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Surface-modified Wannier-Stark states in a one-dimensional optical lattice
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We study the energy spectrum of atoms trapped in a vertical one-dimensional optical lattice in close proximity
to a reflective surface. We propose an effective model to describe the interaction between the atoms and the
surface at any distance. Our model includes the long-range Casimir-Polder potential together with a short-range
Lennard-Jones potential, which are considered nonperturbatively with respect to the optical lattice potential. We
find an intricate energy spectrum which contains a pair of loosely bound states localized close to the surface in
addition to a surface-modified Wannier-Stark ladder at long distances. Atomic interferometry involving those
loosely bound atom-surface states is proposed to probe the adsorption dynamics of atoms on mirrors.
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I. INTRODUCTION

Trapping and manipulating cold neutral atoms in an optical
lattice offers high control over the atomic locations and robust
quantum coherence on the dynamics of the atomic states.
These properties make of an optical lattice an ideal system for
applications in metrology [1,2] and in precision measurements
of the interactions between the atoms and the environment
[3]. It is to the latter that the FORCA-G project applies [4].
In particular, the FORCA-G experiment aims at performing
high-precision measurements of the electromagnetic and
gravitational interactions between a neutral atom and a massive
dielectric surface. Ultimately, it aims at establishing accurate
constraints in the search of hypothetical deviations from the
Newtonian law of gravitation at short length scales, the reason
why an accurate knowledge of the electromagnetic interaction
is also needed. It is on the electromagnetic interaction that we
concentrate in this article.

In the setup of FORCA-G atoms of 87Rb are trapped in
a vertical optical lattice by the potential generated by the
standing waves of a laser source of wavelength λl = 532 nm,
which reflect off a Bragg mirror (see Fig. 1). The optical
potential takes the periodic form

Vop(z) = U (1 − cos 2klz)/2, (1)

where kl = 2π/λl , z is the vertical distance relative to the
surface position and U is the optical depth which depends on
the laser intensity. In addition, the uniform Earth gravitational
field creates a linear potential

Vg(z) = −mgz (2)

with m being the atomic mass and g being the gravitational
acceleration. Disregarding the atom-mirror interaction, the
spectrum which results from the addition of the optical and
gravitational potentials consists of a ladder of quasistable states
referred to as Wannier-Stark (WS) states. The WS eigenstates
are localized around the equilibrium points zn = nλl/2, n

being an integer, and are uniformly distributed along the energy
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spectrum at constant intervals mgλl/2 = hνB . In this expres-
sion νB is referred to as Bloch frequency, and the degree of
localization is determined by the relative optical depth with re-
spect to the recoil energy, U/(�2k2

l /2m) = U/Er (see Fig. 2).
In addition to Vop(z) and Vg(z), the neutral atoms interact

with the surface through the mutual coupling of their charge
fluctuations to the vacuum fluctuations of the electromagnetic
field. This interaction is known generically as Casimir-Polder
(CP) interaction [5,6]. At zero temperature its strength depends
generally on the dielectric properties of the surface, the state
of the atom, and the distance between them.

The modus operandi of FORCA-G consists of a sequence of
pulses generated by Raman lasers and microwaves which are
used to create an atomic interferometer. The pulses drive the
atoms through a coherent superposition of low-lying Zeeman
sublevels at different lattice sites [4]. The CP interaction
induces a phase shift on the atoms which depends strongly
on the distance of the atoms to the surface and slightly on
the internal atomic states. The phase shift accumulated by
the atomic wave function throughout the sequence of pulses
is finally measured by atomic interferometry techniques. If
the atoms are made to oscillate between lattice sites far
from the surface, the CP-induced shift is additive. Therefore,
once the phase shift associated to the passage through different
WS levels, which is characteristic of the interferometer
scheme, is substracted, the remaining phase is the CP-induced
shift we are interested in.

The latter applies to the case where the CP interaction is
small with respect to the optical potential depth, so that it can
be treated as a perturbation to the potential Vop(z) + Vg(z) and
hence to the original WS states. This takes place at separation
distances of the order of microns, at which the perturbative
development of Refs. [7,8] applies. On the contrary, at
submicrometer distances and beyond the perturbative regime,
it was already noticed in Ref. [7] that the CP corrections to
the original WS energies diverge. This is especially relevant
to the purposes of the FORCA-G project, as deviations from
Newtonian gravity are expected to occur at submicrometer
distances. Therefore, a precise knowledge of the CP interaction
at this length scale as well as an accurate description of the
spatial distribution of the atomic wave function are crucial
in order to detect those gravitational effects. In Ref. [7] the
authors apply a regularization scheme for the CP potential
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FIG. 1. Scheme of the experimental device. Cold 87Rb atoms
are trapped in a blue-detuned vertical optical lattice. An infrared
laser at λ = 1064 nm ensures the transverse confinement. A pair of
contrapropagating Raman lasers at λ = 780 nm (not shown) drives
the transitions between lattice sites.

based on the assumption that the minimum distance of the atom
to the surface is determined by the atomic radius. However, it
is found there that the resultant corrections strongly depend on
this radius. Thus, nonreliable results were obtained.

It is the main purpose of the present article to develop a
nonperturbative approach to this problem in order to determine
accurately the energy spectrum and the profile of the atomic
states at submicrometer distances. To this end, we model the
short-range interaction between the atom and the surface by
a Lennard-Jones potential which features the adsorption of
the atoms on the surface. We find that, in addition to slightly
modified WS states, the resultant spectrum contains a number
of loosely bound atom-surface states whose properties depend
critically on the parameters of the Lennard-Jones potential.
Nonetheless, independent measurements can be performed to
determine the unknowns of such potential.

The remainder of the article is organized as follows. In
Sec. II, we present the features of the potential modeling the
interaction between the atom and the surface. In Sec. III we
show that the overall effect of the surface leads to a com-
plex energy spectrum significantly departing from the usual
Wannier-Stark states. We conclude by calculating a typical
atomic interferometry spectrum obtained using stimulated
Raman transitions between those surface-modified Wannier-
Stark states.

II. THE ATOM-SURFACE POTENTIAL

In addition to the optical potential described in the
precedent section, the atoms interact with the mirror through
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FIG. 2. Profile of the squared-norm of the wave function of the
nth WS state for different values of the optical depth, U = 3 Er

(upper figure) and U = 9 Er (lower figure).

the electromagnetic field. Quite generally, this interaction
is made of two distinct components, a short-range and a
long-range potentials. The short-range potential results from
the spatial overlap between the electronic clouds of the
atoms and the surface at subnanometer distances. In turn,
this potential depends on the precise profile of the electronic
density distribution, which is difficult to determine both
experimentally and theoretically. Hence, a parametrization
scheme is required for the short-range potential. In contrast,
the long-range potential originates from the mutual coupling
of the charges within the atoms and the currents in the
mirror to the fluctuating electromagnetic field. This is the so-
called Casimir-Polder potential, which is computed in the
electric dipole approximation at second order in stationary
perturbation theory.

In the framework of the scattering theory [9], the Casimir-
Polder potential between a flat mirror in the (xy) plane and
an atom in the ground state separated by a distance z, at
temperature T , is given by [10]

V CP
s (z) = kBT

∑
n

′ ξ 2
n

c2

α(iξn)

4πε0

∫ ∞

0

d2k
κ

e−2κz

×
[
ρTE −

(
1 + 2κ2c2

ξ 2
n

)
ρTM

]
(3)
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with k2 = k2
x + k2

y , κ = √
k2 + ξ 2

n /c2 and the sum runs over
Matsubara frequencies ξn = 2πnkBT /�. In this equation ρTE

and ρTM are the reflection coefficients of the mirror for
the TE and TM polarizations, respectively, and α(iξ ) is the
polarizability of a 87Rb atom in its ground state evaluated at
imaginary frequencies [11],

α(iξ ) = 2

�

∑
j

ωjgd
2
jg

ω2
jg + ξ 2

, (4)

where ωjg = ωj − ωg and djg are, respectively, the transition
frequency and the electric dipole matrix element between the
states |j 〉 and |g〉.

Concerning the optical properties of the mirror used in
the FORCA-G experiment, its design is such that it is nearly
transparent at 780 nm and 1064 nm while it is reflective at
532 nm. It is a Bragg mirror formed by alternating layers of
SiO2 and Ta2O5. Its reflection coefficients ρTE and ρTM are
obtained using standard transfer matrix theory. Let us define
first by Ti the transfer matrix associated to the transmission
through the interface between the layers i and i + 1, as well
as to the propagation throughout the layer i + 1 of width di+1.
It relates the field on the left of the layer i to the field on the
right and reads [12]

Ti = 1

t̄i

(
ti t̄i − ri r̄i r̄i

−ri 1

)(
eikzdi+1 0

0 e−ikzdi+1

)
. (5)

In this equation, ri and ti are the Fresnel amplitudes from
medium i to medium i + 1. The barred quantities are the
reciprocal amplitudes from medium i + 1 to medium i and
kz is the z component of the wave vector in medium i + 1. The
transfer matrix of the Bragg mirror, T, is the product of the
transfer matrices of all the layers T = ∏

i Ti and reads

T = 1

τ̄

(
τ τ̄ − ρρ̄ ρ̄

−ρ 1

)
, (6)

from which the total reflection amplitude reads ρ =
−[T]21/[T]22.

We show in Fig. 3 the Casimir-Polder potential calculated
using Eq. (3) for a temperature T = 300 K. The potential is
scaled with z3, the third power of the atom-surface distance,
in order to emphasize the nonretarded van der Waals regime
characterized by its coefficient C3 ≈ 3.28 a3

0 eV.
As for the short-range potential, we parametrize it using a

12 − 3 Lennard-Jones form,1

V LJ
s (z) = D

3

[(
z0

z

)12

− 4

(
z0

z

)3
]
, (7)

which is characterized by a well depth D and an equilibrium
distance z0 which correspond to the energy and distance from
the surface of an adsorbed atom, respectively. Continuity of
the atom-surface potential demands that V LJ

s (z) and V CP
s (z)

smoothly merge at some intermediate distance zm. This implies

1In surface science, a 9 − 3 Lennard-Jones potential is also often
used as it arises as pairwise summation of 12 − 6 Lennard-Jones
atom-atom interactions.

un
it

s 
of

FIG. 3. The Casimir-Polder potential calculated between a Ru-
bidium atom and a SiO2–Ta2O5 Bragg mirror as a function of the
distance z. The value of the van der Waals coefficient C3 is indicated.

that D and z0 are no longer independent but are related by the
equation

4
3Dz3

0 = C3, (8)

where C3 is the van der Waals coefficient in the Casimir-Polder
potential. With this condition between the parameters D and
z0 in the Lennard-Jones potential, the matching distance zm is
chosen where both potentials V LJ

s (z) and V CP
s (z) behave in z−3

and leads to the total surface potential Vs(z):

Vs(z) = V LJ
s (z)�(zm − z) + V CP

s (z)�(z − zm), (9)

where �(z) is the Heaviside function.
The form used for V LJ

s (z) is merely of a physisorption type
and hence is expected to underestimate the adsorption energy.
For instance, for an equilibrium distance z0 = 2.3 Å we find
D ≈ 30 meV to be compared with a value of ≈350 meV
from a recent density functional theory calculation [13]. As
a matter of fact, the parameters of the short-range potential
carry the largest uncertainty in our calculation. An accurate
determination of this part of the potential would require
extensive ab initio calculations up to distances of the order
of the nanometers which are beyond the scope of this work.
Alternatively, the parameters D and z0 can be determined
experimentally. Be that as it may, we will study in the next
section the influence of our results upon the parameters of the
Lennard-Jones model.

III. SURFACE-MODIFIED WANNIER-STARK STATES

In the following and unless otherwise stated, we will refer
to the distance z to the surface in units of λl/2 = 266 nm

and the energies in units of the recoil energy Er = �
2k2

l

2m
≈

5.37 × 10−30 J for a Rubidium atom. The surface-modified
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FIG. 4. Potential V (z) in units of the recoil energy Er shown as
the black curve. The dashed blue and red curves are, respectively, the
surface potential Vs(z) and the gravitational potential −mgz.

Wannier-Stark states (SMWSSs) are solutions of the time-
independent Schrödinger equation

− �
2

2m

d2ψn(z)

dz2
+ V (z)ψn(z) = Enψn(z), (10)

with V (z) = Vs(z) + Vg(z) + Vop(z). (11)

In the situation where the mirror is above the atoms, the
potential V (z) is not bounded from below so that all states are
rigorously Siegert states [14]. That corresponds to the situation
where the atoms could ultimately “fall from the optical lattice.”
Nevertheless, it has been shown in Ref. [8] that lifetimes are
of the order of 1014 s for the first Bloch band, and hence they
can be considered stable for any experimental realization. We
show in Fig. 4 the potential V (z) for an optical depth U = 3Er .

At z ≈ 2, the magnitudes of the gravitational and the
Casimir-Polder potentials are similar. As a result, the very first
optical well is strongly influenced by the surface to the point
of becoming weakly bounding. Note that the minimum of the
Lennard-Jones part of the surface potential has very different
orders of magnitude, both in binding energy (D ≈ 109Er )
and in equilibrium distance (z0 = 2.3 Å ≈ 10−3λl/2), a reason
why it does not appear in Fig. 4.

The SMWSSs ψn(z) are conveniently characterized accord-
ing to their mean distance to the surface 〈z〉:

〈z〉 = 〈ψn|z|ψn〉
〈ψn|ψn〉 . (12)

We show in Table I values of the mean distance 〈z〉 and the
energy intervals for the first few SMWSSs calculated for an
optical depth U = 3 Er and z0 = 2.3 Å, ordered according
to an increasing value of 〈z〉 (the first excited Bloch band
corresponds to energies greater than the optical depth U and

TABLE I. SMWSSs for a lattice depth U = 3 Er ordered
according to their mean distance to the surface 〈z〉. Energy intervals
are given in units of Er . Further analysis (see text) shows that
surface-modified Wannier-Stark states begin at n = 3, while the first
two states are atom-surface bound states. The last column refers to the
energy intervals of an infinite potential surface (i.e., perfect surface).

n 〈z〉 En − En−1 Perfect surface

1 0.799 E1 = −0.0709
2 1.006 +1.9690
3 3.372 − 0.5468
4 4.268 − 0.1264 − 0.1371
5 4.681 − 0.0934 − 0.0996
6 4.746 − 0.0693 − 0.0804
7 5.617 − 0.0579 − 0.0722
8 6.881 − 0.0637 − 0.0703
9 7.962 − 0.0679 − 0.0701
10 8.985 − 0.0692 − 0.0701
11 9.994 − 0.0696 − 0.0701
12 10.998 − 0.0698 − 0.0701
13 12.001 − 0.0700 − 0.0701
14 13.002 − 0.0700 − 0.0701
15 14.003 − 0.0700 − 0.0701
16 15.003 − 0.0701 − 0.0701
17 16.003 − 0.0701 − 0.0701
...

...
...

...

is therefore not trapped). The closest SMWSSs are modified
very strongly by the presence of the surface, which reflects on
the lack of regularity characteristic of a Wannier-Stark ladder.
As 〈z〉 increases, though, we progressively recover a usual
Wannier-Stark ladder spaced by the Bloch energy hνB and
integer values of 〈z〉.

For the purpose of the FORCA-G experiment, we are
mostly interested in the states closest to the surface.

We show in Fig. 5 the profile of the real wave functions
corresponding to the first four SMWSSs according to Table I.
The probability amplitudes of the first two states exhibit very

FIG. 5. Wave functions for the first four SMWSSs ψn(z) accord-
ing to Table I. As it is customary, the vertical offset of the wave
functions correspond to their respective energies.
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rapid oscillations within the Lennard-Jones well, while they
are vanishingly small outside this well. On the other hand,
the states n = 3 and n = 4 already are well spread along the
optical potential as the ordinary Wannier-Stark states would.
The tail of their wave functions still shows some oscillations
caused by the Lennard-Jones potential.

A. Dependence upon the Lennard-Jones parameters

While modeling the short-range potential, our largest
uncertainty lies in the unknown shape of the potential well.
Although we have used a known analytical form which
correctly converges towards the Casimir-Polder potential, the
actual short-range potential may differ from the Lennard-Jones
form [13]. It is therefore crucial to study the dependence of our
results upon the free parameters in V LJ

s (z). Let us recall some
general features of the bound states of a 12 − 3 Lennard-Jones
potential. Having a finite depth D and vanishing sufficiently
fast as z → ∞, the potential V LJ

s (z) given by Eq. (7) possesses
a finite number of bound states. Those states represent
vibrational states for an atom bound to the surface and are
therefore indexed with an integer vibrational quantum number
v starting with v = 0 for the ground state. When the total
number of bound states supported by a potential well is
unknown (e.g., due to uncertainties on the dissociation energy
D) it is customary to label the least bound states as v = −1,
the second least bounded states as v = −2, and so on. To a
very good approximation, the position of the few least bound
states depends only on the asymptotic behavior of the potential
as z → ∞ and on a noninteger effective vibrational quantum
number at dissociation, vD , which varies between 0 and −1
[15]. By decreasing continuously the depth of the potential
the states v = −1, v = −2 will be eventually expelled to the
continuum. From those considerations we see that, as far as
the few least bound states are concerned, the exact shape of the
potential energy well is not important. In our case, the effective
vibrational quantum number vD can be varied by simply
decreasing the depth D of our 12 − 3 Lennard-Jones model.
Owing to Eq. (8), the dissociation energy D is decreased
by increasing the equilibrium atom-surface distance z0 as
D(eV) ≈ 0.36z−3

0 (Å).
We show in Fig. 6 the energies of the SMWSSs as a function

of z0 or, equivalently, as a function of decreasing dissociation
energy D. In the first place, one sees that the states n = 1
and n = 2 have a very different behavior compared to all the
others. The position of those states depends critically upon the
dissociation energy D. As such, it is clear that the two SMWSS
states n = 1 and n = 2 are basically the last two bound states
v = −2 and v = −1, respectively, of the short-range potential.
As the equilibrium distance z0 increase, the energies of the
states n = 1 and n = 2 increases, and they cross all the other
states. Nonetheless there must be avoided crossings since all
those states result from the diagonalization of the Hamiltonian
operator.

On the other hand, the energies of the states starting from
the n = 3 are very much independent of the parameters used
in the short-range surface potential V LJ

s (z) except near an
avoided crossing with a bound atom-surface state. From Fig. 6
we conclude that the state n = 3 can be considered the first
surface-modified Wannier-Stark states. The coupling between
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FIG. 6. Calculated energies of the SMWSSs as a function of the
distance z0 in the Lennard-Jones potential, at constant C3 coefficient.
The first four states depicted in Fig. 5 and calculated for z0 = 2.3 Å
are indicated by arrows.

the few first SMWSSs and the atom-surface bound states
quickly vanishes as n increases owing to the vastly different
mean atom-surface distance 〈z〉. This leads to negligible
avoided crossings between the state n = 2 and already the
state n = 7. Far from any avoided crossings, the SMWSSs are
still influenced by the surface. At z0 = 2.3 Å it is shown in
Table I that the energy intervals between successive states are
not equal to the Bloch frequency for the first Wannier-Stark
states.

It is also illustrative to compare our results with those
obtained from the modeling of the short-range potential with
that of a perfect surface:

Vs(z) =
{+∞ z < 0

0 z > 0 . (13)

In the first place, the repulsive part of the Lennard-Jones
potential plays the role of an infinite potential wall. However,
in the case of an infinite potential surface the wave function has
a different behavior at z = 0. In particular, the wave function
vanishes monotically as z → 0 [7,8], whereas it oscillates very
rapidly within a Lennard-Jones potential. Obviously, a major
drawback of an infinite potential surface is the total absence of
bound atom-surface states. Values of the corresponding energy
intervals can be found in Table I.

B. Simulated Raman spectrum

The experimental setup of the FORCA-G is detailed, e.g., in
Ref. [16]. In it, two counterpropagating Raman lasers operating
at λ = 780 nm drive coherent transitions between the ground
|5 2S1/2,F = 1,mF = 0〉 and excited |5 2S1/2,F = 2,mF = 0〉
hyperfine levels of trapped 87Rb atoms. Those transitions can
involve different SMWSSs with a probability proportional to
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FIG. 7. Raman transition probabilities between an initial
SMWSS ψn(z) and a final state ψm(z).

the generator of translations along the z axis, 〈ψn|eikeffz|ψm〉,
with keff ≈ 4π/(780 nm).

We show in Fig. 7 the Raman transition probabilities
between the states presented in Table I. The first two states,
ψ1(z) and ψ2(z), which are the atom-surface bound states are
only weakly coupled to the surface-modified Wannier-Stark
states but strongly coupled to each other. We can see the smooth
evolution of the SMWSSs towards “regular,” unmodified
Wannier-Stark states whose transition probabilities become
a function of |n − m| only. For a lattice depth of 3 Er , a given
state ψn(z) roughly couples to states up to n ± 6.

With a low-density atomic cloud like in Ref. [16], some
104 lattice sites are populated, and the Raman spectrum
is dominated by transitions involving unmodified Wannier-

FIG. 8. Raman stick spectrum involving the states in Table I.
Lines involving the atom-surface bound states ψ1(z) and ψ2(z) are
not shown.
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FIG. 9. Change in Raman transition frequencies νn→m, as a
function of the van der Waals coefficient C3, for selected states: (a)
|m − n| = 1 transitions; (b) |m − n| = 3 transitions; (c) |m − n| = 5
transitions.

Stark states. When the frequency difference between the two
Raman lasers, νR = νR1 − νR2 , is scanned around the rubidium
hyperfine splitting νHFS, this leads to a simple spectrum
with lines at integer numbers of the Bloch frequency νB =
h−1mgλl/2 ≈ 568.5 Hz. One could imagine an experiment
with a much more dense atomic sample with a size of a few
microns where the contribution from the SMWSSs would be
visible.

We show in Fig. 8 the simulated Raman stick spectrum
(spectrum without line shapes) for the states listed in Table I.
As we have shown in Fig. 6, the position of the atom-surface
bound states ψ1(z) and ψ2(z) is largely unknown. Therefore,
we do not show their contributions in the spectrum of Fig. 8.
The energies of those atom-surface bound states will appear
as additional lines in the Raman spectrum. As expected, the
departure from the regular Wannier-Stark ladder generates
many lines. Those lines have the tendency to bundle up around
integer numbers of the Bloch frequency though. Recently a
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relative sensibility of 4 × 10−6 at 1 s on the measure of the
Bloch frequency has been demonstrated using a Ramsey-type
interferometry [17]. Such a sensibility would in principle allow
to resolve the lines presented in Fig. 8.

C. Determination of the Casimir-Polder potential

Up to now, the Casimir-Polder potential has been kept
constant to its calculated value in Sec. II. The aim of the
FORCA-G experiment is to determine this Casimir-Polder
potential from a recorded Raman spectrum. Thus, we have
to know how the Raman spectrum changes when one changes
the Casimir-polder potential. For other references related to the
use of Bloch oscillations in order to measure the coefficients
in the Casimir-Polder potential, see, e.g., Refs. [18,19]. In the
following, we focus on the van der Waals coefficient C3.

We show in Fig. 9 the change in Raman transition
frequencies νn→m = h−1(En − Em) when the C3 coefficient
is allowed to vary from its nominal value of 3.28 a3

0 eV
calculated in Sec. II. We present in Fig. 9 selected transitions
involving |n − m| = 1, 3, and 5 and selected states n � 6.
A precise analysis of the position of those lines with respect
to integer values of the Bloch frequency will allow the van
der Waals coefficient C3 to be determined. In fact, from an
absolute uncertainty of 20 mHz [17] on the determination of

Raman transition frequencies, we infer a relative uncertainty
δC3/C3 on the van der Waals coefficient ranging from 10−2

to 10−4.

IV. CONCLUSION

We have calculated the energies of atoms trapped in a
one-dimensional vertical optical lattice taking into account
the interaction between those atoms and the mirror used
to realize the lattice. We have found that, in the range of
energy of a few recoil energy Er , loosely bound atom-mirror
states appear as additional levels among an otherwise surface-
modified Wannier-Stark ladder. The energies of those loosely
bound atom-mirror states depend critically on the details of
the adsorption atom-surface potential. Atomic interferometry
involving those loosely bound atom-mirror states will shed
light on the adsorption dynamics of rubidium atoms on mirrors.
The close surface-modified Wannier-Stark states correspond to
optically trapped atoms which nevertheless have a significant
probability of being adsorbed by the mirror.
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