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Time-dependent description of the predissociation of N,* in the C 2¥,* state
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The predissociation of the N+ molecular ion in the C 2%, * electronic state through the nonadiabatic coupling
with the B 2%, * electronic state is studied by solving the Schrodinger equation. The predissociation rates are
calculated using Fermi’s golden rule and compared with experimental results. We characterize the dynamics
by calculating the nuclear probability density p(R,t), the nuclear flux density j(R,?), and the two-electron flux
density j(r,,rz,?). It is found that at the early dynamics, ¢ < 100 fs, Fermi’s golden rule breaks down, while a
strong correlation between the electronic and nuclear dynamics is observed. Fourier analyses of the probability

and flux densities are also presented and yield insight in their frequency dependency.
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I. INTRODUCTION

Early investigations (see Ref. [1] and references therein) on
radiative decay of vibrational excited levels v of the C Zy,t
state of N, ™ to the electronic ground state,

NH(CPm ) — NP (X P ) + ho,
suggested that a predissociative decay,
NH(C?m, v > 3) = Nt (B?m, ) — NCS) +NTCP),

would be 10-200 times more favorable. Subsequent experi-
ments show that the main production of N in the collision of
N, with He" is due to this predissociation [2]. Determination
of the ratios of the rates of C-state predissociation to
radiative emission obtained for the levels v = 3-8 confirmed
predissociation as the main mechanism of relaxation of the
N,*(C?x,*,v > 3)[3], thus supporting the early studies [1].
Figure 1 gives a schematic overview of this predissociative
mechanism. Direct measurement of the predissociation prob-
ability established that levels v > 3 predissociate at a rate of
about2x 108 s~! [4]. A strong isotope effect in the predissocia-
tive decay rates was also found [1,5]. The isotope '*N, * con-
tributes the most followed by the isotopes '“N PN * (six times
less probable) and BN, * (10 times less probable) [1]. Subse-
quent ab initio calculations of predissociative decay rates, or
simply predissociation rates k.., were successfully compared
with the experimental values [6], reproducing the isotope ef-
fect. The same calculations show that the predissociation rates
are barely dependent on the rotational quantum number J for
the isotope '“N, *, while for the isotopes “N >N+ and PN, +
the k,. are strongly dependent on J. Thus, predissociation
of "N, * can be simulated neglecting the rotational motion
without significant consequences on the predissociation rates.

Here we present a detailed theoretical investigation of the
predissociation of the rotationless BN, H(C 2T, Y) system
by solving the Schrodinger equation. Recent pump-probe
experiments in N, T [7,8] with subfemtosecond time resolution
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[8], where predissociation signatures were observed in the
kinetic energy release spectrum, motivate this investigation.
Thus, pump-probe experiments open the possibility of tracing
the predissociation of N,™ in time. Therefore we report not
only the predissociation rates, but also fundamental quantum
dynamical quantities as the time-dependent nuclear probability
density p(R,?) and the nuclear flux density j(R,t), since these
observables can, in principle, be reconstructed from pump-
probe measurements, as demonstrated recently [9-11]. Fourier
analysis of the probability and flux densities are also presented.
Given that the predissociation is dominated by the electronic
configurations 205305171320,} and 20,30, 171320317&} (6],
which differ by two molecular orbitals, we calculate the
two-electron flux density j(r;,rz,7) in order to explore the
synchronicity of the process, i.e., how does the electronic
transition C 2%, * — B?¥,™, depicted by the electronic flux
density, correlates with the nuclear motion. The electronic

N (C?SF) — N(?D) + N*(3P)

I N
N§ (B’ — N('S) + N*(°P)

ENERGY

INTERNUCLEAR DISTANCE

FIG. 1. Representation of the predissociation process. The wave
packet in the C 2%, * states, created from the ionization of N, is
continuously transferred into the B2y, state through the nuclear
kinetic energy operator. The green (shadow) box represents the lower
part of the continuum of unbound vibrational levels in the B2y,
state.
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flux density has been used to study the electronic motion in
different scenarios, e.g., coherent electron-nuclear motion in
the vibrating H,™ molecular ion [12-14] and model systems
[15], polarization of the H, bond by femtosecond laser pulses
[16], # — * transition in ethylene and n — 7 transitions in
formaldehyde [17], @ electron flux in formic acid dimer on
double proton transfer [18], and photoelectron transfer process
in alizarin-(TiO,)5 [19]. The paper is organized as follows: In
Sec. II we describe the theoretical framework, where the strat-
egy for solving the Schrodinger equation is presented together
with the quantum dynamical observables. Section 111 is devoted
for presenting the results and discussions. We first analyze the
nuclear dynamics and then the electronic dynamics. We end
up in Sec. IV presenting our summary. For completeness, in
Appendices A, B, C, and D, we provide a detailed description
of the calculation of the nuclear and electronic flux densities,
as well as data for the potential energy curves and nonadiabatic
couplings.

II. THEORY AND COMPUTATIONS
A. Time-dependent molecular wave function and observables

We express the time-dependent wave function ®(x; R,¢) for
the aligned molecule as a sum of Born-Oppenheimer vibronic
molecular states:

QO R.1) = Y e (DWeX: R) oo (R)e ™ Woet

Ve

+ D, (VR R) oy (R)e™in/1

VB

+ f dEcs(E.NWy(x: Rxp(R.E)eE/", (1)

where We(x; R) and W(x; R) are, respectively, the electronic
wave functions for the C 2%, and B2y, * molecular states
of the No* molecular ion, x labels the spatial and spin
coordinates for all electrons, R is the internuclear distance,
Xve (R) represents a vibrational nuclear wave function of the
C?x,7 state, Xv; (R) and xp(R, E) represent a vibrational and
adissociative (continuum) nuclear wave function, respectively,
of the B2y,* state, W,. and W,, are the corresponding
energies of the C%y,* and B2y, vibrational states, and
E is the energy of the B2¥,* continuum state. In practice,
the continuum is discretized through the use of £? integrable
B-spline basis set [20,21]. Thus Eq. (1) can be recast as

O R = Y 0y, (W% R)xy, (R)e™W'/P - (2)

n Vy

where n labels the C%x,t and B2y, molecular states,
respectively. The electronic wave functions W¢(x; R) and
Wp(x; R) are obtained by solving the electronic Schrodinger
equation:

HaWn(x; R) = Ex(R)W,(X; R), 3)
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where the electronic Hamiltonian H is given by

n? Zpe? Zge?
Ha=—) (Vi
el Z <2me nt 480 R 4 + 47180R3,->

1

2 2
e ZAZBe
+ E + 4
— 47T8()rij 47T80R ( )
i<j
with R4; = |[R4 — r;| being the distance between electron i

and nucleus A (likewise for Rp;) and r;; = |r; — r;| being the
distance between electron i and electron j. The nuclear wave
functions x,.(R) and x,,(R), and the corresponding vibronic
energies W,. and W,,,, are then obtained by solving the nuclear
Schrodinger equation:

HnuXv,l(R) = anXvn(R), (5)
where the nuclear Hamiltonian H,,, is given by
n? 92
= T 32 r A E,(R), 6
H s + BB (©6)

where M is the reduced mass of the nuclei. The wave function
(2) is then plugged into the Schrodinger equation:

ih%cb(x; R,1) = H®(x; R,1) ™)

with H = Hpy + He the total Hamiltonian. By projecting onto
the basis of stationary vibronic states W,,(x, R) x,,,, (R)e' Win'/",
we obtain the following set of coupled linear differential
equations:

d i —_—
25 = 7 Z Z Hy, e W= Wndle, (1) (8)

n Vn

with

2 )
H, , = ——— [ dRy, (R)|2TV(R)— +T2(R) | x» (R),
ZM/ Yo ( )[ il (R 2+ T0(R) |36, (R)

9)

T\ (R) = / dxW,(x; R)aian(x; R), (10)
@ 92

T,/ (R) = /dx\llm(x; R)W\Il,,(x; R). (11)

The propagation of Eq. (8) yields the coefficients c,, (t). We
assume a Franck-Condon process for the ionization of the
No(X 12g+). Thus, the initial condition for the expansion
coefficients c,,.(0), reduces to the projection of the nuclear
wave function of the vibrational ground state of Ny(X ' © ¢ D)
onto the vibrational wave functions y,.(R):

6O = [dRbgxis R B, (12

where &y, (x 15+ .,=0)(R) is the nuclear wave function of the
vibronic ground state of N,. The observables of concern here
are the predissociation rates given by Fermi’s golden rule
derived by Dirac [22]:

2

ka = _Q(WVB)|HVC,UBi28(W"C -

- W),  (13)
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where o(W,,,) is the density of states of the nuclear continuum
of the B2, electronic state calculated by the three-point
formula

(W) = 2 (14)

Q e W\)BJrl - Wvgfl '

the nuclear probability density
,O(R,t)=/dxd>*(x;R,t)<I>(x;R,t), (15)

the nuclear flux density
i(R,t) =R h /d d*(x; R,1) 0 d(x; R,1) (16)
= Re| — X X, )K,l)—— X K, )
S iM oR

and the two-electron flux density

h
j(rlarZat)ZRel:, /'-'/dX3--~dXNda)1da)2dR
Ime
x O*(x; R,1)(V) + Vo) O(x; R,t)i|, (17)

where f dw; and f dw, represent integration over the spin
coordinates of electron 1 and electron 2, respectively. For a de-
tailed discussion of n-electron flux density see Ref. [23] where
the multidimensional flux density for multiparticle systems
is discussed together with the respective multidimensional
continuity equation. The two-electron flux density j(r;,rz,?)
for each electron can be interpreted as the flux density of the
electron in consideration, such as at the position ry, given that
the second electron is at the same time in the position r,. Such
a kind of two-particle conditional probability has been used
to study electron correlation by looking at the two-electron
probability density; see, for example, Refs. [24-26].

B. Nuclear motion
1. Eigenfunctions of the nuclear Hamiltonian

Equation (5) is solved by expanding the nuclear wave
function in the basis of B-spline functions

X0, (R) =" biy, BE(R), (18)

where B{‘ (R)is a B-spline function of order k [21]. By inserting
(18) into Eq. (5) and projecting onto the B;?(R) function one
arrives at the secular equation

Z U dRBY(RYHwBf (R) — W,, /dRB}‘(R)B,."(R)}b,-Vn

=0, (19)

whose solution yields the coefficients b;,, and the eigenvalues
W,,. In this work, we have used 2200 B-spline functions of
order k = 8 with a linear knot sequence and a box length of
Riax = 80ag. B-spline functions have been widely used in
atomic and molecular physics [20], and they are suited to the
challenging task of computing accurate nuclear wave functions
for large internuclear distances (R — 500ay) [27].
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2. Partition of nuclear probability and flux densities

Because of the orthogonality of the electronic wave func-
tions [W¢(x; R) and Wp(x; R)], the nuclear probability density
(15) and nuclear flux density (16) can be split as

P(R.1) = pc(R.1) + pp(R,1), (20)

J(R.t) = je(R.0) + jB(R,1), 2L

where C and B refer to the nuclear density and flux density
of the C?x,* and B?x,™ states, respectively. They are
calculated as

pu(R.E) =YD e (1), (D, (R) Xy, (R)e Men =W 1

Mn Vn
(22)
. h * *
R0 = — 0> e ey, X (R)
Mn Vn
d (W, —W, )i /B
X o, (R)e! Wi =W, 23)

One can define the vibrational and dissociative nuclear proba-
bility densities [op vib(R,t) and pp_¢is(R,¢)] and the vibrational
and dissociative flux densities [ jp vib(R,?) and jp q4is(R, )] for
the B2y, state by restricting the coefficients in Egs. (22)
and (23). This split leads to interference terms between
vibration and dissociation (see Appendix A), nevertheless such
interference has a small effect on the total probability density
and even a smaller effect on the total flux density as discussed
in Ref. [28].

C. Electronic motion
1. Electronic structure of the N,*

We have performed a CASSCF(9,8) calculation [29] (i.e.,
nine electrons within an active space of eight orbitals)
followed by a MRCI-SD calculation [30,31] as implemented
in MOLPRO [32]. The electronic eigenfunctions and electronic
eigenvalues of Hamiltonian (4) are calculated on a grid
spanning the range 1.6ap < R < 80ay. In order to describe the
dissociation limit properly, we include the following IRREPs:
2525, 2% 2 A 2x4 2, T, 2x* Ay, 103, T, This leads to 13
electronic states and nine potential energy curves (PECs),
the A states are doubly degenerate. The assignment of
the electronic states is done as follows: The lowest PEC
corresponds to the B 23, T state since the only states lying
below are of different symmetry (X 2%, * and A I1,,). The next
three PEC cross each other at different internuclear distances
and converge to the same dissociating limit. Here we calculate
the expectation value of lA,g as a function of the internuclear
distance, from which the X state ((ﬁ?) g = 0) is separated
from the A states ((L2)z = 4), thus the C 2%, ™ state can be
chosen accordingly. Our assignment is in good agreement with
those reported by Roche and Lefebvre-Brion [33], Langhof
et al. [34], Langhoff and Bauschlicher [35], and Liu et al.
[36]. We compare results obtained with two basis sets, the
aug-cc-pVQZ (AVQZ) and aug-cc-pV5Z (AVSZ) [37]. No
significant differences were observed.
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2. Nonadiabatic couplings between C*x,* and B*x,™ states

The coupling function TIEIC)(R) [Eq. (10)] was calculated for
each internuclear distance on the grid 1.6ay < R < 80a( by
means of the finite difference methodology as implemented in
MOLPRO [32]. The numerical derivative was performed by us-
ing AR = 0.01 A = 0.01894y. The second order nonadiabatic

coupling function Tjn(R) [Eq. (11)] was estimated to be

d

TS2(R) ~ T L(R). (24)
The quality of the approximation in Eq. (24) was studied by
comparing each of the matrix element H,,. ,, with its transpose
H,, .. In the ideal case (complete basis set) one has H,. ,, =
H,, ,.. Here we obtained for the largest difference |H,,. ,, —
H,, ,.| =0.00001 Ej. In practice we set H,.,, = H,, . in
order to guarantee that 7{ is Hermitian in the basis of vibronic

states employed.

3. The two-electron flux density

The configuration interaction (CI) wave function for the
B?y,* and C 23,7 states read

W R) =) Cip(R)Yi(x; R) (25)

and

We(x; R) = Y Cic(R)Yi(x; R), (26)

respectively. In Table I the occupation pattern of four
configurations y; are listed, together with their weight in
the CI expansion at equilibrium distance of the respective
electronic state. The first two configurations (Y, and )
have the largest weights, and thus are the most important
ones. Due to the dominant behavior of the Cic(R), Cyc(R),
Cis(R) and Cyp(R) coefficients with respect to the rest of the
configuration interaction coefficients, both electronic states
can be represented in a good approximation by only these two
configurations as discussed in Ref. [6]. Note that v,, ¥3, and
Y4 differ only in their spins. Thus we include only v, in our
treatment, even though v, and r; have similar weights. For
comparison, a treatment including 3 as a third configuration
is presented in Appendix C. Further note that each pair of ;
and ; differ by two molecular spin orbitals (see Table I). The
one-electron flux density arises from pairs of configurations
differing by no more than one molecular orbitals [16], thus the

TABLE I. Occupation pattern of the four configurations v, ¥,
Y3, and 4 and their weights |C;c|* and |C;3|? in the CI expansion
at equilibrium distance. In first approximation, only v, and v, are
needed to describe the predissociation process C 2%, * — B*x,* of
N, ™ [6]. Only molecular orbitals 30y, 204, 17, and 1, are needed
to calculate the two-electron flux density.

20, 30, Ilm, Im, 20, 30, Ilm, Im, [Cicl® |Cigl?
L7/ B S S AR S 0 0 0 0202 0.769
v N+ L Ny 0 4+ 0 0178 0.051
vs N N 0 ) 0 0146 0.003
ve Nt Lty 0t 0 =0 =0
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one-electron flux density vanishes if only the four ; listed
in Table I are considered. Therefore we opted to calculate
the two-electron flux density Eq. (17) instead, which can
be formally obtained from the time-dependent wave function
Eq. (2) as the expectation value of the two-electron flux density
operator j(r},r;) (see Appendix B) as follows:

J(ry.ry,1) = Re[(D(1)| j(r],15)|P(1))]. 27
Substitution of Eq. (2) into Eq. (27) gives us

. +AEFD +AEFD +TEFD
o) =jpo () + o () + g (X),r,1)

(28)

with

5Py = Re[ / dR(V5(R)|(r},r5)|Vs(R))

X Y el (0w O (R) Xy (R)

VBV

xwme%wm}za (29)

JEEP @y, = Re[ f dR(Wc(R)|F(r),ry)|¥c(R))

x Y et (e 0% (R) Xue (R)

vecve

% ei(WVCWUC)t/hiI =0, (30)

and
I ) =i / dRApc(r),rh; R)Gpc(R,1),  (31)

where AEFD stands for adiabatic electronic flux density and
TEFD stands for transition electronic flux density. The AEFD
vanishes since the two-electron flux density operator j(r},r5)
is imaginary. This is a failure of the Born-Oppenheimer
separation in Eq. (1) and is discussed in Refs. [38—40].
The AEFD is driven only by the nuclear motion in a
single potential energy curve E,(R) playing no role in the
predissociation process. Besides its vanishing behavior in the
Born-Oppenheimer approximation, it can be estimated to be
equal to the electronic density associated to each nucleus (by
means of using projection operators) multiplied by the relative
velocity between the two nuclei [16]. Here we deal only
with the TEFD, which arises from the coherent superposition
between the C 2y, and B2y, states, where the nuclear
motion plays a secondary role. The TEFD in Eq. (31) depends
functionally on the R-dependent vector field

Apc(ry,ry; R) = (Wp(R)|j(r},r)|Wc(R))
— (We(R)Ij(r.m)|¥s(R)  (32)
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TABLE II. Energies W,., initial amplitudes c,.(0), and predis-
sociation rates k,. of the bound vibrational states vc. The energies
W, of the discretized continuum states v are also listed.

ve Wi (Ep) Vg Wy, (En) (0 ke (10%s7h)
0 —108.533532 - - 0.057799 -

1 —108.524214 - - —0.127 575 -

2 —108.514974 - - 0.204 161 -

3 —108.505869 180 —108.505895 0.272566 1.39

4 —108.496891 433 —108.496941 —0.323173 4.06

5 —108.488031 577 —108.488091 0.352044 6.18
6 —108.479290 689 —108.479351 0.358046 9.29
7 —108.470727 783 —108.470771 —0.345065 13.58
8 —108.462334 865 —108.462362 0.320044 19.47
9 —108.454094 938 —108.454164 0.286741 27.43
10 —108.446039 1005 —108.446021 —0.250082 36.40

and on the time and R-dependent scalar function

Gpc(R,1) = Re[z ¢t (e (DX (R) X (R)

VpVc

X e"<Wvu—ch>’/h}. (33)

Notice that integration over R in Eq. (31) gives rise to the
correlation between electrons and nuclei, thus describing the
nonadiabatic dynamics of the predissociation process.

III. RESULTS AND DISCUSSION

A. Nuclear dynamics

First, we present the predissociation rates k,,. as obtained
from Fermi’s golden rule [Eq. (13)]. They are listed in Table II,
together with the energies (W,. and W,,) and vibrational
quantum numbers (v¢ and vg) of the involved states. Note
that the B-spline box is large enough (80ay) to provide a dense
energy spectrum of the nuclear continuum of the B2, * state
such that the delta condition §(W,. — W,,,) is fulfilled (com-
pare W,. with W,,). The coefficients c,.(0) corresponding
to the Franck-Condon factors between the vibrational ground
state of N, and the vibrational wave functions x,.(R) are
also listed. Figure 2 shows our calculated predissociation rates
(from ve = 3to ve = 30) and compares with the experimental
results reported in Ref. [6] (from ve = 3 to ve = 9). Note
that the predissociation rates of some vibrational states v do
not appear in Fig. 2, because the respective vibrational wave
functions x,.(R) are localized in the outer part of the double
well potential E¢(R) (see Fig. 1), yielding predissociation
rates too small (k,. < 10%s71).

From the time evolution of the population of the continuum
B?23%,7,i.e., pais(t), one can estimate the predissociation rate
k, of the vibrational wave packet of the C 2y, state by

d Apgi
ky, = Epdis(t) R~ A—:g

which gives us in average (see Fig. 3) 0.00085/600fs =
14.17x 108 s~!. This result agrees well with the predissociation

, (34)
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50 x 10%
40 x 108} °
30 x 108} ¢ Theoretical
i‘f/ ‘ {  Experimental
<& 20 x 108} . — $pas
10 x 108} ? }
ot
(]
0 x 108L—2

0 5 10 15 20 2
VIBRATIONAL QUANTUM NUMBER v
FIG. 2. Calculated (black dots) and experimental (red dots with
error bars) predissociation rates k,.. The mean value of the predis-

sociation rate of the vibrational wave packet of the C 2x,* state is
indicated with a horizontal line.

rates of the dominant (most populated) ve =4, vc =5,
ve = 6, ve = 7, and vec = 8 vibrational states (see Table II).
Next let us present the first 600 fs of the dynamics. We
consider the nuclear probability densities pc(R,?), pp vib(R,1),
and pp 4is(R,t), with the corresponding populations pc(t) =
JdRpc(R.1), ppyin(t) = [dRpgin(R,1), and pp ais(t) =
f dRpp gis(R,1), respectively. Figure 3 displays the nuclear
probability densities as a function of the time and as a
function of the internuclear distance (lower panels) together
with the corresponding populations (upper panels). During
the first 100 fs, the nuclear probability density pc(R,?)
reveals a quasiperiodic pattern with structure, corresponding
to alternating bond stretches and compressions with classical
period of about 18.2 fs. Note that during the first vibration,
the population of the C 2%, " state decreases from 0.955 to
0.953 in the first 4.5 fs, followed by a build up to 0.955
from 4.4 to 9.1 fs. This depletion-build up process is then
repeated during the second half of the vibration completing
the first bond stretching-bond compression in 18.2 fs. The
next 60 fs is then characterized by three vibrations, the
bond stretching-bond compression cycle is then repeated
successively leading the dephasing of the nuclear wave packet
together with a decrease of pc(¢) to 0.954 at 80 fs. The
total population p(t) = pc(t) + pp,vib(t) + pBp.ais(t) must be
conserved during the entire dynamics. We have checked that
at any time p(z) is constant within 10~7 of uncertainty. Thus
the oscillatory behavior of pc(#) should be reflected in the
population of the B?x,* state. Note that during the first
vibration pp vi(#) experiences twice a build up-depletion
process, which correlates well with the oscillations observed
in pc(t). In contrast, pp gis(¢) builds up abruptly around 4 fs
followed by a depletion and then builds up again around
13 fs with the subsequent depletion, thus during the first
vibration pp gis(#) experiences two build ups, the first one
coinciding with the bond stretching and the second one with the
bond compression. During the next three vibrations pp yin(t)
and pp gis(f) behave in a similar manner as during the first
vibration but this time accompanied by the dephasing of the
wave packets (see Fig. 3). Thus, during the first 100 fs, the
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FIG. 3. From top to the bottom: probability densities pc(R,?), pp.vib(R,t), and pp gis(R,t) in units of ao’l, together with their corresponding
populations. The internuclear distance R is in units of ay. In the lower two panels the B 2¥, " state was split into a vibrating and a dissociative
part by only including bound and unbound vibrational states, respectively [see Eqs. (A3) and (A4)].

probability of finding the system in the continuum does not
grow linearly in time, i.e., Fermi’s golden rule breaks down.
From 100 until 400 fs the dynamics is irregular, i.e., the wave
packets pc(R,t) and ppvin(R,t) experience the dephasing
being pc(R,t) delocalized from R =2.0ap to R = 3.0ay
while pp vib(R,?) covers only a small region from R = 2.3ay
to R = 2.6ap. In contrast, pp gis(R,t) seems to cover large
internuclear distances assembling a train of wave packets.
During this period, from 100 to 400 fs, the population of the
vibrating part of the B2%,* state oscillates around a constant
value (~0.0005), while the population of the C2x%,* state
oscillates at the same time that its average decreases linearly
according to pc(t) = pc(0) — kpt. The linear depletion in the
population of the C 2%, ™ state is better visible by the linear
grow of the population of the dissociating part of the B2y, *
state, i.e., the dynamics is now governed by Fermi’s golden rule
according to pp gis(t) = kpt. At about 400 fs the populations
of the vibrating C 2%, and B%x,™ states suggest that the
revival time (or at least a fractional revival time [41]) has been
reached. Note that from 400 until 500 fs the populations of the
vibrating C 2%, * and B2, states oscillates with a period
of about 20 fs. However, the nuclear probability densities
pc(R,t) and pp vin(R,t) do not exhibit their initial compact
form. Instead of that, from 400 until 500 fs we notice that the
nuclear wave packet C 2%, is split into two wave packets,
while pp vib(R,t) exhibits a strong interfering pattern. This
effect in the C2x, " state is analogous to the wave packet
interferometry observed in the vibrating I, molecule [42],
where the two wave packets are coherently created by two
laser pulses with a specific time delay. Here the B2¥,* state
acts like a filter which split the nuclear wave packet in the
C?x,7T state. This dephasing and revival of nuclear wave

packets has been experimentally observed in the H,™ (D, ™)
molecular ion [10,43,44] and in the Br, molecule [45]. After
500 fs the dynamics starts again with the dephasing of the
wave packets. Figure 4 displays the nuclear flux densities
(from O until 600 fs) jc(R,1), jpvib(R,?), and jp gis(R,1)
together with their respective integrals v (f) = f dRjc(R,1),
vevib(t) = [dRjgvin(R,1), and vg 4is(t) = [ dRjpvin(R,1).
In general, the flux densities are similar to the probability
densities, i.e., they exhibit the vibrational motion in the
C?x,% and B?y,™ states with strong oscillations during
the first 100 fs, and subsequent dephasing (vanishing flux
density) until 400 fs when the revival is reached (strong
flux density). The dissociation throughout the continuum
B%y, ™" state is also observed. Surprisingly, the integrated
fluxes v(#) exhibit a different oscillatory behavior when
compared with the populations p(¢) (integrated probability
densities); for example, vc(¢#) does not display a chaotic
behavior from 100 to 400 fs; instead of that, the frequency
of the oscillation keeps constant and only the amplitude of
ve(t) is affected. From 400 to 500 fs (assembling of the wave
packet) the amplitude in vc(¢) is not enhanced significantly
but its frequency seems to be doubled. The dynamics for the
vibrating B 2y, T state is different; for example, besides the
chaotic behavior observed after 100 fs, the revival at 400 fs is
barely observed (see Fig. 4 from 400 to 500 fs center panel).
More interesting is the behavior of vg yip(t) from ~260 to
~320 fs where the flux recovers its regular oscillatory pattern
and the frequency seems to be doubled. At this point of
the discussion we remark that the total probability density
Pp(R,t) and the total flux density j(R,?) fulfills the continuity
equation, i.e., d;p(R,t) + dgj(R,t) = 0, as a consequence of
the conservation of the probability [46]; however, since there is
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FIG. 4. Nuclear flux densities. From top to the bottom: jc(R,?), jgvin(R,t), and jg 4is(R,?) in units of fs~'. The internuclear distance R
is in units of @y, and the integrated fluxes v, are in units of ao/fs. In the lower two panels the B2¥, " state was split into a vibrating and a
dissociative just as for the densities in Fig. 3 [see also Egs. (A7) and (A8)].

a transfer of population from one electronic state to the other,
we cannot expect the continuity equation to be fulfilled for each
pair of probability and flux densities (p,,j,) with n = C,B.
Thus, a pattern observed either in pc(R,t) or pg(R,t) can
be “mapped” to jo(R,t) and jg(R,t) in many different ways.
Figure 5 displays snapshots of pc(R,?) and jc(R,t) embedded
in the potential energy curve E¢(R), and pp(R,t) and jg(R,?)
embedded in the potential energy curve Eg(R) at the specific
times 13.98, 22.41, 292.37, and 430.54 fs, which are indicated
by vertical lines in Figs. 3 and 4. At 13.98 fs, we found
synchronous C and B wave packets for the bond compression
(negative flux density); i.e., the wave packet in the C state is
basically mapped into the Ez(R) potential energy curve, and
both probability and flux densities look similar. At 22.41 fs,
the nuclear motion is still coherent in both potential energy

curves Ec(R) and Ep(R), in the sense that the probability
density and flux density still look quite similar, but for bond
stretching this time (positive flux density). At 292.37 fs, we
still find some coherences; for example, both wave packets
are characterized by bond stretching (at short internuclear
distance) and bond compression (at large internuclear dis-
tance). However, the dephasing of the wave packets appears
quite different [compare pc(R,?) and pp(R,t)]. At 430.54 fs,
the nuclear distributions in the C 2%,* and B?x,* states
are rather different; we recognize a quasivanishing pg(R,?)
localized at R = 2.4ay, while pc(R,t) and jc(R,t) reveal a
split of the nuclear distribution localized at the inner and outer
classical turning points. In fact, the nuclear flux density of the
C?x,™" state reveals two wave packets traveling in opposite
directions.

t=13.98 fs t=22.41 fs
o 0.3 — 0.3 =
éA 0.2 0.2}
=

FASY L L

Z9 01 0.1

@ > 0.0} 0.0}

22 01 0.1

227 =

37 02 l—02|

m \

1—0.1¢
1—0.2¢

0.31 t=292.37 fs 0.3 t=430.54 fs
0.2} 0.2
0.1} 0.1
0.0¢ 0.0

1—0.1
1—0.2
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FIG. 5. Snapshots of the wave packets as nuclear probabilities pc(R,t) and pp(R,t) (blue solid lines) and flux densities jc(R,?) and jc(R,t)
(red dashed lines) in their respective potential wells. The four selected time steps are indicated as vertical lines in Figs. 3 and 4 as well. The

energy is given relative to the dissociation limit of the B2¥,™ state.
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FIG. 6. Power spectra of the N,* molecular ion. Power spectrum of (a) the nuclear probability density |5c(R,w; T = 600fs)|?, (b) the
nuclear probability density |gg(R,w; T = 600fs)|?, (c) the nuclear flux density |jc(R,w;T = 600fs)|?, and (d) the nuclear flux density
|75(R,w; T = 600fs)|>. The horizontal white lines indicate the quantum beat series Wyet1 — W, forv, =1 —10.

1. Fourier analysis of the nuclear probability and flux densities

The nuclear probability density and nuclear flux density
Egs. (22) and (23) contain information about the nuclear
dynamics not only in the time-space domain, but also in the
frequency-space domain [44,47-49]. Thus Fourier analysis or
power spectra (also known as quantum-beat spectra) of p,,(R,t)
and j,(R,1),

17 P
|ﬁn(R,w;T)|2=‘E/ pn(R,De'dt| . (35)
0

N 17 P
|jn(R,w;T)|2=’E/ Jn(R,De™ " dt| , (36)
0

provide in principle the nodal structure and the inflection points
of the nuclear wave functions x,, (R) [49], from which one
can imaging the potential energy curve E,(R). Because of
nonadiabatic couplings between the electronic states C 2%, *
and B?y,*, the nuclear wave packets characterized by
[pc(R,t), jc(R,t)] and [pp(R,t), jp(R,t)] do not evolve
freely in their potential energy curves E,(R). Thus, Fourier
transforms [| 5 (R,w,T)|, | je(R,w,T)[*] and [| 55(R,w,T)|?,
|78(R,®,T)|*] might deviate considerably from the adiabatic
case [49]. Figure 6 shows the power spectra |gc(R,w; )%,
158(R.@; TP, |je(R.w; T, and |jp(R,a; T)I for a time
sampling of T =600 fs. The quantum beats frequencies
(ve,ve + 1) are displayed as horizontal lines. In general, the

quantum beat (4,5) exhibits the strongest signal. The power
spectraof the C %, * state looks similar to the power spectra of
an adiabatic propagation of a wave packet, i.e., the probability
density depicts the boundaries of the potential Ec(R) with
the nodal structure of the nuclear wave functions x,.(R)
and x,.+1(R) in between, while the flux density displays no
nodes but several maxima and minima instead, depicting the
inflection points of the y,.(R) functions [49]. This is due
to the fact that at 600 fs the C*>x,™ has lost only 0.2% of
its original population, thus the nonadiabatic coupling barely
perturbs the free propagation of the nuclear wave packet. In
contrast, the propagation of the nuclear wave packet in the
By, 7 state is not adiabatic at all, i.e., all its population which
saturates to ~0.0005 after the first 100 fs of the dynamics
oscillates considerably until 600 fs. Thus, the power spectra of
pp(R,t) and jp(R,t) deviate considerably from the expected
behavior; e.g., the boundaries of the potential Ez(R) are not
revealed. This is not only due to the time variation of the
population of the B2¥,™ state but also to the fact that the
maximum population in the B2y, ™ state is reached precisely
when the probability density is located around R ~ 2.5ay with
no contribution on the boundaries of the Eg(R) potential,
and being minimum when pg(R,?) is reflected by either the
inner or the outer turning point. In other words, the pg(R,?)
[and thereof jg(R,?)] does not scan completely the Ez(R)
potential. Surprisingly, the quantum beat (4,5) can be identified

in | 7(R,w; T)|" but not in | 5z(R,w; T)[>.
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(r},15,1) = (ji(r1,12,1),J2(r1,12,1)) With 1y = (x,y = 0,z) and r, = —r) at the four

characteristic times: ¢ = 13.98fs, r = 22.41fs, t = 292.37fs, and ¢ = 430.54 fs. The vector field was calculated as follows: jiEP(ry,r,,1) =
i / dRAgc(rl,l'z; R)ch(R,[) with Agc(rl,l'z; R) = lIB2C(I'1,l'2; R) (see Appendix B)

B. Electron dynamics

In this section we turn our attention to the electronic
motion. During the predissociation process, the electronic
wave function can be represented as a linear combination of the
the C 2y, and the B2y, states. Thus a coherent electronic
wave packet results from the superposition of both electronic
states and therefore an electronic flux density is expected.
The mentioned electronic flux density, also called transition
electronic flux density, has a different nature as the adiabatic
electronic flux density. The latter is due to the nuclear motion,
i.e., the electrons follow the nuclei. In the H, molecule it has
been shown that the transition electronic flux density can be up
to three orders of magnitude larger than the adiabatic, thus we
focus on the transition flux density here. As appears in Eq. (31),
there is a nuclear G zc(R,#) and an electronic A g (r),r5; R)
contribution to the TEFD. From the latter one the shape of the
flux densities arises. The former one includes the interference
between the two nuclear wave functions yc(R,t) and xg(R,t)
and can be regarded as a weight function when integrating over
R, thus determining when and where an electron flux density
does appear. Additionally, it carries the time dependence of the
nuclear motion. Note that the two-electron TEFD is a vector
field of dimension 6 for a fixed time ¢. In order to visualize
the two-electron flux density we set r, = —rj, and then we
plot the separated components j;(ry,r2,t) and j(ry,rp,?) in
the xz plane, i.e., the cylindrical symmetry of the molecule
is exploited. Figure 7 displays the two-electron flux density
J = (j1,Jo) taking into account only two configurations (i; and
Y,) of the CI expansion. By including the configuration 3, the
shape of the vector field does not change, only its magnitude
is affected (see Appendix C for an explicit discussion). In

general, the electronic flux density depicts a w-like current,
i.e., the flux density vanishes along the molecular axis (z
axis, x = 0) and localizes at the lobes characteristic of a
m-molecular orbital; see Fig. 8 where the molecular orbitals
involved in the TEFD are shown. Thus, one can recognize
four lobes in the TEFD, each one with the characteristics of a
rotating vector field. It is important to notice that there is not
a net electronic flux from one atomic center to the other (the
vector field preserves the ungerade symmetry of the electronic
wave function). Also one can see that the lobes of j; rotate
in opposite directions of the lobes of j,. We find that the
z-component of j; for x — 0 always points in the direction
of the nuclear motion; for example, at 13.98 fs we found a
compression of the bound, and at r = 22.41 fs a stretching
of the bound, i.e., the z component of j; is synchronized
with the nuclear motion. At ¢ = 292.37 and ¢t = 430.54 fs
the z component of j; suggests the motion of two nuclear
wave packets in opposite directions (compare with Fig. 5);

30’{] 20’u

1my,

FIG. 8. Molecular orbitals involved in the two-electron flux
density.
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thus it is true that even when the nuclear motion plays a
secondary role in the electronic flux density, the electrons
still have information about the nuclear motion, at least in the
predissociation region, i.e., at internuclear distance where the
exchange of momentum between electrons and nuclei happens
(R = 2.4ay).

IV. SUMMARY

We have studied the predissociation of the C 2%, * into
the B2y, state of the N,* molecular ion by solving
the Schrodinger equation. The predissociation is driven
by the nonadiabatic coupling, i.e., by the coupling of the
two electronic states through the kinetic energy operator
of the nuclei. The predissociation rates were calculated
accordingly to Fermi’s golden rule and successfully compared
with the reported experimental data [4,6], improving previous
calculations [6]. The dynamics was studied in detail until 600 fs
by calculation of the nuclear and electronic probability and
flux densities. It was observed that during the first 100 fs,
the probability of dissociation does not grow linearly as
expected from Fermi’s golden rule. The validity of this rule,
resulting from the time-dependent perturbation theory to the
first order approximation, turns out to be 277/ min{|E, —
E|,|E — Ep|} < t K 2whp(E) [50]; for our case, the lower
and upper limit is about 17 and 7x10° fs, respectively.
Presumably, the failure beyond 17 fs is due to the strong
coupling between the C%x,* and B2y, T vibrational wave
packets, indicated by large oscillations of their populations
until 100 fs. Afterwards, the population of the vibrational part
of the B?%, " state becomes constant together with the linear
grow of the population of its dissociative part. In other words,
the break down of Fermi’s golden rule is observed during the
first 100 fs of the dynamics with its subsequent restoration.
Interestingly, 100 fs seems to be a time window large enough
for tracing the nonlinear predissociation process by means
of time-resolved spectroscopy experiments. We also found a
strong correlation between the electronic and nuclear motions
by looking at the flux densities, both motions occurring in the
femtosecond time scale. Such correlation was not observed in
the dynamics of the polarized H, molecule [16], in which an
electronic wave packet was induced by the action of a laser
field. However, the dynamics of H, happens to be adiabatic,
i.e., after the laser field, the two electronic states were not
longer coupled. Particularly in the dynamics with Np*, the
Bohr frequency w,,, = (E,, — E,,;)/h for the electronic motion
is of the order of the Bohr frequency for the nuclear motion,
thus having similar periods the nuclear and electronic flux
densities. In the dynamics with H, such Bohr frequencies were
totally different, where for the electronic motion it was of the
order of the energy gap between the electronic states, leading
an electronic flux density varying in the attosecond time scale,
much more faster than the nuclear flux density which varied
in the femtosecond time scale. Fourier analysis of the nuclear
probability and flux density was also performed. Such analysis
allowed reconstruction of the potential energy curve of the
C?%y,7 state but not of the B2y, " state. The reason is due to
the nonadiabatic coupling, which causes an uncomplete scan of
the potential energy curve B 2%, by its nuclear wave packet.
Surprisingly, we found that, for the characterization of the

PHYSICAL REVIEW A 94, 053423 (2016)

nuclear wave functions involved in the dynamics, the flux
density seems to be more suitable than the nuclear probability
density. We hope the framework presented here serves as
a useful tool for studying the correlated electron-nuclear
dynamics happening in different nonadiabatic scenarios of the
diatomic molecules.
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APPENDIX A: INTERFERING TERMS IN THE NUCLEAR
PROBABILITY AND FLUX DENSITIES

We consider the probability density for the B2x,* state
Eq. (22)

pe(R.1) =Y ch (D), (DX:, (R) X, (R)e! Wi =Wen /1,

KBVB

(AL)

The above summations on the vibrational quantum numbers
up and vy can be performed from O until K; and then from
K, + 1 until Ng, with K; the number of bound states and
N3 the total number of states (bound and continuum). Thus
Eq. (A1) can be rewritten as

pB(R,1) = ppyviv(R,1) + ppais(R,1) + App in(R,1), (A2)
where
Ky K
prain(R1) = D D (Dew, x5, (R) Xy (R)
np=0vp=0
x ei(WMB_WVB)l/h (A3)

is the probability density associated to the vibrating N, ¥,

Ng Ng
pras(R =Y Y (Dcu, (X, (R)Xu, (R)
np=Kp+1vp=K;,+1

< o Wig=Wap)t/h

(A4)

is the probability density associated to the dissociating N, ™,
and
Ky Np
Appim(R) =D Y ch (w0, (R)xu, (R)
np=0vp=Kp+1
< & Wig=Way)i/h
Ny K,
+ ) Y, e, X, (R)xu,(R)
np=Kp+1vp=0

(Wyg=Wip)t/h

x e (AS)
is the interfering term between the vibrating and dissociating
N, *. In a similar manner, the flux density (23) can be rewritten

as

JB(R,t) = jpvin(R,1) + jp as(R,1) + Ajp (R, 1) (A6)
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with

Ky K

h
Jpin(RD = =2 Y g (O, O, (R)

up=0vp=0

d o
Xd—RXu,;(R)el(W“” Waplt/h

(A7)
jp.ais(R, z)—— Z Z ¢k (e, Ox, (R)

np=Kp+1vpg=Kp+1

d XuB(R)el(W““ W,)B)t/h

dR (A8)

and

K Np

A.]B mt(R t) — a7 Z Z CM[;(Z)CVB(I)XNK(R)

,LLB—O Vp= Kb+l

d W

X e Ky (R)e! Moo 1
B Np Ky

+ JR—

T2 Y€, e 0, (®)

np=Kp+1vp=0

d XuB(R)el(W“R Wt /R

dR (A9)

the flux density associated to the vibrating and dissociating
N,* and the interfering term, respectively. The interfering
terms Apin(R,?) and Ajin(R,t) were analyzed in the Hp™
system [28], where they were shown to be small corrections
to the vibrating and dissociating part, the correction being
much less noticeable in the flux density than in the probability
density. Moreover they do not contribute to the integrated
quantities since [ d RApin(R,1) = 0and [ dRAjin(R,1) = 0.

APPENDIX B: EXPECTATION VALUE OF THE
TWO-ELECTRON FLUX DENSITY OPERATOR

The configuration interaction expansion for the molecular

electronic states ¥,, (n = C, B) is given by

W, R) = Y Cin(R)Yi(x; R), (BI)

where 1; denotes a configuration. By substituting the last equa-
tion into Eq. (32) one can split the vector field A ¢ (r),r5; R)
into contributions between two configurations i and j:

Apc(r).ry: R) = Y A (ri.rj: R), (B2)
i,j>i
where

Mo, ¥ R) = FUR)(Wi(R)| (), 15) ¥ (R))
— (Y (R)| (] ) Wi (R))] (B3)
with

F(R) = Cip(R)C;c(R) — Cic(R)C;p(R). (B4)

PHYSICAL REVIEW A 94, 053423 (2016)

Note that Aj(r},r5; R) is an imaginary quantity (Born-
Oppenheimer molecular states Wy and W are real functions),
and therefore j5 2(r),r},1) is real as expected [see Eq. (31)].
Our goal is to calculate the functions A (r},r5; R). We will
exemplify this for the case of i = 1 and j = 2. Using second
quantization [51], we note that configurations v, and v,
appearing in Egs. (25) and (26) are related each other as follows
(see Table I):

1Y) = al,, ain, a5 a5, Y1), (BS)

where the bar means a 8-spin orbital and no bar means an «-
spin orbital. The two-electron flux density operator j(r},r5,)
in terms of the creation and annihilation operators reads

JOhh) = — Y (ij18(r) — x})8(ry — ¥)(V1 + Va)lkl)
€ ijki
X aja;akal. (B6)

Thus by inserting Eqs. (B6) and (B5) into Eq. (B3) and using
the antlcommutatlon relations of the creation and annihilation
operators, i.e., {a aT} = afa +ajalf =0, {aj,a;} = aja; +
aja; =0 and {a,-,aj} = a,a; + a}a, = J;;, one obtains

Agc(r).rh: R)
hF'*(R) / /
= i dw, dw2[¢36g(1'1§R)¢1n“(r2; R)

> (%1 + %2)(1525” (r/l’ R)¢17Tg (l‘/z, R) - ¢17‘[u (r/ly R)¢3O_'g
X (15 RYV1 + V2)¢os, (8 Rz, (1; R)

— 30, (0} R)1, (T RYV1 + V)i,
X (¥); R)as, (€h; R) + iz, (X} R)pis,

X (ry; RV + V2)pin, (t); Rs, (th; R)] (B7)

with the short notation V = V — V, and V acting on the right

side as the usual way, and v acting on the left side. Now
performing integrals over the spin coordinates (orbitals with
bars are orthogonal to those one without bars) we get

AZ-(r), T R)
F12( )
= ———[#30,(r}; R)iz, (r; RYV1 + V),

e

X (r}; R)pi,(5; R) + ¢z, (¥]; R)3o, (s R)
X (V1 + V)i, () R)pas, (¥ R)]. (BS)
Molecular orbitals ¢;(r; R) and their gradients V¢;(r; R) can

be obtained from the molecular wave function processing
toolbox orbkit [52]. Equation (B8) can be rewritten in the
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vector form as 0.6 :
— F12
)»}gzc(rllvrlz?R) 0.5F F13]
_ hF]Z(R) o4 N | FQS |
B im,
= = — 0.3 1
y (¢l7‘r,,¢1rrg(¢3agvl¢2(7u) + ¢35, 920, (¢lnuvl¢ln8)> =
30,920, (¢1nu%2¢1n3) + P1x, Pz, (¢3Ug%2¢20,,) =~ 0.2} .
(BY) 0.1} f
where the explicit dependence of the molecular orbitals on 0.0 T
r; and R has been omitted for simplicity. Note that each _
row of Eq. (BY) is a six-component vector, i.e., (0y,,dy,,0,) —0.1 ‘ I ‘ ‘ : : :

and (9,,,0d,,,9;,), completing our six-dimensional vector field

X}gzc(r/l ,I%; R) for a given internuclear distance R. R (units of a)

~ FIG. 9. Weight functions F i/ (R) that accompany the vector fields
i VARV
Az, Ty R).

APPENDIX C: EFFECT OF INCLUDING MORE express 3 using second quantization operators
CONFIGURATIONS IN THE TWO-ELECTRON
FLUX DENSITY OPERATOR V) = al,; ain,als a5, Y1), (C1)

To examine the effect of including more than the first two ; ;
configurations of the CI wave function, we include /3 in the [¥3) = ay,, 1x,015 Q17,1 2) (C2)
TEFD as well. Following the steps of Appendix B we first
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FIG. 10. Results for the two-electron flux density when including three configurations: jio >(ry,r2,1) = i [ dRApc(r1,r2; R)G pc(R,1)
with Apc(ry,rp; R) = AM2.(ry,r2; R) + A2.(r),r2; R) + A%.(r),r2; R). The representation is the same as in Fig. 7, i.e., jiiP(r),rp,t) =
(1 (ry,r2,1),jo(ry,1r2,2)) With r; = (x,y = 0,z) and r, = —r; at the four characteristic times: t = 13.98fs, t = 22.41fs, t = 292.37fs, and

t = 430.54fs.
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and insert it into Eq. (B3) to obtain

_ hF13(R) (¢lnu¢lﬂg(¢3ag%]¢2m,) + ¢30g¢20,, (¢lnu%1¢lng) - ¢3trg¢lng (‘plﬂ“?lfpkm) - ¢1nu ¢2a“ (¢3Jg§l¢lﬂg))

13
A, ry;R) = N -

ime  \ 3o, 92, (B1x, Vadin,) + i, P1x, (B30, Vabs,) — Pix, P20, (B30, Vo2bin,) — P30, D1, (@1, Vao,)
(C3)
and
V(e y = 2P (qslngqsm (@15, V11x, )). )
e \Qix, in, (@1, Vadbix,) TABLE IIL. (Continued.)

In Fig. 9 we compare the three weight functions F/(R) of R [ao] B2y, [Ey] C2x,* [En] T 470

interest. As expected, the main contribution is due to F'?(R)
arising from the two main configuration yr; and v,. Comparing 272 —108.614297 —108.490695 1.09 —3.54
the TEFD in Figs. 7 and 10, we see that the shape remains ;;g :}82252 ?g; :iggig; (3)22 82; :;;1
unaffected and only the magnitude changes. 2.83 —108.603 802 —108.464 739 0'75 —2.48
2.87 —108.600747  —108.456198  0.66  —2.14
APPENDIX D: DISTANT-DEPENDENT TOTAL ENERGIES 291 —108.597722 —108.447 846 0.59 —1.85
AND NONADIABATIC COUPLING MATRIX ELEMENTS 2.95 —108.594 800 —108.439746 052 -1.59
2.99 —108.591970  —108.431950 047  —138
Table III collects energies and non-adiabatic couplings as a 3.02 —108.589223 —108.424515 0.42 ~1.19
function of the internuclear distance calculated at the MRCI- 3.06 —108.586 553 —108.417513 0.38 ~1.03
SD/aug-cc-pV5Z level. 3.10 —108.583954  —108.411069 034  —0.90
3.14 —108.581421  —108.405435 031  —0.78
3.17 —108.578948  —108.401125 028  —0.69
321 —108.576526  —108.399021 026  —0.61
TABLE III. Potential energy curves and non-adiabatic coupling 395 _108.574 147 —108.400 025 0.24 —0.53
(values close to zero are omitted) for B2x,* and C 2%, * electronic 3.29 —108.571 806 —108.403 970 0.22 —047
states. Results obtained on the MRCI-SD/aug-cc-pV5Z level. 3.33 —108.569 508 —108.409 288 0.20 —042
3.36 —108.567269  —108.414422 0.9  —038
Rla) B3 [En] Cln B TR HTL 340 ~108.565005  —108418788 017  —034
1.63 —108.477160  —107.907986  0.19 040 344 —108.562986  —108.422418 016~ -030
1.66 —108.530265  —107.995551 021 045 348 —108.560940 —108.425484  0.15 ~ -027
1.70 —108.574509  —108.072876  0.23 050 331 —108.558951  —108.428128  0.14  —0.25
1.74 —108.610966  —108.141055  0.25 057 33 —108.557018  —108.430445  0.13 ~ —0.23
178 —108.640587  —108.201066  0.27 065 359 —108.555138  —108.432492 012 -0.20
1.81 —108.664219  —108.253780  0.30 074 363 —108.553309  —108.434306  0.11 ~ -0.19
1.85 —108.682612  —108.299971  0.33 084 367 —108.551530  -108.435914 0.1l —0.17
1.89 —108.696434  —108.340332 036 096 370 —108.549798  —108.437335 010  —0.16
1.93 —108.706280  —108.375478  0.40 L 374 —108.548112  —108.438585 010 ~ —0.14
1.97 —108.712683  —108.405957  0.44 128 378 —108.546472  —108.439681 ~ 0.09  —0.13
2.00 —108.716120  —108.432258  0.50 148 382 —108.544880  —108.440722 009  —0.12
2.04 —108.717019  —108.454811  0.56 172 386 —108.543330  —108.441538 008  —0.11
2.08 —108.715767  —108.473999  0.63 200 389 —108.541823  —108.442235 008  —0.10
2.12 —108.712717  —108.490157  0.71 231 393 —108.540359  —108.442821 007 —0.10
2.15 —108.708189  —108.503579  0.80 266 397 —108.538937  —108.443305 007~ -0.09
2.19 —108.702480  —108.514515 091 303 401 —108.537556 —108.443695  0.07  —0.08
223 —108.695867  —108.523182  1.03 339 404 —108.536217  —108.443997  0.06 ~ —0.08
227 —108.688609  —108.529759  1.16 369 408 —108.534917  —108.444219 006 ~ -0.07
231 —108.680950  —108.534393 131 383 412 —108.533658  —108.444367 006  -007
234 —108.673120  —108.537204  1.45 373 416 —108.532438  —108.444447  0.06  —0.06
238 —108.665331  —108.538263 158 326 420 —108.531257  —108.444463 005 —0.06
242 —108.657760  —108.537641  1.69 236 423 —108.530115  —108.444422 005  —0.06
2.46 —108.650582  —108.535569  1.76 108 427 —108.529010  —108.444265 005~ —0.05
2.53 —108.637751  —108.527315 173  —178 431 —108.527943  —108.443919 005  —0.05
2.57 —108.632158  —108.521442  1.64  —288 435 —108.526913  —108.444000 ~ 0.04  —0.05
261 —108.627080  —108.514652 152  —355 438 —108.525920  —108.443773 004 —0.04
2.65 —108.622457  —108.507451 138  —382 442 —108.524962  —108443510 004  —0.04
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TABLE III. (Continued.)
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TABLE IIl. (Continued.)

R [ao] B*3,* [Ep) C2%," [En] T LT R [ao] B2%," [En] C2%," [En] ) LTl
4.46 —108.524040  —108.443214  0.04  —0.04 559 —108.509415  —108.428989  0.02  —0.01
4.50 —108.523152  —108.442887  0.04  —0.04  5.63 —108.509228  —108.428482  0.02  —0.01
4.54 —108.522 300 —108.442533  0.04 —0.04 5067 —108.509 053 —108.427946  0.02 —0.01
457 —108.521481  —108.442155 004  —0.03 005 —108.507948  —108.424392 001  -0.01
4.61 108520696  —108.441755 003  —0.03 2-;‘(3) —182-28; ‘2“7‘; ﬁgg-j‘éf ;(5)431 8-81 _8-8(1)
4.65 —108.519943  —108.441335  0.03  —0.03 : - - : :
4.69 108.519223 108.440897  0.03 003 Y —108.507255  ~108.420349 - -

: e e : - 7.94 —108.507454  —108.419472 - -
4.72 —108.518534  —108.440444 003 003 ¢ _108.507482  —108.418 641 ~ ~
4.76 —108517876  —108.439978 003  —0.03 g7 108507479  —108.418048 _ _
4.80 —108.517247 —108.439 500 0.03 —0.02 9.64 —108.507 457 —108.417 638 _ _
4.84 —~108.516647  —108.439014 003  —0.02  10.20 ~108.507425  —108.417358 - -
4.88 —108.516074  —108.438520  0.03  —0.02  10.77 —108.507390  —108.417165 - -
491 —108.515529  —108.438021  0.03  —0.02 1134 —108.507355  —108.417031 - -
4.99 —108.514515 —108.437011 0.03 —0.02 1191 —108.507323 —108.416936 - -
5.03 —108.514046  —108.436502  0.02  —0.02 1247 —108.507295 —108.416 867 - -
5.06 108513602  —108435990  0.02  —0.02 i;(lﬁ - 18228; f‘g; _igz-ﬁg 2(6)?1 - -
5.10 —108.513 181 —108.435474  0.02 —0.02 : - - - -

18.90 —~108.507150  —108.416639 - -
5.14 —108.512783  —108.434956  0.02 —0.02

20.79 —108.507139  —108.416623 - -
5.18 —108.512408  —108.434435  0.02 —0.02

22.68 —~108.507132  —108.416613 - -
522 —108.512053  —108.433914  0.02 —0.02

24.57 —~108.507128  —108.416606 - -
525 —108.511716  —108.433398  0.02 —0.01

26.46 —108.507124  —108.416601 - -
5.29 —~108.511398  —108.432889  0.02 —0.01

28.35 —~108.507122  —108.416597 - -
533 —~108.511096  —108.432388  0.02 —0.01

41.57 —108.507110  —108.416586 - -
5.37 —108.510811 —108.431894  0.02 —0.01

52.91 —108.507109  —108.416584 - -
5.40 —~108.510542  —108.431406  0.02 —0.01

60.47 —~108.507109  —108.416583 - -
5.44 —~108.510289  —108.430923  0.02 —0.01

69.92 —108.507108  —108.416583 - -
5.48 —~108.510050  —108.430442  0.02 —0.01

86.93 —108.507108  —108.416583 - -
5.52 —108.509825  —108.429962  0.02 —001 o 108,507 108 108416 383
5.56 —108.509614  —108.429480  0.02  —0.01 : U e N -
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