracking many-body dynamics is a complex problem, we
make use of the Delaunay triangulation technique from compu-
tational geometry to examine the ordering of the vortex lattice.
In the ideal triangular Abrikosov lattice, every vortex has six
nearest neighbors, l = {1, . . . ,6}, located at θl = lπ/3 around
the polar angle, and any perturbation related to a defect changes
these locations. Delaunay triangulation generates a mesh from
the vortex positions, which makes it easy to check for the
presence of nonsixfold connected vortices. These vortices are
termed n-fold topological lattice defects, where n is the number
of connected edges, and dislocation defects can form when, for
example, a fivefold defect and a sevenfold defect pair. Since all
these structures are easily countable, this method allows us to
characterize the effect a well-defined perturbation has on the
lattice.

As unperturbed Abrikosov lattices in BECs are well ordered
everywhere in the bulk region [35], we define a radial
boundary at approximately 2/3 of the maximum density,
which corresponds to rv = 2 × 10−4 m from the center, and
restrict our analysis to vortices inside it. This leaves an edge
boundary of approximately 4av wide where vortices are not
counted. Given the coordinate locations for each vortex within
the boundary, it is possible to calculate statistical quantities
that characterized the degree to which the lattice is ordered.
As our system is of finite size, the usually used translational
correlations have only limited value, and we will focus in the
following on orientational correlations, which quantify how
the lattice aligns along a particular angle. The orientational
correlation function is defined as

g6(r) = 1

N (r)

N(r)∑
j,k

ζ6(rj )ζ ∗
6 (rk), (2)

with

ζ6(rj ) = 1

nj

nj∑
l

exp(i6θjl), (3)

where N (r) is the number of paired vortices separated by
r = |rj − rk|, ζ6 is the orientational order parameter, l runs
over the nearest-neighboring vortices, nj is the number of
nearest-neighboring vortices, and θjl is the angle a paired
vortex and a nearest neighbor make relative to a reference
axis [36]. We examine the orientational correlation function
as a measure of the order of a “vortex unit cell,” defined by
the angle made by nearest neighbors to an individual vortex.
For a perfectly ordered triangular lattice this value will tend to
1 at r = av , next-nearest-neighbor positions, and higher-order
lattice spacings and 0 elsewhere.

III. PHASE-IMPRINTING DEFECTS

Phase imprinting is a class of techniques for directly
manipulating the phase of a condensate in such a way that the
phase is modified to a desired form [37]. As a consequence,
the density distribution will adjust itself, and in ground-state
condensates dark solitons [38], as well as vortices [39,40],
have been created this way. However, the phase-imprinting
methods can also be used to annihilate a vortex from the lattice
by applying a phase profile of opposite winding to remove the
vortex phase singularity. This will leave the condensate with
a density depletion at the prior location of the singularity,
which will consequently fill in and excite phonon modes in the
condensate.

A. Single-vortex dynamics

To fully understand the effects of removing a vortex from
the lattice system, let us first investigate the situation where
the vorticity from a condensate carrying only a single vortex is
removed. For this we apply a phase pattern that exactly cancels
the 2π phase winding and simulate the resulting dynamics.
The results of such a process can be seen in Fig. 1, and as
expected, the depletion in the condensate density fills in after
the vortex phase is removed and the breathing mode is excited.
Since the system is rotationally symmetric, we also plot the
expectation value of the squared radius 〈r2〉, where r2 =
x2 + y2, which clearly shows that the annihilation process
excites the breathing mode at the expected frequency of 2ω⊥
for a two-dimensional system [41]. The change in energy
due to the phase removal can be meaningfully characterized
via the ratio of compressible (phonon) and incompressible
(vortex) kinetic-energy spectra shown in Fig. 2. The kinetic
energies are determined from the density-weighted velocity
field, u = |�| �

m
∇θ , where θ is the phase of the condensate.

The contributions from the compressible and incompressible
energies can be taken as u = uc + ui and are determined by
solving

∇ × uc = 0, (4a)

∇ · ui = 0. (4b)

The resulting spectra Ei,c are then calculated as an
angle average over linearly spaced intervals of wave-number
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FIG. 1. The evolution of the condensate density is shown for the
initial state and after 10 ms of evolution. The removal of the phase
singularity at r = 0 leads to a filling in of the density dip, which can
also be seen from the line plot. The process excites the monopole
mode at frequency 2ω⊥ (see inset).

magnitudes in reciprocal space [42],

Ei,c(k) = mk

2

∑
j∈r

∫ 2π

0
dφk

U i,c
j (k,t)

sk

, (5)

where

U i,c
j (k,t) =

∫
d2re−i(k·r)u

i,c
j (r,t) (6)

and sk is the number of samples in a particular interval. As
one can see from Fig. 2, after the vortex is annihilated and
sounds wave are created, the energy ratio drops, and lower
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k (m−1)

E
i /

E
c

t = 0
t = 10 ms

FIG. 2. Ratio of incompressible to compressible energy at t = 0
(solid line) and t = 10 ms (dashed line). Initially, the incompressible
energy is greater than the compressible energy due to the presence of
the vortex, giving values greater than unity for all k. After application
of the phase profile, the vortex is annihilated, with the energy released
as phonons, indicated by a decrease in incompressible energy for all
k values.

FIG. 3. The condensate evolution following an uncentered phase
imprint. For an imprint where the singularities of the vortex and
the imprinted phase are less than two times the healing length away
from each other the existing vortex is annihilated, and phonon modes
are excited [cases (a) and (b)]. However, beyond this distance an
antivortex is created, which travels with the preexisting vortex and
circulates the condensate [cases (c), (d), and (e)]. The distance for
cases (a) and (b) and (c), (d), and (e) are r = 1.36 × 10−6 m and
r = 2.73 × 10−6 m, respectively.

incompressible-to-compressible values appear, in particular
for higher wave numbers. The latter is due to the removal
of large kinetic energies from the atoms close to the vortex
core.

While the above example suggests that erasing vortices
is a straightforward and controllable process, this assumption
needs to be checked for the situation where the imprinted phase
and the existing phase are not perfectly centered on each other.
This situation is shown in Fig. 3, and one finds that in cases
where the imprinted profile is sufficiently close to the core
(i.e., within two times the healing length, ξ ≈ 1.06 × 10−6 m)
the existing vortex gets erased as before. However, beyond
this distance a separate antivortex gets created, and the vortex-
antivortex pair travels to the edge of the condensate system and
begins to circulate around [43]. For a densely packed lattice
of vortices, however, this is not a problem since the typical
distance between vortices is of the same order of magnitude
as the healing length.

B. Lattice dynamics

The removal of a single vortex from the vortex lattice by
phase erasing initially affects only the nearest neighbors, as
the phase gradient is only significant over the length scale of
a healing length close to the erased singularity. The altered
velocity profile will lead to the remaining vortices leaving
their position in the Abrikosov lattice and the excitation of
phonon modes. However, in the lattice areas away from the
impurity, these phonon modes have only minimal impact on the
geometry [22]. To characterize the vortex dynamics following
the application of the phase profile, we will in the following
track each individual vortex throughout the full time evolution
and use the resulting trajectories and Delaunay triangulation
for analysis.
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FIG. 4. The trajectories of the vortices over 4 s following the
removal of the vortex closest to the center, where each color
represents a unique trajectory path. The vortices can be seen to move
counterclockwise in the corotating frame due to the loss of the local
velocity field. However, the effect of the removal decreases quickly
with increased radial distance.

Let us first consider the situation where a single vortex is
erased within the central area of the vortex lattice. In Fig. 4
we show the trajectories of the remaining vortices over a time
scale of 4 s. One can see that a long-lived vacancy is maintained
close to the center, with the adjacent vortices rotating faster
than the lattice due to the loss of the local velocity field.
The honeycomblike vacancy region eventually decays, and
the system settles into a new local geometry. Very similar
behavior can be observed if the erased vortex is not one of the
central ones, as long as it is within a region of constant areal
vortex density. However, being closer to the edge of the lattice
reduces the stability of the perturbed region. The overall lattice
remains well structured after a vortex removal, as can be seen
from the orientational correlation function shown in Fig. 5 for
different times. Although the gaps between the peaks that exist
at t = 0 disappear during the evolution due to the presence of
the phonon excitation, the overall correlations remain high
for long times and constant across all length scales. The slight
peak softening arises from the vortices no longer being aligned
to a perfect triangular lattice position, which is indicative of a
weak disordering or distortion of the lattice structure.

As described above, the Delaunay triangulation of the
lattice can give a graphical overview of how connected the
different vortices are and therefore what changes to the lattice
structure have occurred [36]. We show the resulting graph for
the case where a single vortex was removed from the center
of the lattice in Fig. 6. One can see that a pair of (5, 7)-fold
connected lattice defects form immediately after the removal
(at 10 ms), which slightly adjusts and becomes stable for long
times. Removing vortices at different positions in the lattice
shows similar behavior, with a localization of the disordered
region not far from the site of vortex removal.
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1
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FIG. 5. The orientational correlation function for the vortex
lattice after removing the central vortex is given for t = 0,1,6 s (top to
bottom). The peaks at t = 0 appear at nearest-neighbor, next-nearest,
and higher-order distances. Due to finite binning of the lengths, the
peaks become grouped to 1 at higher length scales. For times greater
than t = 0, the peak correlations drop; however, the large value at
long times indicates a well-ordered lattice as high correlations are
observed across all length scales.

If the phase imprinting is not directly aligned with the
vortex singularity, other n-fold dislocations can be found in
the Delaunay triangulation. This is due to the vortex core
size becoming comparable to the average spacing between

10 ms 800 ms

2 s 6 s

FIG. 6. Delaunay triangulation of the vortex lattice after remov-
ing one vortex, shown at t = 0.01,0.8,2,6 s. The resulting lattice
defects are indicated by white and gray stars for fivefold and sevenfold
defects, respectively. One can see that two (5, 7) dislocations are
formed quickly, which settle and persist in the lattice for long times.
Lattice dislocation lines are indicated for inset t = 6 s.
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FIG. 7. The time-averaged number of defects appearing over a
range of imprint positions, relative to a central vortex from t = 1 →
10 s and allowing 1 s of settling time. A schematic of the examined
region is shaded in (a), with the resulting (b) fivefold and sevenfold
defects shown following an imprint. The insets show a snapshot
of two different parameter regions at t = 6 s. A high simultaneity
is observed between their appearance, where a paired (5, 7) defect
indicates a lattice dislocation. Not all five- and sevenfold defects pair,
as some can exist individually or pair with other n-fold defects.

the cores in rapidly rotating condensates, and therefore, the
imprinted changes to the velocity field affect more vortices.
Figure 7 shows the time-averaged number of lattice defects
following an imprint displaced relative to a vortex and lattice
vector. One can see that if the displacement is still within
the core of the vortex, on average one or two defects are
created of the fivefold [Fig. 7(a)] and the sevenfold [Fig. 7(b)]
kind. At the cusp of the core, the imprint tends to create
upwards of three to four defects, which again tends back
to the average of two beyond this region. This shows that
the previously discussed issue resulting from the creation of
antivortices through imperfect alignment does not exist in
Abrikosov lattices, and we will concentrate on the perfect
imprint of the phase in the following discussions.

To further demonstrate the localized nature of the defect,
let us briefly discuss the situation where two vortices are
erased in separate regions away from the lattice center. The
Delaunay triangulation for this case is shown in Fig. 8, and
the independence of the two localized regions is clearly
visible, with each showing behavior similar to the case
discussed above. Since we are limiting ourselves here to
perfect imprinting, we also show the number of edges formed
between vortices as a function of time for five, six, and seven
nearest neighbors Nx in Fig. 9. One can see that the initial
perturbation settles quickly to values similar to the ones above.

In addition to simply erasing vorticity, we can also use
phase imprinting to create varying degrees of disorder. By, for
example, applying an appropriate 4π magnitude phase imprint
we can replace a vortex with an antivortex at a given position.
Since this does not require a change in the local density,
all resulting perturbations stem from the adjusted velocity
field of the vortex that has been flipped [44]. However, it is
immediately obvious that such a situation is unstable, which
can be confirmed by observing the creation of a large number
of defects, as shown in Fig. 10. An increase in the number
of defects can be seen up to approximately t = 3 s, during
which the antivortex causes local disordering of the lattice,
annihilates with a nearby vortex, and gives rise to the creation

10 ms 800 ms

2 s 6 s
FIG. 8. Delaunay triangulation of the vortex lattice upon removal

of two vortices on either side of the lattice for t = 0.01,0.8,2,6 s.
The resulting defects that form remain localized for long times. The
lattice largely remains ordered, as observed with removing the central
vortex.

of a large number of (5, 7) defect pairs. After this the number
of defects no longer grows but instead fluctuates about a stable
value which is greater than that of the previously examined
cases.

A final class of possible perturbations is the removal of a
cluster of neighboring vortices from the lattice, and in Fig. 11
we show the results from erasing an entire seven-vortex unit
cell from the condensate. As expected, one can see that the
number of lattice defects rises considerably and does not settle
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FIG. 9. The defect count taken from a Delaunay triangulation of
the vortex lattice following the removal of two vortices on opposite
sides as a function of time. After a brief settling time, the lattice
attains an almost constant defect count.
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FIG. 10. The defect count taken from a Delaunay triangulation of
the vortex lattice following the insertion of an antivortex. The number
of defects increases as the local structure decays and eventually gives
rise to a quasiconstant state.

during the time over which we can simulate the condensate.
In this case, the disordered regions occupy a large area of the
lattice, and the number of sixfold connected vortices becomes
very low.

Comparing the orientational correlation functions for the
three cases discussed in this section (removing two distant
vortices, creating an antivortex, and removing seven vortices)
also demonstrates the different degrees of disorder they
produce (see Fig. 12). The removal of the two vortices at
opposite sides of the condensate still yields reasonably high
correlations [〈g6(r)〉 ≈ 0.8] at all times and length scales,
indicating a well-ordered lattice. Creating an antivortex in
the lattice leads to lower correlations across all length scales,
especially in the long time limit [〈g6(r)〉 ≈ 0.7], but still tends
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FIG. 11. The defect count taken from a Delaunay triangulation
of the vortex lattice following the removal of seven vortices from the
center of the lattice.
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FIG. 12. The orientational correlation function is given for

moderate (t = 3 s, top) and long (t = 6 s, bottom) times after the
phase imprint. The general behavior at short and long ranges is similar
for all three scenarios, but the correlations are significantly reduced,
especially for the situation where seven vortices are removed.

to the same long-ranged value as the previous case. This
indicates an ordered lattice outside the region of the localized
defects. Last, the removal of seven vortices shows a significant
drop in correlations at all length scales and across both times
[〈g6(r)〉 ≈ 0.5], indicating a global disordering of the vortices,
which is consistent with the large number of defects identified
earlier.

IV. DISCUSSION AND OUTLOOK

We have shown that the removal of a vortex from an
Abrikosov vortex lattice via phase imprinting creates a
quasistable honeycomblike vacancy site. The removal of the
associated velocity field near the vacancy, however, disturbs
the solid-body behavior of the lattice, and the vacancy region
rotates slower than the surrounding vortex lattice. It eventually
decays, creating highly stable topological lattice defects that
persist for long times. In fact, the resulting defects can be seen
to pair, with (5, 7) lattice defects being the most prominent and
manifesting themselves as dislocation defects in the lattice.

The characterization of perturbed lattices put forward by us
complements the recent work of Rakonjac et al. [23], where
the authors determined the disorder present in a vortex lattice
in a BEC by comparing the ratio of the standard deviation
of nearest-neighbor distances to the mean distance. Here we
extend the available tools by using orientational correlations,
Delaunay triangulation for topological defect detection, and
by introducing a method to controllably engineer lattice
defects through phase imprinting. Although our work relies
on theoretical data, all methods can easily be applied to
experimental data as well.

We have also discussed that various kinds of defects can
be created controllably by varying the degree to which the
crystal structure gets erased. This suggests the use of the
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phase-erasing technique in Abrikosov lattices for examining
turbulence in two-dimensional condensates. By introducing
a variable number of antivortices one could, for example,
examine the transition from an ordered to a disordered
system.
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