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Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems
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We generalize the quantum adiabatic theorem to the non-Hermitian system and build a strict adiabaticity
condition to make the adiabatic evolution nonlossy when taking into account the effect of the adiabatic phase.
According to the strict adiabaticity condition, the nonadiabatic couplings and the effect of the imaginary part
of adiabatic phase should be eliminated as much as possible. Also, the non-Hermitian Hamiltonian reverse-
engineering method is proposed for adiabatically driving an artificial quantum state. A concrete two-level system
is adopted to show the usefulness of the reverse-engineering method. We obtain the desired target state by
adjusting extra rotating magnetic fields at a predefined time. Furthermore, the numerical simulation shows that
certain noise and dissipation in the systems are no longer undesirable but play a positive role in the scheme.
Therefore, the scheme is quite useful for quantum information processing in some dissipative systems.
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I. INTRODUCTION

As an essential task in many areas of quantum information
science ranging from quantum information processing [1,2]
and coherent manipulation of quantum systems [3] to high-
precision measurements [4,5], quantum-state engineering
(QSE) [6–12] has attracted much attention, which promotes
the development of experimental techniques and theoretical
schemes. The quantum adiabatic theorem (QAT), an important
way of realizing QSE, has been widely studied, and the basic
properties of the QAT are being scrutinized both theoretically
and experimentally [13–19]. The basic idea of QAT can
be summarized as follows: if the control parameters in the
time-dependent Hamiltonian change slowly, the system will
follow closely along an eigenstate trajectory up to an adiabatic
phase factor when it is initially in one of the eigenstates.
Therefore, the adiabatic phase is a complicated factor which
can be divide into a dynamical phase and a geometrical phase
[13]. Interestingly, in the Hermitian adiabatic Hamiltonians
scenario, one can focus on the dynamics of the eigenstate and
neglect the complicated phase factor since it can be discarded
as the common pure phase. However, in practice the quantum
system inevitably interacts with the surrounding environment,
e.g., the non-Hermitian (NH) systems [20–32]. In this case, the
complicated adiabatic phase factor cannot be simply discarded
as the common pure phase any more since it generally is not
a pure (real) phase factor. Then, the ideal robustness and the
intended dynamics may be spoiled by the accumulation of
the imaginary part of the adiabatic phase due to noise and
undesired interactions. Thus, it is very worthwhile to look for
the novel methods which are robustness, and figure out the
strict adiabaticity condition for NH Hamiltonians when taking
into account the effect of adiabatic phase.

In fact, several authors have paid attention to the study of
adiabaticity in NH systems [27–31]. For example, Miniatura
et al. set a rough estimate of an adiabaticity condition by
analogy with the Hermitian counterpart and recognized the
importance of the nonadiabatic transition [27]. Subsequently,
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Sun studied the generalization of the high-order adiabatic
approximation method for the NH quantum systems by using
perturbation theory and integration by parts and obtained
an adiabaticity condition similar to the Hermitian one with
the damping factor and the oscillating factor [28]. Recently,
Dridi et al. established a generalization of the Davis-Dykhne-
Pechukas formula by the complex time method and showed a
general adiabatic approximation for lossy two-state models
[29,30]. More recently, Ibáñez and Muga generalized the
concept of population for NH systems to characterize adia-
baticity and worked out an approximate adiabaticity criterion
[31]. Indeed, the adiabaticity of a given NH system has
been discussed well using those excellent methods [27–31].
However, in principle the above methods did not give a clear
quantitative analysis of the dynamics of the bare state in the
eigenstate and the adiabatic phase. In some cases, we may
observe a false adiabaticity due to the problematic or obscure
population concept [24–26]. In addition, they will also be
limited severely by the presence of the strong dissipation
effects in some applications [25,31]. The above problems make
designing the perfect scheme to reach the intended dynamics
for the NH systems very challenging.

In this paper, we will introduce a method to solve the
problems shown above. Different from the previous schemes
[28,30,31] which were proposed to explore the adiabatic ap-
proximation condition for a given NH system, we are dedicated
to setting a strict adiabaticity condition to make the adiabatic
evolution nonlossy when taking into account the effect of
the adiabatic phase and exploring the Hamiltonian which will
exactly satisfy the strict condition via the reverse-engineering
method. The scheme has the following advantages: (1) We
take the effect of the adiabatic phase into consideration and
make the adiabatic process be a strict one without loss in the
NH system. (2) By using the reverse-engineering method, we
can design the Hamiltonian to realize the intended dynamics
according to the demand. (3) The noise or certain dissipation
in the systems can play a positive role in the scheme. We
can obtain the desired target state by adjusting extra rotating
magnetic fields at a predefined time even in the dissipative
system. Therefore, the scheme makes it possible to realize the
QSE for some dissipative systems.
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The rest of this paper is arranged as follows. In Sec. II,
we briefly review some important properties of the NH
Hamiltonians and build a strict adiabaticity condition which
contains two parts: an auxiliary adiabaticity condition with
respect to the adiabatic phase and a general adiabatic condition
given via the Feshbach P -Q partitioning technique [33–35].
In Sec. III, we explicitly discuss how to engineer a NH
Hamiltonian which could exactly satisfy the strict adiabaticity
condition. Then, we consider a concrete two-level-system
example to show the usefulness of our reverse-engineering
method. Both experimental feasibility and population engi-
neering are discussed step by step in Sec. IV. Finally, we give
a summary in Sec. V.

II. BASIC THEORIES

A. NH Hamiltonians: Basic formulas

For NH systems, the usual approximations and criteria
are not necessarily valid, so the results which are applicable
for Hermitian systems have to be reconsidered and modified.
We first briefly recall some important properties of the NH
Hamiltonians [20,21]. Consider an arbitrary time-dependent
NH Hamiltonian H (t) with N nondegenerate instantaneous
eigenstates {|φn(t)〉}, n = 1,2, . . . ,N. It satisfies the following
eigenvalue equation:

H (t)|φn(t)〉 = En(t)|φn(t)〉. (1)

As the adjoint operator of H (t), H (t)† will also satisfy the
following eigenvalue equation:

H (t)†|φ̂n(t)〉 = E∗
n(t)|φ̂n(t)〉, (2)

where {|φ̂n(t)〉} are the instantaneous eigenstates of H (t)† and
also the biorthogonal partners of {|φn(t)〉} and the asterisk
indicates complex conjugate. The biorthogonal partners are
normalized to satisfy the biorthogonality relation

〈φ̂n(t)|φm(t)〉 = δnm, (3)

and the closure relation∑
n

|φ̂n(t)〉〈φn| =
∑

n

|φn(t)〉〈φ̂n(t)| = 1. (4)

With the above properties, the Hamiltonian and its adjoint can
be rewritten as

H (t) =
∑

n

|φn(t)〉En(t)〈φ̂n(t)|,

H (t)† =
∑

n

|φ̂n(t)〉E∗
n(t)〈φn(t)|. (5)

B. The auxiliary adiabaticity condition for the NH systems
with respect to the adiabatic phase

According to the adiabatic theorem, a state with the
initial condition |φ(0)〉 = |φn(0)〉 will evolve adiabatically if
its dynamics is well approximated by |φ(t)〉 = eiβn(t)|φn(t)〉.
Furthermore, if |φn(t)〉 is the instantaneous state of the system
Hamiltonian H (t) and |φ(t)〉 satisfies the Schrödinger equation
(� = 1)

i|φ̇(t)〉 = H (t)|φ(t)〉, (6)

we can obtain the adiabatic phase

βn(t) =
∫ t

0
[−En(t ′) + i〈φ̂n(t ′)|φ̇n(t ′)〉]dt ′. (7)

However, this ansatz of the adiabaticity for the NH system is
not strict. The imaginary part of the adiabatic phase will induce
the decay of system and cause confusion about the validity
of the adiabaticity. Consequently, it is necessary to forcibly
eliminate Im[βn(t)] to keep the adiabatic scheme working well;
that is, we should ensure

−Im[En(t)] + Re[〈φ̂n(t)|φ̇n(t)〉] = 0. (8)

Then, the adiabatic phase can be safely discarded as a common
pure phase when we investigate the dynamics of the target
state, even in the NH systems. Notice that Eq. (8) is the
auxiliary adiabaticity condition which allows one to make the
adiabatic evolution nonlossy with respect to adiabatic phase,
which is the primary result to be used in following work.

C. The general adiabatic condition for the NH systems

In general, a state at time t can be expressed as

|�(t)〉 =
∑

n

�n(t)eiβn(t)|φn(t)〉, (9)

where the phase factor βn(t) satisfies Eq. (7) for arbitrary n

and �n(t) is considered a complex function. It is obvious that
�n(t) is the key coefficient associated with the dynamics of
|φn(t)〉. Therefore, an exact dynamical equation for �n(t) is
highly desirable. Assuming |�(t)〉 satisfies the Schrödinger
equation, we can obtain the following equations:

i�̇n(t) = −i
∑
m�=n

〈φ̂n(t)|φ̇m(t)〉ei[βm(t)−βn(t)]�m(t)

=
∑
m�=n

H ′
mn

�m(t)

�n(t)
�n(t), (10)

i|�̇ ′
n(t)〉 =

∑
m�=n

H ′
mn|�m(t)〉〈�n(t)|� ′

n(t)〉 = H ′(t)|� ′
n(t)〉,

(11)

where H ′
mn ≡ −i〈φ̂n(t)|φ̇m(t)〉ei[βm(t)−βn(t)]. According to the

adiabatic theorem, |φn(t)〉 will evolve adiabatically if the term
on the left-hand side of Eq. (10) approaches zero. Moreover, it
is interesting to find that the form of Eq. (10) is similar to the
form of the artificial Schrödinger equation (11) for the vector
|� ′

n(t)〉 = [�1(t),�2(t),�3(t), . . . ,�n(t)]T (the superscript T

denotes the transpose operator) with the rotating representation
Hamiltonian H ′(t). So we can deal with �n(t) with the help
of Eq. (11). In fact, H ′(t) describes the coupling transitions
between the instantaneous eigenstates {|φn(t)〉}, the so-called
nonadiabatic couplings.

We should stress that in this paper we do not intend
to research fully adiabatic dynamics (for all modes). The
problem we address is the adiabatic dynamics of one target
component (for one mode). Without loss of generality, the
target component can be denoted as �1(t), corresponding
to the target eigenstate |φ1(t)〉 of H (t). In order to obtain a
better understanding of the adiabatic dynamics of �1(t), the
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Feshbach P -Q partitioning technique [34,35] is introduced.
According to the P -Q partitioning technique, the state |� ′

n(t)〉
and the rotating representation Hamiltonian H ′(t) in the
Schodinger equation (11) can always be partitioned into the
following form:

|� ′
n(t)〉 =

[
P

Q

]
, H ′(t) =

(
0 R

W D

)
, (12)

where P , associated with the target state, is equal to
�1(t), while Q, associated with the (N − 1)-dimensional
vector, denotes the rest of the state spaces. The vector R ≡
[R2,R3, . . . ,Rn], with Rm = −i〈φ̂1(t)|φ̇m(t)〉ei[βm(t)−β1(t)]

(m � 2), while the vector W ≡ [W2,W3, . . . ,Wn]T , with
Wm = −i〈φ̂m(t)|φ̇1(t)〉ei[β1(t)−βm(t)]. The (N − 1) × (N − 1)
matrix D ≡ ∑

m�=n Dmn|�m(t)〉〈�n(t)|, where Dmn = − i〈φ̂n

(t)|φ̇m(t)〉ei[βm(t)−βn(t)](m,n � 2).
Substituting Eq. (12) into Eq. (11), we obtain the following

equations:

iṖ = RQ, iQ̇ = WP + DQ. (13)

The formal solution of Eq. (13) can be written as

iṖ = −iR(t)
∫ t

0
G(t,s)W (s)P (s)ds + R(t)G(t,0)Q(0),

(14)

where G(t,s) = T←{exp[−i
∫ t

s
D(s ′)ds ′]} is the time-ordered

evolution operator. Under the condition P (0) = 1 and Q(0) =
0, we have the exact dynamical equation for the P part,

Ṗ = −R(t)
∫ t

0
G(t,s)W (s)P (s)ds = −

∫ t

0
g(t,s)P (s)ds,

(15)

where g(t,s) = R(t)G(t,s)W (s) is an effective propagator
which plays a very important role in the analysis of adiabatic-
ity. Notice that the general adiabatic approximation condition
is

∫ t

0 g(t,s)P (s)ds = 0; that is, the propagator g(t,s) = 0 or
g(t,s) is factored by a rapid oscillating function [35,36], which
is also the primary result to be used in following work.

For an effective two-level system, the associated rotating
representation Hamiltonian H ′(t) reads

H ′(t) = −i

(
0 〈φ̂1(t)|φ̇2(t)〉ei�β(t)

〈φ̂2(t)|φ̇1(t)〉e−i�β(t) 0

)
,

(16)

where �β(t) = β2(t) − β1(t). When the effective two-level
system is initially in the eigenstate |φ1(0)〉, the propagator
g(t,s) reads

g(t,s) = −〈φ̂1(t)|φ̇2(t)〉〈φ̂2(s)|φ̇1(s)〉ei
∫ t

s
(β̇2(s ′)−β̇1(s ′))ds ′

. (17)

Notice that Eqs. (16) and (17) are also the primary results to
be used in following work.

III. THE NH HAMILTONIAN REVERSE-ENGINEERING
METHOD AND APPLICATIONS

A. The NH Hamiltonian reverse-engineering method

In this section, we will start with an engineering method
about how to engineer the yet unknown NH Hamiltonian which

could exactly satisfy the strict adiabaticity condition. From the
special properties of the NH Hamiltonian [see Eq. (5)], one can
conclude that the design process can be divided into two steps:
designing the eigenvectors and modifying the eigenvalues.
Here we should make some remarks on the eigenvector
designs. (1) The goal of our scheme is driving the eigenvectors
of an initial Hamiltonian into those of a final Hamiltonian, so
the designed eigenvectors must connect the initial state with the
target state. (2) Our scheme is, working in the NH Hamiltonian
scenario, the eigenvectors must satisfy the biorthogonality
relation and the closure relation. (3) The eigenvectors must
evolve adiabatically; that is, they should satisfy the general
adiabatic condition which has been discussed in Sec. II C. Once
the eigenvector designs are completed, we can reconsider and
modify the eigenvalues resorting to normalization ambiguities
in the eigenvectors of NH Hamiltonians. More specifically,
we should consider the auxiliary adiabaticity condition with
respect to the adiabatic phase for the new eigenvector in this
step.

Before elaborating on manipulating a two-level system
to the target state, we will give a simple restriction on
eigenvectors to satisfy the biorthogonality relation and the
closure relation from the view of mathematics. Without loss
of generality, for an n-dimensional system, we assume the
eigenstates {|φn(t)〉} of H (t) read

|φ1(t)〉 = A11(t)|1〉 + A21(t)|2〉 + · · · + An1(t)|n〉,
|φ2(t)〉 = A12(t)|1〉 + A22(t)|2〉 + · · · + An2(t)|n〉,

...
|φn(t)〉 = A1n(t)|1〉 + A2n(t)|2〉 + · · · + Ann(t)|n〉, (18)

where |l〉 (l = 1,2,3, . . . ,n) is the bare state for the system and
Ajk(t) (j,k = 1,2,3, . . . ,n) is a devisable function associated
with the bare state |j 〉 in |φk(t)〉. In a similar manner, the
biorthogonal states of {|φn(t)〉} are expressed as

〈φ̂1(t)| = A′
11(t)〈1| + A′

12(t)〈2| + · · · + A′
1n(t)〈n|,

〈φ̂2(t)| = A′
21(t)〈1| + A′

22(t)〈2| + · · · + A′
2n(t)〈n|,

...
〈φ̂n(t)| = A′

n1(t)〈1| + A′
n2(t)〈2| + · · · + A′

nn(t)〈n|, (19)

where 〈l| (l = 1,2,3, . . . ,n) also is the bare state for the
system and A′

jk(t) (j,k = 1,2,3, . . . ,n) is a devisable function
associated with the state 〈k| in 〈φ̂j (t)|. Let’s introduce two
matrices constructed by Ajk(t) and A′

jk(t), respectively,

AT (t) =

⎛⎜⎜⎝
All(t) A21(t) · · · An1(t)
A12(t) A22(t) · · · An2(t)

...
... · · · ...

A1n(t) A2n(t) · · · Ann(t)

⎞⎟⎟⎠,

A′(t) =

⎛⎜⎜⎝
A′

11(t) A′
12(t) · · · A′

1n(t)
A′

21(t) A′
22(t) · · · A′

2n(t)
...

... · · · ...
A′

n1(t) A′
n2(t) · · · A′

nn(t)

⎞⎟⎟⎠, (20)

where the superscript T denotes the transpose operator.
In order to satisfy the biorthogonality relation and the

closure relation as shown in Eqs. (3) and (4), A(t) and A′(t)
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should satisfy the following relation:

A′(t) · A(t) = AT (t) · A′T (t) = [A′(t) · A(t)]T = 1n, (21)

where 1n is the n-dimensional unit matrix. We can easily
verify that Eq. (21) will be satisfied if A(t) is the reverse
matrix of A′(t). That is, we just need to make sure A′(t) or
A(t) is the invertible matrix. Therefore, mathematically, the
determinants of A′(t) and A(t) should never be zero for the
reverse-engineered biorthogonal partners.

B. Engineering quantum states using
the reverse-engineering method

As an example, we now demonstrate how to engineer a
quantum state of a single qubit by means of the reverse-
engineering method. For the sake of simplicity, we assume
the eigenstates {|φn(t)〉} of H (t) read

|φ1(t)〉 = A11(t)|1〉 + A21(t)|2〉,
|φ2(t)〉 = A12(t)|1〉 + A22(t)|2〉. (22)

The choice of coefficients A11(t) and A21(t) is variable, and
we can choose the state in which we are interested as the target
state |φ1(t)〉. Without loss of generality, by setting A11(t) =
−λ(t) sin α(t), A21(t) = cos α(t), A12(t) = λ(t) cos α(t), and
A22(t) = sin α(t), we can obtain

A(t) =
(−λ(t) sin α(t) λ(t) cos α(t)

cos α(t) sin α(t)

)
, (23)

where λ(t) and α(t) are time-dependent complex functions.
Obviously, A(t) will be an invertible matrix if λ(t) �= 0 is
established all the time. Then, we can obtain the accurate
solution of A

′
(t),

A′(t) =
( −1

λ(t) sin α(t) cos α(t)

1
λ(t) cos α(t) sin α(t)

)
. (24)

Now, we start to consider the general adiabatic condition
for the designed system and calculate the following matrix
elements:

〈φ̂1(t)|φ̇1(t)〉 = λ̇(t)

λ(t)
sin2 α(t),

〈φ̂2(t)|φ̇2(t)〉 = λ̇(t)

λ(t)
cos2 α(t),

〈φ̂2(s)|φ̇1(s)〉 = −α̇ − λ̇(s)

λ(s)
sin α(s) cos α(s),

〈φ̂1(t)|φ̇2(t)〉 = α̇ − λ̇(t)

λ(t)
sin α(t) cos α(t). (25)

Then, |φ1(t)〉 will adiabatically evolve if the propagator
g(t,s) = 0 or g(t,s) is factored by a rapid oscillating function.
Mathematically, the simplest choice is setting 〈φ̂1(t)|φ̇2(t)〉 =
0 (we also can set 〈φ̂2(s)|φ̇1(s)〉 = 0), and λ(t) can be solved
as

λ(t) = tan α(t), (26)

where α(t) �= ηπ/2, η ∈ Z. Here, we should note that g(t,s)
will also be factored by a rapid oscillating function if λ(t) is a
constant and α̇ ≈ 0. In fact, this kind of setting was examined

in detail in Ref. [31] by Ibáñez and Muga. However, the
weakness of this kind of setting is quite obvious; the target state
|φ1(t)〉 could not be engineered to reach an arbitrary target state
in a short time as α̇ ≈ 0. For the sake of generality and giving
more choices for the realization of QSE, λ(t) will be chosen
as Eq. (26) in this paper. Up to now, we have successfully
completed the eigenvector designs and obtained the following
unnormalized eigenvectors:

|φ1(t)〉 = − sin2 α(t)

cos α(t)
|1〉 + cos α(t)|2〉,

|φ2(t)〉 = sin α(t)|1〉 + sin α(t)|2〉. (27)

According to Eq. (5), the system Hamiltonian takes the form

H (t) =
(

E1(t)+�E(t) cos2 α(t) �E(t) sin2 α(t)

�E(t) cos2 α(t) E1(t)+�E(t) sin2 α(t)

)
,

(28)

where �E(t) ≡ E2(t) − E1(t) is the eigenvalue difference of
the system and it cannot equal zero due to the nondegeneracy.

At this point, the eigenvalues of NH Hamiltonians are still
undetermined, although the eigenvector designs have been
completed. We should reconsider and modify the eigenvalues,
resorting to normalization ambiguities in the eigenvectors of
NH Hamiltonians. One can find that the following states are
also the eigenvectors of Eq. (28) with the same eigenvalues:

|φ′
1(t)〉 = f1(t)|φ1(t)〉,

|φ′
2(t)〉 = f2(t)|φ2(t)〉, (29)

where f1(t) and f2(t) can be arbitrary nonzero functions. Then,
the biorthogonal partners of {|φ′

1(t)〉,|φ′
2(t)〉} read

〈φ̂′
1(t)| = 1

f ∗
1 (t)

〈φ̂1(t)|,

〈φ̂′
2(t)| = 1

f ∗
2 (t)

〈φ̂2(t)|. (30)

By calculating, we can find the propagator g(t,s) is also
factored by a rapid oscillating function for the new eigenvector
|φ′

1(t)〉. That is, |φ′
1(t)〉 will continue to evolve adiabatically

in the current system without additional Hamiltonians, even
though f1(t) is an arbitrary nonzero function. Substituting
|φ′

1(t)〉 into Eq. (6), we obtain

|φ(t)〉 = eiβ ′
1(t)|φ′

1(t)〉 = eiβ1(t)f1(0)|φ1(t)〉, (31)

where the adiabatic phase for the new eigenvector reads

β ′
1(t) =

∫ t

0
[−E1(t ′) + i〈φ̂′

1(t ′)|φ̇′
1(t ′)〉]dt ′

=
∫ t

0
[−E1(t ′) + i〈φ̂1(t ′)|φ̇1(t ′)〉 + id ln f1(t)]dt ′. (32)

As a consequence, the normalization ambiguities in the eigen-
vectors generate only a constant multiplication factor f1(0),
and the target state |φ1(t)〉 always evolves adiabatically in the
current system. Furthermore, when the auxiliary adiabaticity
condition with respect to the adiabatic phase [see Eq. (8)] is
taken into account,

Im[E1(t)] = Re[〈φ̂1(t)|φ̇1(t)〉] = Re[sin α(t) cos α(t)], (33)
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the target state will not suffer strong exponential variations,
which is remarkable for quantum information processing.

We can find that Eq. (28) can be expressed in terms of the
Pauli matrices as

H (t) = �E(t)

2
σx − i

δ(t)

2
σy + δ(t)

2
σz + E′

0(t)1, (34)

where δ(t) = �E(t) cos[2α(t)] and E′
0(t) = E1(t) + �E(t)/2

are the time-dependent variables and 1 denotes the unit matrix.
In fact, the real part of E′

0(t) can be ignored by applying the
appropriate energy shift, which does not play a negative role
in the investigation of population of system. The system can
be mapped onto the Hamiltonian

H (t) = 1
2 [�E(t)σx − iδ(t)σy + δ(t)σz] + iIm[E′

0(t)]1. (35)

It can be easily found that there are only two variables, �E(t)
and α(t), in Eq. (35). Thus, the crucial NH Hamiltonian
engineering can be cast into the �E(t) design and the α(t) de-
sign. Theoretically speaking, besides the consistency condition
[α(t) �= 2η/π , �E(t) �= 0 and sin α(0) ≈ 1; it should be noted
that the initial state could make a connection with the target
state |φ1(t)〉 by setting sin α(0) ≈ 1 according to Eq. (27)],
there is almost no limit on the choices of �E(t) and α(t) for
engineering the system to reach an arbitrary target state at a pre-
defined time. However, the choices of α(t) and �E(t) will af-
fect the evolution speed of the target state and the feasibility in
the practical realization. Especially, when the term Im[E′

0(t)]
in Eq. (35) does not equal zero, the practical realization of this
Hamiltonian is significantly challenged in experiments. We
shall explore in the following section an appropriate physical
model that can incorporate the resulting Hamiltonian.

IV. EXPERIMENTAL FEASIBILITY
AND NUMERICAL EXAMPLES

For the purpose of convenience, we consider a simple case
of Eq. (35),

Im[E′
0(t)] = Im[E1(t)] + Im

[
�E(t)

2

]
≈ 0. (36)

The Hamiltonian of the system reduces to

H (t) = 1
2 [�E(t)σx − iδ(t)σy + δ(t)σz]. (37)

In general, there is no simple “real” field interaction
leading to Eq. (37) since the off-diagonal terms of the
resulting Hamiltonian are different. For example, we assume
a semiclassical description of the interaction between a “real”
magnetic field B(t) and a rotating spin qubit, where B(t) =
[Bx(t)ex + By(t)ey + Bz(t)ez]/2Mb, er (r = x,y,z) is the unit
vector along the r axis, Mb = �e/(2m) is the Bohr magneton,
and Br (t) is a real variable. Then, the Hamiltonian of this
system reads

H (t) =
(

Bz(t) Bx − iBy(t)
Bx(t) + iBy(t) −Bz(t)

)
, (38)

and we can find that the off-diagonal terms are the complex
conjugate of each other, which does meet the requirements.
However, we may obtain the resulting Hamiltonian if the
magnetic field B(t) is the complex signal field rather than

the real signal field; for example,

Bx(t) → Ax(t)eI�x (t) = Re[�E(t)] + iIm[�E(t)],

By(t) → Ay(t)eI�y (t) = Im[δ(t)] − iRe[δ(t)],

Bz(t) → Az(t)e
I�z(t) = Re[δ(t)] + iIm[δ(t)], (39)

where Ar is the amplitude and �r is the phase. In fact, a
similar complex signal field has been discussed in detail in
Refs. [37,38] (and references therein). Additionally, the phase
�r can also be considered the dissipation factor which is
introduced by the noise (e.g., the dephasing effects due to the
collisions or phase fluctuations of the magnetic fields or when
the rotating-wave approximation fails for the strong magnetic
fields [38]). Therefore, the resulting Hamiltonian (37) is
accessible experimentally with the complex signal field or the
real signal field under some dissipation effects.

Now, let’s focus on how to design �E(t) and α(t) from an
experimental view point. First, we can write α(t) in polar form,

α(t) = ρ(t) exp[iθ (t)], (40)

where ρ(t) and θ (t) are time-dependent real variables. It
is useful to rewrite �E(t), taking into account Eqs. (33)
and (36), as

�E(t) = Re[�E(t)]

− i sin[2ρ(t) cos θ (t)] cosh[2ρ(t) sin θ (t)], (41)

where the real part of �E(t) is an undetermined parameter
and the selection of Re[�E(t)] seems quite arbitrary mathe-
matically. However, �E(t) is physically associated with the
eigenvalue difference of the system [see Eq. (28)]. Thus,
we should guarantee the modulus of Re[�E(t)] is relatively
large; otherwise, the system will undergo transitions between
|φ1(t)〉 and |φ2(t)〉 constantly. Furthermore, �E(t) is also
associated with the magnetic field; we should consider the
experimental technology for the magnetic-field engineering.
Once Re[�E(t)], ρ(t), and θ (t) are fixed, the magnetic field
B is fixed. However, it should be emphasized that an arbitrary
choice of ρ(t) and θ (t) will typically lead to singularities on
the magnetic field. We will discuss this problem in detail with
the following physical model.

In the above derivation, we have considered a simple case of
Eq. (35), that is, Im[E′

0(t)] ≈ 0. Now, we will discuss the ex-
perimental feasibility of the physical model when Im[E′

0(t)] �
0. For convenient discussion, we assume Im[δ(t)] = �(t),
where �(t) is a time-dependent real coefficient. In this case,
Eq. (35) can be written as

H (t) = 1
2 {�E(t)σx − iδ(t)σy + Re[δ(t)]σz}

+ i

(
Im[E′

0(t)] + �(t)
2 0

0 Im[E′
0(t)] − �(t)

2

)
. (42)

Note that the difference in the order of magnitude between
Im[E′

0(t)] and �(t) is small; otherwise, the problem seems to
be equivalent to the above simple example. More specifically,
setting

Im[E′
0(t)] + �(t)/2 = 0, (43)

we will find the resulting Hamiltonian in Eq. (42) can
be accessible in the following physically setting: a spin
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qubit or atom passes through a region of rapidly varying
magnetic field B = {�E(t)ex − iδ(t)ey + Re[δ(t)]ez}/2Mb,
and the spin qubit or atom suffers a radiation process with the
dissipation rate [32,39,40] �(t) [e.g., the spontaneous decay;
in some cases, �(t) can be controlled as an effective decay rate
by further interactions; see, e.g., Ref. [40]]. This is remarkable
since the noise and certain dissipation in the systems are
no longer undesirable but play an integral part in our
scheme.

From an experimental view point, we should consider the
�E(t) design and the α(t) design for the current physical
model. Similar to the above derivation, α(t) is still in polar
form. Substituting Eqs. (33) and (40) into Eq. (43), we will
find �E(t) satisfies the following equation:

−Re[�E(t)]�1 = Im[�E(t)](1 + �2) + �3, (44)

where

�1 = sin[2ρ(t) cos θ (t)] sinh[−2ρ(t) sin θ (t)],

�2 = cos[2ρ(t) cos θ (t)] cosh[2ρ(t) sin θ (t)],

�3 = sin[2ρ(t) cos θ (t)] cosh[2ρ(t) sin θ (t)]. (45)

Furthermore, �(t) can be simplified as �(t) = −Im[�E(t)] −
�3. Apparently, once Im[�E(t)] is specified, the magnetic field
B and �(t) are straightforwardly calculated with Eqs. (44) and
(45). On the other hand, the form of Im[�E(t)] can be derived

with the inversion strategy if the form of dissipation rate �(t) is
fixed. This is remarkable since we can choose appropriate extra
magnetic fields to adiabatically drive an artificial quantum state
for a certain dissipative quantum system. Up to now, we have,
in principle, constructed the magnetic fields according to the
α(t) design and specified dissipation rate �(t). However, the
α(t) designs are problematic, as an arbitrary choice of ρ(t) and
θ (t) will typically lead to singularities on the right-hand side
of Eq. (45) [for instance, �i (i = 1,2,3) will jump abruptly
when 2ρ(t) cos θ (t) = ηπ or 2ρ(t) sin θ (t) ≈ 0]. In general, �i

will also introduce singularities in magnetic fields; then, we
cannot construct the finite and smooth magnetic fields. Thus,
we should design ρ(t) and θ (t) to avoid the singularities. It is
advisable to fix ρ(t) or θ (t) first, then design the other one to
avoid the singularities. A simple example is

ρ(t) = π

2
− o − ξ sin μt, θ (t) = ζ + sin νt, (46)

where μ and ν are constant frequencies related to the concrete
phase engineering and o is an extremely small constant to keep
the consistency condition. By choosing appropriate parameters
(such as ξ = 0.4π , ζ = 0.08π , and μ = ν = 0.5�), we can
construct the finite and smooth magnetic fields. For an
intuitive grasp of the change of magnetic fields with different
parameters in the dissipation system, we plot the time evolution
of magnetic fields in Fig. 1. As shown in Fig. 1(a), when the
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FIG. 1. Time evolution of the magnetic fields with different parameters. For (a) and (b) the dissipation rate �(t) = 100�: (a) μ = ν = 0.5�

and (b) μ = ν = 0.4� (the other parameters are ξ = 0.4π and ζ = 0.08π ). For (c) and (d) the dissipation rate �(t) is based on Eq. (47): (c)
T = √

2/� and (d) T = √
0.01/� (the other parameters are �′ = 100�, t0 = π/�, μ = ν = 0.5�, ξ = 0.4π , and ζ = 0.08π ).
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dissipation rate �(t) is a constant [�(t) = 100�], the shape
of the magnetic fields is not very complex, and the maximum
value of the magnetic fields �max is about 2000�. From an
experimental view point, if � = 2π×10 KHz, �max is about
2π×20 MHz, which is feasible with present experimental
techniques [41–46]. Thus, the magnetic fields in our scheme
are not hard to realize in practice. Figures 1(a) and 1(b)
share the same dissipation rate �(t), while the parameters
ρ(t) and θ (t) are different. In fact, we are also interested in
the time evolution of magnetic fields for a dissipation system
with a time-dependent dissipation rate �(t). Without loss of
generality, we take a Gaussian dissipation rate �(t) as an
example,

�(t) = �′e
[
−
(

t−t0
T

)2]
, (47)

where �′ is a constant frequency, while T and t0 are time
constants. We should emphasize that T is related to the time
scale of �(t) physically; it should be chosen appropriately
to keep the validity of the noise or certain dissipation.
Figures 1(c) and 1(d) display the time evolution of magnetic
fields with different T , while the other parameters are identical.
Apparently, the magnetic fields in Figs. 1(b) and 1(c) are
similar to the magnetic fields in Fig. 1(a); all of them are
feasible in practice. However, the magnetic fields in Fig. 1(d)

are quite different from the others. We can clearly see that
magnetic fields can be neglected most of the time; specifically,
�E(t) is equal to zero for a long time, which means the
consistency condition is invalid [�E(t) �= 0 since �E(t) is
also associated with the difference between the eigenvalues of
the system physically]. Therefore, the choice of the parameters
in Fig. 1(d) is problematic or false.

Now we start to study the population engineering of the
bare state in the target state. However, as shown in Eqs. (27)
and (29), the target state does not seem to be a natural
normalization. For an intuitive grasp of the change in the
population engineering of the bare states, we will use the
relative population P r

i (i = 1,2) to study the effects of different
magnetic fields on the population engineering, where the
relative population is defined as P r

i = Pi/(P1 + P2) and Pi

is the population of the bare state |i〉. We consider a realistic
case of an extremely small population in the bare state |2〉 for
the initial state

|φ(0)〉 � |φ′
1(0)〉 =

√
1 − o2|1〉 + o|2〉, (48)

where o is an extremely small constant. In Fig. 2, we plot the
time evolution of the relative populations of bare states |1〉
and |2〉 with the same parameters as shown in the caption
of Fig. 1. We find that the relative populations P r

1 and

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

t (units of π/Ω)

P
1r ,P

2r

(a)

P
1
r

P
2
r

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

t (units of π/Ω)

P
1r ,P

2r

(b)

P
1
r

P
2
r

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

t (units of π/Ω)

P
1r ,P

2r

(c)

P
1
r

P
2
r

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

t (units of π/Ω)

P
1r ,P

2r

(d)

P
1
r

P
2
r

FIG. 2. Time evolution of the relative populations for states |1〉 and |2〉 with different magnetic-field parameters. The parameters are
the same as shown in the caption of Fig. 1: (a) �(t) = 100�, μ = ν = 0.5�; (b) �(t) = 100�, μ = ν = 0.4� (ξ = 0.4π and ζ = 0.08π );
(c) �(t) = 100� exp [−(t − t0)2/T 2], T = √

2/�; and (d) �(t) = 100� exp [−(t − t0)2/T )2], T = √
0.01/� (t0 = π/�, μ = ν = 0.5�,

ξ = 0.4π , and ζ = 0.08π ).
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FIG. 3. The ideal population engineering with different α(t). α(t) is based on Eqs. (40) and (46): (a) μ = ν = 0.5�, ξ = 0.4π , and
ζ = 0.08π ; (b) μ = ν = 0.4�, ξ = 0.4π , and ζ = 0.08π .

P r
2 almost have the same evolving tendency in Figs. 2(a)

and 2(c), and a perfect full relative population inversion takes
place when �t = π . It should be noted that the time for a
full relative population inversion is about 50 ns, which is
short, if � = 2π×10 kHz. Figure 2(b) also clearly shows a
full relative population inversion when �t ≈ 1.3π . However,
the time evolution of the relative populations in Fig. 2(d) is
complicated and is quite different from the others. The reason
for this result is that the choice of the parameters in Fig. 2(d)
is problematic or false; particularly, T is too short, and the
consistency condition is invalid in this case.

To judge the validity of our scheme for adiabatic driving, we
should compare the real population engineering with the ideal
population engineering [see Eq. (27)]. The ideal population
engineering with different α(t) is given in Fig. 3. As shown
in Eq. (27), the ideal population engineering depends on only
the α(t) design. In other words, the population engineering
will be identical for the same α(t) design independent of other
parameters. Thus, if our scheme is valid, Figs. 2(a), 2(c), and
3(a) [Figs. 2(b) and 3(b)] should be identical since their α(t)
designs are identical. Obviously, the results are consistent with
our deduction; hence, our scheme can work well even under
noise if the parameters are chosen appropriately. In addition,
we can get more target states of interest with different α(t)
designs.

V. DISCUSSION AND CONCLUSION

We have generalized the quantum adiabatic theorem to
the NH system and provided a strict adiabaticity condition to
make the adiabatic evolution nonlossy. The strict adiabaticity
condition can be regarded as a nontrivial generalization
of adiabaticity conditions for the Hermitian Hamiltonians
presented by Jing et al. [35]. According to the strict adiabaticity
condition, one should eliminate the nonadiabatic couplings
and the effect of the imaginary part of the adiabatic phase as
much as possible. The NH Hamiltonian reverse-engineering
method has been proposed to adiabatically drive an artificial
quantum state. A concrete two-level system example was
discussed to show the usefulness of the reverse-engineering
method in the paper, and numerical simulation showed that our
scheme can work well even under noise if the parameters are

chosen appropriately. Furthermore, we can obtain the desired
target state by adjusting extra rotating magnetic fields at a
predefined time. Specifically, the noise and certain dissipation
in the systems are no longer undesirable but play a positive
role in our scheme. Therefore, our scheme is powerful and
reliable for quantum information processing.

The present work has some elements in common with
the quantum control in open quantum systems, including
the idea of using dissipation as a resource [e.g., dissipative
quantum dynamics (DQD) [47–50] and the NH shortcuts to
adiabaticity schemes [32,38]], so it is worth stressing the
similarities and differences. In fact, the basic idea of DQD
can be summarized as follows: the interaction between the
system and the environment is modulated to make the target
state become the stationary state of the system. Therefore,
some specific dissipative factors are no longer undesirable
but can be regarded as important resources. For the NH
shortcuts to adiabaticity schemes, the dissipative factors are
also introduced to the system to cancel somehow the nonadi-
abatic losses. In this way, one can improve dramatically the
fidelity of the adiabatic passage. However, a common problem
which one may encounter via DQD or the NH shortcuts to
adiabaticity is how to use the specific dissipative factors or
employ the appropriate interaction between the system and the
environment. Furthermore, those methods may also be limited
severely for some applications (the nonadiabatic dynamics
processes) since their starting point generally is to improve
a given (adiabatic) dynamics process.

Among the differences with recent works [30–32,38,47–
50], the most prominent point is as follows: using the
reverse-engineering method, we can easily obtain the
Hamiltonian to realize the intended dynamics without loss,
which allows one to design the Hamiltonian according to the
demand. The main task we should consider is how to physically
realize the resulting NH Hamiltonian. Sometimes, the resulting
NH Hamiltonian may be hard to realize (a common potential
problem of the NH shortcuts to adiabaticity). However, we
should note that the difficulty to realize the NH Hamiltonian
may be solved by enlarging the system with the aid of Naimark
extensions [51]. Furthermore, in a sense, all the resulting NH
Hamiltonians (even the problematic NH Hamiltonian) may
help us with a deeper understanding of the problem: which
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dissipative factors are the specific dissipative factors that
can be used as a resource to realize QSE and promote the
development of quantum information science in NH system
frames.

Furthermore, for any quantum system whose Hamiltonian
can be simplified into the form in Eq. (35) (the basic vectors
for the simplified Hamiltonian can be arbitrary dressed states
as long as the dressed states satisfy the biorthogonality
relation and closure relation), the scheme can be implemented
straightforwardly. This might lead to a useful step toward
realizing fast and noise-resistant quantum information pro-
cessing for multiqubit systems with current technology. The
applications or extensions of this work may be in fields,

such as n-dimensional systems [52,53] (for instance, the
three-dimensional systems for the stimulated Raman adiabatic
passage), superadiabatic treatments [54,55], and nonadiabatic
evolution of NH quantum systems [32].
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