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Two-color above-threshold ionization of atoms and ions in XUV Bessel beams and intense laser light
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The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam
in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons
from the weak but extreme ultraviolet (XUV) vortex Bessel beam, the energy and angular distribution of the
photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy
spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location
of the target atoms with regard to the beam axis. In addition, analog to the circular dichroism in typical two-color
ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such
vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two
light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position
of the atoms relative to the beam. For macroscopically extended targets, in contrast, three of these dichroism
signals tend to zero, while the other four just coincide with the standard circular dichroism, similar as for Bessel
beams with a small opening angle. Detailed computations of the dichroism are performed and discussed for the
4s valence-shell photoionization of Ca+ ions.
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I. INTRODUCTION

Studies on nonperturbative multiphoton processes in in-
tense laser pulses have rapidly advanced during recent years
and helped to explore the inner-atomic motion of electrons at
femto- and attosecond time scales [1–3]. For example, such
multiphoton ionization and inner-shell processes have not only
been observed for noble gases [4,5] but also for molecules [6],
surfaces, and elsewhere [7,8]. Today, these studies enable one
to generate quite routinely attosecond pulses by high-order
harmonic generation [9–11], or to control the above-threshold
ionization (ATI) [12,13].

In typical ATI experiments, an electron is released from an
atom or molecule by absorbing one or several photons from a
near-infrared (NIR) laser field more than required energetically
in order to overcome the ionization threshold. The ATI energy
spectra of the photoelectrons therefore exhibit a series of
peaks, just separated by the NIR photon energy, while the
relative strength of these peaks may depend significantly
on the intensity and temporal structure of the incident laser
pulses. These ATI spectra are thus quite in contrast to the
photoelectron spectra as obtained by just weak high-frequency
(XUV) radiation, where the absorption of a single photon
is sufficient to eject a bound electron and where the single
photoline (for each possible final state of the photoion) is
usually well described by perturbation theory. In two-color
ATI, such a XUV field is often combined with intense NIR
laser pulses in order to investigate the ionization of subvalence
electrons: While, under these circumstances, the NIR field
alone is not sufficient to ionize the atoms or molecules
efficiently, it is intense enough to stimulate the absorption
or emission of one or several additional NIR photons by
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the outgoing electron. This nonperturbative interaction of the
electrons with both the XUV and NIR fields then leads to the
well-known “sidebands” that typically occur as satellites to the
normal photolines [14,15]. Such sidebands were first observed
in the two-color ATI of noble gases as well as in laser-assisted
Auger processes [16–21]. More recently, these sidebands have
been applied in pump-probe photoelectron spectroscopy [22]
or in imaging the molecular orbitals of H2O, O2, and N2 [23].

Apart from the temporal structure of the XUV and NIR
pulses, the intensity of the sidebands depends of course also
on the relative orientation and linear polarization of these
fields [24,25]. This orientation dependence has been explored
especially by Meyer and co-workers [20] for the angular
distribution of the sidebands in the photoionization of helium.
Later, it was shown theoretically [26] that the two-color ATI
sideband spectra are rather sensitive also with regard to the
circular polarization of both the XUV and NIR light, and
an asymmetry in the photoelectron spectra was found, if the
circular polarization of one of the field is changed from the
same to the opposite direction, a phenomenon that is termed
today as circular dichroism in two-color ATI. This circular
dichroism, which is associated with some flip of the spin
angular momentum (SAM) of the incident light field, has
recently been utilized, e.g., for measuring the polarization state
of an ultraviolet free electron laser [26–28]. For molecules,
in addition, the question has been raised how two-color ATI
spectra are affected by the molecular symmetry and the
polarization of the incident radiation [29,30].

In this work we investigate the two-color ATI process
if the usual plane-wave XUV field is replaced by a vortex
(Bessel) beam, also known as “twisted light,” that carries
not only SAM but also orbital angular momentum (OAM).
Indeed, the study of such OAM light has attracted much
recent interest for the manipulation of microparticles [31],
for investigating fundamental interactions [32–36], and for
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multiplexing in telecommunication [37,38], to name a few.
In particular, we here explore the energy spectra and angular
emission of photoelectrons ejected by a vortex Bessel beam in
the presence of strong NIR light, and how these photoelectron
spectra depend on the size and location of the target (atoms)
with regard to the axis of the vortex beam. We assume an
XUV Bessel beam that is energetic enough to photoionize
the atom, while the plane-wave NIR field affects the sideband
structure as well as the energy and angular distribution of
the photoelectrons. Analogously to the circular dichroism
from above, we define and discuss moreover seven possible
dichroism signals which arise from different combinations
of the orbital and spin angular momenta of the two light
fields involved. For localized targets, we find that these
dichroism signals sensitively depend on the size and position
of the atoms relative to the beam axis. For macroscopically
extended targets, in contrast, three of these signals tend to
zero, while the other four just approach the (standard) circular
dichroism. To discuss these findings, detailed computations
of the dichroisms are performed and discussed for the 4s

valence-shell photoionization of Ca+ ions.
In the next section we shall first evaluate the transition

amplitude and photoionization probability for the two-color
ATI within the strong-field approximation (SFA), if a vortex
Bessel beam interacts with an atom in the presence of a
strong, plane-wave NIR field. Note that atomic units are used
throughout the paper. Details about the twisted XUV Bessel
beam are given in Sec. II B, while the choice of targets is
explained in Sec. II D. The possible dichroism signals for
such a two-color field are defined in Sec. II E. Emphasize
is placed here especially on the influence of a localized versus
macroscopically extended target in exploring the sensitivity
of the dichroism with regard to the target size. Detailed
calculations of the photoelectron spectra and the various
dichroism signals are presented and discussed later in Sec. III.
Finally, conclusions are given in Sec. IV.

II. THEORETICAL BACKGROUND

A. Two-color ATI in strong-field approximation

We here explore the two-color ATI of atoms (and ions) if
they interact with a weak XUV vortex beam and an intense
plane-wave NIR field. In particular, we assume an (almost)
monochromatic XUV vortex beam, as for instance generated
by free-electron lasers (FEL), and which is energetic enough
to ionize the target atom. Although quite strong, moreover,
we suppose some NIR laser pulse with many optical cycles
so that it can be described as a monochromatic plane wave.
Together, these two assumptions ensure that the “sideband
regime” holds [15], in which photoelectrons are expected not
only at the given photoline but also at energies that differ by one
or several energy quanta of the the NIR field. Moreover, both
fields are supposed to propagate along a common beam axis
that is taken also as the quantization axis (z axis). Finally, the
atomic target is either a microscopic target of trapped atoms or
ions, localized at some position b in the xy plane perpendicular
to the beam axis, cf. Ref. [35] and Fig. 1(a), or as macroscopic
and uniformly distributed target over the cross section of the
twisted XUV beam [Fig. 1(b)].

FIG. 1. Scheme for the two-color ATI of an atom by an XUV
vortex beam (blue) and in the presence of a strong NIR field (orange).
The atoms are assumed to be either (a) localized with regard to the
common beam axis or (b) equally distributed over the cross section
of the XUV Bessel beam.

After their interaction with the two-color field, the pho-
toelectrons leave the interaction region with the asymptotic
(canonical) momentum p as measured at the detectors. Below
we shall analyze the angular and momentum distribution of
these electrons as a function of the polar angle ϑp of the
momentum, i.e., with regard to the common beams axis, as well
as for different azimuth angles ϕp [as defined by the impact
vector b = (b,ϕp = 0,z = 0) of the target atom]. In particular,
we aim to understand how the photoelectron distributions are
affected by the OAM of the XUV beam and by relative changes
in either the SAM and/or OAM of the two-color fields.

Within the SFA, the transition amplitudeT for the two-color
ATI of a single active electron, being initially in the bound state
|φ0〉, reads as

T ( p) = −i

∫ ∞

−∞
dt

〈
�

(V )
q(t)

∣∣ p̂ · AX(r)
∣∣φ0

〉
ei (EB−ωX)t , (1)

where EB is the binding energy of the active electron and
AX(r) is the vector potential of the XUV Bessel beam with
frequency ωX. We shall describe the details of this vector
potential in the next subsection. In the SFA, moreover, the final
(continuum) state of the electron is typically described by a
Volkov state 〈�(V )

q(t)| = 〈q(t)| e−iSV (t) (in length gauge), which
neglects the effect of the parent ion upon the motion of the
liberated electron, and where 〈q(t)| describes the plane-wave
electron wave function with the kinetic momentum q(t) =
p − AL(t). In the presence of an external NIR field AL(t), this
kinetic momentum is different from the conserved canonical
momentum p which is measured at the detector, eventually.
Finally, the phase of the Volkov wave function is given by [39]

SV (t) =
∫ ∞

t

dt ′
q(t)2

2
= 1

2

∫ ∞

t

dt ′ [ p − AL(t ′)]2. (2)
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While we have employed the length gauge for the strong
assisting NIR laser field AL, we still use the interaction
operator with the high-frequency XUV vortex field AX in the
velocity gauge form because of the complex spatial structure
of AX(r).

B. Characterization of twisted Bessel beams

So-called twisted or vortex (light) beams are known to
carry, in addition to their possible polarization or SAM, also an
orbital angular momentum (OAM) owing to their helical phase
fronts. Typically, twisted beams show a very characteristic
annular intensity distribution with zero intensity on the beam
axis. This zero intensity line is called the vortex line of
the field and it embodies a phase singularity. In the XUV
frequency region, twisted light beams have been generated
recently by means of undulators [40,41] or by using high-
harmonic generation [42–44]. Experimentally, such twisted
beams can be prepared in different modes with regard to the
(components of the) angular momenta that are conserved for
some given beam. In the further analysis, we shall assume
Bessel beams that are obtained as nonparaxial solutions of
the vector Helmholtz equation, and which are classified here
by the wave vector components kz and � [with � = |k⊥|
and k ≡ (k⊥,kz)T = (�,ϕk,kz)], the topological charge m

as well as the helicity �X.
Here we shall restrict ourselves to the representation

of the vector potential of these Bessel beams in terms of
plane waves and how we can distinguish between their spin
angular (polarization) and orbital angular momenta. Following
Refs. [45–47], we can write the vector potential

AX(r) =
∫

d2k⊥
(2π )2

a�m(k⊥) eik·r εk�X
(3)

as a superposition of plane waves with wave vectors k =
(k⊥,kz)T and the Fourier coefficients

a�m(k⊥) =
√

2π

�
(−i)meimϕk δ(k⊥ − �), (4)

and where ϑk = arctan �/kz is the so-called cone opening
angle. Like in the atomic case, the (quantum) number m

determines the projection of the OAM or the so-called
topological charge and εk�X

the polarization (vector) of the
plane-wave components. Obviously the polarization vector
must depend explicitly not only on the helicity �X of the
plane-wave components, but also on the angles ϑk and ϕk ,

εk�X
= ei�Xϕk

√
2

⎛
⎝cos ϑk cos ϕk − i�X sin ϕk

cos ϑk sin ϕk + i�X cos ϕk

− sin ϑk

⎞
⎠, (5)

due to the transversality condition k · εk�X
= 0. Indeed, this

definition of the polarization vector εk�X
ensures that, in the

limit of small opening angles ϑk → 0, we obtain the usual
polarization vectors for circularly polarized plane waves

εk�X

ϑk→0→ 1√
2

(1,i�X,0)T . (6)

It can be shown [47] that the polarization vector εk�X
from

Eq. (5) is an eigenvector also of the z-component Ĵz = L̂z +
Ŝz of the total angular momentum operator with eigenvalues

mJ = �X: Ĵz εk�X
= �X εk�X

. With this definition of εk�X
,

the Bessel beam (3) is constructed as an eigenfunction of
the total angular momentum projection Ĵz with eigenvalue
mJ = m + �X [48]:

Ĵz AX(r) = (m + �X)AX(r).

For the sake of completeness, let us write here the vector
potential of the XUV Bessel beam explicitly in cylindrical
coordinates

AX(r) =
∑

ms=−1,0,1

ηms

√
�

2π
cms

eikzz i�X−ms ei(m+�X−ms )ϕ

× Jm+�X−ms
(�r⊥). (7)

In this expression η0 = (0,0,1) and η±1 = (1, ± i,0)/
√

2
denote the (spherical) unit vectors, and the coefficients are
c0 = −(sin ϑk)/

√
2 and c±1 = (cos ϑk ± �X)/2, respectively.

As seen from Eq. (7), a Bessel beam consist of three terms with
topological charges m + �X and m + �X ± 1. The relative
weight of these terms depends on the opening angle ϑk , and
only the one with the topological charge m remains nonzero
for paraxial beams, i.e., if ϑk 
 1 [49].

C. Transition amplitude for a well-localized atom
in a XUV Bessel beam

We can use the vector potential of the XUV Bessel beam,
Eq. (3), to evaluate the transition amplitude (1) for the
two-color ATI of atoms and ions and for the emission of
photoelectrons with well-defined asymptotic momentum p.
To do so, we also need to specify the position of the atom
with regard to the beam axis, i.e., in terms of an impact
parameter vector b ≡ (b,ϕb = 0,bz = 0). If r denotes the
electronic coordinate with respect to the atomic nucleus, which
is the center of the atomic potential, we have to replace
r → b + r in the electron-photon interaction operator. We
therefore see that, for vortex beams, the transition amplitude
generally depends on the location of the atom within the beam,
as indicated by the subscript b in the notation of the transition
amplitude:

Tb( p) =
∫

d2k⊥
(2π )2

a�m(k⊥) eik·b T pw( p,k). (8)

It is readily expressed as a superposition of typical SFA plane-
wave amplitudes

T pw( p,k) = −i

∫
dt q(t) · εk�X

ei(EB−ωX)t−iSV (t)

×〈q(t)| ei k·r |φ0〉, (9)

just weighted by the Fourier coefficients a�m(k⊥) of the Bessel
beam and the given phase factor eib·k. An analog superposition
of plane-wave amplitudes was found also for the single-photon
ionization by light from a vortex beam [34], and this remains
true when adding an assisting laser field, at least within the
SFA. Let us mention finally that all the time dependence resides
in the plane-wave amplitudes T pw( p,k).
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1. Time dependence of the Volkov phase: Sideband structure

To obtain and describe the (well-known) sideband struc-
tures in the energy spectrum of the emitted photoelectrons in
the two-color ATI, we next need to specify the vector potential
of the strong NIR laser pulse that enters the plane-wave
amplitude T pw( p,k). For the strong laser pulse, we here apply
the vector potential

AL(t) = AL

⎛
⎝ cos ωLt

�L sin ωLt

0

⎞
⎠ (10)

of a plane wave with laser frequency ωL, helicity �L, and
field amplitude AL. In the plane-wave amplitude of Eq. (9),
moreover, we can cast the Volkov phase factor into the form

e−iSV (t) = ei( p2

2 +Up)t
∞∑

�=−∞
J�(αL)e−i�(ωLt−�Lϕp) (11)

by applying the Jacobi-Anger expansion [50], and where αL =
(AL p sin ϑp)/ωL just refers to the amplitude of the classical
oscillation of an electron in the laser field, while Up = A2

L/2
is the ponderomotive potential.

With this reformulation of the Volkov phase factor in
Eq. (11), the (strong-field) transition amplitude T pw( p,k)
therefore becomes

T pw( p,k) = −i
∑

�

J�(αL) ei��Lϕp

∫
dt ei( p2

2 +Up+EB−ωX−�ωL)t

× q(t) · εk�X
〈q(t)| eik·r |φ0〉. (12)

To further simplify this amplitude we next have to analyze
the scalar product between the kinetic momentum q(t) of the
electron and the polarization vector of the twisted light εk�X

in the following subsection.
Before we continue, let us note that the summations in

Eqs. (11) and (12) formally runs from � = −∞, . . . ,∞. In
practice, however, just a finite number of sidebands, �min �
� � �max, can be resolved experimentally, while the magnitude
of these sidebands decays exponentially beyond these cut-off
values. These cut-off values can be determined by either a
saddle point analysis of the Volkov phase [51–54] or by just
making use of the properties of the Bessel functions [50]. From
the prior analysis, we have found these cut-off values as

�max/min = A2
L sin2 ϑp

ωL

±
√

A4
L sin4 ϑp

ω2
L

+ 2
A2

L sin2 ϑp

ωL

(ωX − EB − Up),

(13)

and where the upper/lower sign refer to the max/min values.

2. Angular dependence of the photoelectron emission
in the transition amplitude

The angular distribution of the photoelectrons emitted
in the two-color ATI process is mainly determined by the
scalar product q(t) · εk�X

in the plane-wave amplitudes (12).
This scalar product becomes maximum when the kinetic
momentum of the photelectron q(t) = p − AL(t) is, at the

moment of the ionization, parallel to the polarization vector of
the XUV field. We remember that this kinetic momentum q(t)
differs from the conserved canonical momentum p as long as
the electron is inside the laser pulse.

a. Plane waves. Here let us first (re-)consider the scalar
product q(t) · εk�X

for the case of circularly polarized plane
waves [26]. If the XUV pulse propagates for instance along
the z direction, k = kez, we can apply the plane-wave limit of
the XUV polarization vector from Eq. (6) and readily obtain
for the scalar product

q(t) · εk�X
= p√

2
sin ϑpei�Xϕp − AL√

2
ei�X�LωLt . (14)

Moreover, if we combine this expression with Eq. (12), the
plane-wave transition amplitude reads as

T pw( p,k = kez)

= −i
∑

�

F�(�L,�X) ei(��L+�X)ϕp

×
∫

dtei( p2

2 +Up+EB−ωX−�ωL)t 〈q(t)| eik·r |φ0〉, (15)

where the sideband amplitudes

F�(�L,�X) = 1√
2

[J�(αL)p sin ϑp − ALJ�+�L�X
(αL)]

(16)

describe the strength and the angular distribution of the
photoelectrons of the �th sideband (ATI peak). In order to
arrive at Eqs. (15) and (16), we have shifted the summation
variable � in the second term of Eq. (16).

From the sideband amplitude (16), we immediately find:
(i) Only the central photoline (� = 0) occurs with the typical
P(ϑp) ∝ sin2 ϑp angular dependence if the laser field vanishes,
i.e., for AL → 0 and αL → 0. Moreover, (ii) the second term of
F� in Eq. (16) contains the product �L �X of the spin angular
momenta (helicities) of the XUV and the NIR laser fields in
the order of the Bessel function J . Therefore, the angular
distribution of the photoelectrons differ from each other if �X

and �L have either equal or opposite signs. Indeed, it is the sign
of �L �X that leads to the circular dichroism in the two-color
photoionization of atoms by plane-wave radiation [26,28].

b. XUV Bessel beams. Of course the same scalar product in
the plane-wave amplitude (12) becomes much more complex
for a vortex beam (3) since it now depends explicitly on the
direction of the momentum vector k = k(ϑk,ϕk) of the plane-
wave components, forming a cone in momentum space. Using
expression (5), this product can be evaluated as [compare with
Eq. (14)]

q(t) · εk�X
= p√

2

[
sin ϑpei�Xϕp − 2 sin ϑp sin2 ϑk

2

× cos(ϕp − ϕk)ei�Xϕk − cos ϑp sin ϑke
i�Xϕk

]

− AL√
2

[
ei�X�LωLt − sin2 ϑk

2
(eiωLt ei(�X−�L)ϕk

+ e−iωLt ei(�X+�L)ϕk )

]
. (17)
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If we substitute this expression into Eq. (9), the transition
amplitude for the two-color ATI of an atom at position b by a
XUV Bessel beam can be written as the superposition (8) of
the plane-wave transition amplitudes

T pw( p,k) = −i
∑

�

F�(ϑk,ϕk; �X,�L) ei(��L+�X)ϕp

×
∫

dt ei( p2

2 +Up+EB−ωX−�ωL)t 〈q(t)| eik·r |φ0〉,
(18)

and with the modified sideband amplitudes

F�(ϑk,ϕk; �X,�L)

= J�(αL)
p√
2

[
sin ϑp − 2 sin ϑp sin2 ϑk

2
cos(ϕk − ϕp)

× ei�X(ϕk−ϕp) − cos ϑp sin ϑke
i�X(ϕk−ϕp)

]

− AL√
2

[
J�+�X�L

(αL) − sin2 ϑk

2
{J�+1(αL)

× ei(�X−�L)(ϕk−ϕp) + J�−1(αL)ei(�X+�L)(ϕk−ϕp)}
]
, (19)

which now depends on the particular direction of the wave
vector k.

3. Analytical time integration of the two-color
ATI transition amplitude

The plane-wave transition amplitude (18) still contains
a time integration which cannot be performed in general.
However, this time integral can be solved analytically if we
assume a sufficiently weak assisting NIR laser field AL 
 p,
so that the kinetic momentum q(t) of the photoelectron can be
reasonably well approximated by the canonical momentum p
in the atomic matrix. This then results also in time-independent
atomic matrix elements [26,55]. In the dipole approximation,
moreover, we can approximate these matrix elements by

〈q(t)| eik·r |φ0〉 � 〈 p|φ0〉, (20)

which is valid almost everywhere apart from the region
close to the vortex line. For b = 0, in contrast, the integral
over the transverse momentum k⊥ in (8) vanishes when the
electric-dipole approximation is employed, and the leading
contribution to the twisted-wave amplitude Tb�0( p) will then
arise from higher-order multipoles [34,35].

With these assumptions about the NIR field, we can perform
the time integration in the plane-wave amplitude (18)∫

dt eit( p2

2 +Up+EB−ωX−�ωL)

= 2π δ(p2/2 + Up + EB − ωX − �ωL). (21)

Here the delta function ensures the energy conservation in
this two-color interaction process and shows that the kinetic
energy of the photoelectrons becomes discrete for sufficiently
weak fields. In each of these sidebands of the main photoline
(that arise from the ionization by the XUV pulse), the
modulus of the electron momenta is constant, | p| = p →
p� = √

2(ωX + �ωL − EB − Up), while these electrons may

still exhibit an (angular) distribution as function ϑp and ϕp.
Using expression (21), the transition amplitude for two-color
ATI of an atom at position b by a XUV Bessel beam now
becomes

Tb( p) = 2π
∑

� δ(p2/2 + Up + EB − ωX − �ωL) T (�),

(22)

and where

T (�) = 〈 p�|φ0〉
∫

d2k⊥
(2π )2

eik·b a�m(k⊥)F�(ϑk,ϕk; �X,�L)

(23)

are often referred to as partial amplitudes. As seen from
expression (23), the angular distribution of the photoelectrons
is now determined by a convolution of the sideband amplitudes
F� with the Fourier coefficients of the vortex Bessel beam
a�m(k⊥) from Eq. (4) and a phase factor that just contains the
impact vector b. Indeed, expressions (22) and (23) are one of
our major results of this work, although they still describe the
transition amplitude for a single atom at some (fixed) position
b with regard to the beam axis.

D. Photoionization probability of localized and macroscopically
extended targets

We can use the two-color ATI amplitude (22) to express
the photoionization probability (per unit time) for an atom at
position b within a vortex beam by

Pb( p) = 1

T
|Tb( p)|2

= 2π
∑

�

δ(p2/2 + Up + EB − ωX − �ωL)P(�)
b ( p),

(24)

if T denotes here the interaction time of the atom with the two-
color field, and if we make use of the usual interpretation of the
delta function δ(0) = T/2π in the second line. Expression (24)
shows that the photoionization probability is a sum of partial
probabilities

P(�)
b ( p) = |T (�)|2 (25)

that describe the individual sidebands in the photoelectron
spectrum. The partial probabilities (25) still refer, as before,
to a single atom at impact vector b with regard to the beam
axis. To further analyze and compare the photoelectron spectra
and angular distribution with those obtained experimentally,
we need to know (or assume) also the distribution of atoms in
the overall cross section of the Bessel beam.

1. Macroscopically extended targets

If, for example, the twisted Bessel beam interacts with
a homogeneous and (infinitely in the cross section of the
beam) extended target of atoms, we have to average the
partial photoionization probabilities P(�)

b ( p) from Eq. (25)
incoherently over all impact vectors b,

P(�)( p) =
∫

d2b P(�)
b ( p), (26)
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in order to obtain the partial photoionization probabilities, and
the same is true for the total photoionization probability (24).
Using Eqs. (23) and (25) we then obtain

P(�)( p) = |〈 p�|φ0〉|2
∫

d2k⊥
(2π )2

d2k′
⊥

(2π )2
d2b a∗

�m(k′
⊥) a�m(k⊥)

× eib·(k−k′) F∗
� (ϑk′ ,ϕk′ ; �X,�L) F�(ϑk,ϕk; �X,�L).

(27)

Since the impact vector occurs here only in the exponential
eib·(k−k′), the integration over b just gives rise to a delta
function in momentum space, and the partial photoionization
probability of sideband � becomes

P(�)( p) = |〈 p�|φ0〉|2
∫

dϕk

2π
|F�(ϑk,ϕk; �X,�L)|2. (28)

Employing the expression for the sideband amplitude (19), we
can now, furthermore, perform the integral over the azimuthal
angle ϕk and finally obtain for the partial photoionization
probability

P(�)( p) = |〈 p�|φ0〉|2
{

p2
�

2
J 2

�

[
sin2 ϑp

(
1 − 2 sin2 ϑk

2

+ 2 sin4 ϑk

2

)
+ cos2 ϑp sin2 ϑk

]
− p� sin ϑpALJ�

×
[
J�+�X�L

(
1 − 2 sin2 ϑk

2

)
+ (J�+1

+ J�−1) sin4 ϑk

2

]
+ A2

L

2

[
J 2

�+�X�L

(
1 − 2 sin2 ϑk

2

)

+ (
J 2

�+1 + J 2
�−1

)
sin4 ϑk

2

]}
. (29)

Obviously this probability depends on the cone opening angle
ϑk of the (vortex) Bessel beam, while it is independent of the
topological charge m for a macroscopically extended target.

2. Localized targets

Another (localized) target refers to a small cloud of atoms
that is centered around the impact vector b0 in a plane
perpendicular to the beam axis. We here assume a normalized
Gaussian distribution of target atoms

ρ(b) = 1√
2πσb

exp

{
− (b − b0)2

2σ 2
b

}
, (30)

where σb denotes the (rms) size of the target, cf. Fig. 2. Without
loss of generality, moreover, we may assume that the impact
vector b0 = b0ex defines the x axis and, hence, the angle ϕp

in the angular distribution of the photoelectrons below (and
with the z axis along the beam). For such a localized target
with distribution ρ(b), the partial photoionization probability
becomes

P(�)
ρ ( p) =

∫
d2b ρ(b) P(�)

b ( p), (31)

and where the integration over the target distribution below
will be performed numerically.

FIG. 2. Illustration of a localized atomic target of size σb that is
displaced by the impact vector b0 with regard to the center of the
vortex beam.

E. Dichroism in two-color fields

In the previous section we saw how the partial photoion-
ization probabilities (25), (29), and (31) describe the yield of
photoelectrons for a given sideband, as a function of the two
emission angles ϑp and ϕp for different kinds of targets. Of
course these probabilities also depend on the spin and orbital
angular momenta of the incident XUV and assisting NIR laser
fields. To further understand how the coupling of these angular
momenta affects the relative photoionization probabilities, we
may resort to different kinds of dichroism signals as often used
in describing the interaction of light with atoms, molecules,
and solids [27,28,30].

1. Circular dichroism for plane waves

Let us start from the (atomic) circular dichroism which
has been frequently used in characterizing the photoelectron
emission if both the XUV and the assisting NIR fields are
described by plane waves. For two plane waves, as shown in
Sec. II C 2 a, the two-color ATI amplitude (15) and, hence,
the corresponding photoionization probability only depends
on the product of the two spin angular momentum (SAM)
projections, i.e., the helicities of the XUV and laser photons.
While there are four possible combinations of these helicities,
only two �X�L = ±1 are distinguishable from each other.
For the interaction of atoms with two plane waves, we can
therefore define just one dichroism signal,

CD = P( p; �X,�L) − P( p; �X, − �L)

P( p; �X,�L) + P( p; �X, − �L)
, (32)

commonly known also as circular dichroism [26], and which
is a function of the photoelectron emission angles ϑp and ϕp,
respectively. This circular dichroism can be defined uniquely
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TABLE I. Definition of the seven dichroism signals for the two-color ionization of atoms by a vortex (Bessel) beam and a plane-wave laser
field.

Dichroism due to a flip of ... Definition

the helicity of the assisting NIR laser field. D(�L) = P( p,m,�X,�L)−P( p,m,�X,−�L)
P( p,m,�X,�L)+P( p,m,�X,−�L)

the helicity of the XUV photons. D(�X ) = P( p,m,�X,�L)−P( p,m,−�X,�L)
P( p,m,�X,�L)+P( p,m,−�X,�L)

the projection of the orbital angular momentum. D(m) = P( p,m,�X,�L)−P( p,−m,�X,�L)
P( p,m,�X,�L)+P( p,−m,�X,�L)

the helicity and the orbital angular momentum of the XUV
Bessel beam. This is equivalent to just a flip of the projection of
the total angular momentum.

D(m�X ) = P( p,m,�X,�L)−P( p,−m,−�X,�L)
P( p,m,�X,�L)+P( p,−m,−�X,�L)

the helicities of both the laser and XUV photons. For two plane
waves this dichroism signal is always zero because of the
symmetry.

D(�X�L) = P( p,m,�X,�L)−P( p,m,−�X,−�L)
P( p,m,�X,�L)+P( p,m,−�X,−�L)

the projection of the orbital angular momentum of the Bessel
beam and of the helicity of the laser field.

D(m�L) = P( p,m,�X,�L)−P( p,−m,�X,−�L)
P( p,m,�X,�L)+P( p,−m,�X,−�L)

all three projections of the angular momenta simultaneously. D(m�X�L) = P( p,m,�X,�L)−P( p,−m,−�X,−�L)
P( p,m,�X,�L)+P( p,−m,−�X,−�L)

for each sideband as long as the incident light beams are
sufficiently monochromatic.

2. Dichroism signals for (vortex) Bessel beams

For vortex Bessel beams, the photoionization probability
depends not only on the SAM of the XUV (�X = ±1)
and laser beams (�L = ±1) but also on the orbital angular
momentum ±m of the XUV photons. With three angular
momenta, we can form eight combinations of (m,�X,�L)
by just changing the sign of one or more of these quantum
numbers. This enables us to define seven different dichroism
signals for the two-color ionization of atoms by a vortex
and a plane-wave beam since one of the combinations
P( p,|m|,�X = +1,�L = +1) should occur as reference. For
example, the dichroism that is associated with a flip of the
projection of the orbital angular momentum ±m is easily
defined by

D(m) = P( p,m,�X,�L) − P( p,−m,�X,�L)

P( p,m,�X,�L) + P( p,−m,�X,�L)
. (33)

Very similarly, we can define all the other dichroism signals as
associated with some flip in the helicity and/or OAM quantum
numbers, and which are displayed explicitly in Table I. As
for the circular dichroism, all these (seven) dichroism signals
generally depend for a localized target on the photoelectron
emission angles ϑp and ϕp as well as on the particular
sideband �.

For sufficiently extended targets (σb� � 1), however, the
photoionization probability and, hence, the dichroism signals
above become independent of the (projection of the) orbital
angular momentum or topological charge m. This can be
seen for instance from the analytical expression for the
photoionization probability for infinitely extended targets (29),
which is independent of m. For large targets, therefore, all the
dichroism signals will depend just on the product �X �L of
the two helicities and, thus, all signals with �X �L = +1
must vanish in this limit, D(�X�L) = D(m�X�L) = D(m) = 0.
Moreover, all other signals with �X �L = −1 then coincide
with the usual circular dichroism D(�L) = D(�X) = D(m�X) =
D(m�L), cf. Eq. (32). For extended targets, a nonzero dichroism

signal can be observed only if just one of the helicities �X or
�L is changed.

FIG. 3. Contourplot of the two-color ATI photoionization proba-
bility P(�)(ϑp) as function of the emission angle ϑp and the sideband
number �, i.e., the net number of absorbed or emitted laser photons by
the outgoing photoelectrons. Results, encoded by colors (grayscale),
are given for an infinitely extended target and are shown for (a) a
plane-wave XUV beam as well as (b) and (c) a XUV Bessel beam
with cone opening angles ϑk = 0.2 rad and ϑk = 0.5 rad, respectively.
All these probabilities are independent of the topological charge m

of the Bessel beams because of the target size. The calculations were
performed for the XUV frequency ωX = 3 a.u. = 81.6 eV as well
as for an assisting NIR laser field with frequency ωL = 0.05 a.u. =
1.36 eV and amplitude AL = 0.1 of the vector potential.
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FIG. 4. Contourplot of the dichroism as function of the emission angle ϑp and the sideband number � of the emitted electrons. Results
are shown for the seven dichroism signals from Table I (rows 1–7), encoded by colors, and for the three target sizes σb = 1 nm (left column),
σb = 10 nm (middle column), and σb = 100 nm (right column), respectively. The photoelectrons are observed at the azimuthal angle ϕp = 90◦

with respect to the impact vector b0 = 30 nm as center of the target. All calculations were performed for a Bessel beam with photon energy
ωX = 3 a.u. = 81.6 eV, opening angle ϑk = 0.2, and orbital angular momentum projection m = 4. The black dotted curves indicate the cut-off
values of the number of sidebands as given analytically by Eq. (13).

III. RESULTS AND DISCUSSION

In the last section we have analyzed the transition amplitude
and photoionization probability for the two-color ATI of atoms

by a vortex (Bessel) beam and combined with an intense
plane-wave (NIR) laser field. Emphasize was placed here on
the evaluation of this amplitude and the sideband structure
of the central photoline due to the interaction of the emitted
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electrons with the NIR field. We also introduced various
dichroism signals by flipping the projections of the spin and
orbital angular momenta of the involved fields in order to
quantify the dependence of the photoionization probability
upon the angular momentum properties of the incident light
beams.

As discussed above, the two-color ATI probability crucially
depends for Bessel beams also on the size of the atomic target.
To better understand the influence of this target size, detailed
computations were performed for the photoionization of the
4s valence electron of Ca+ ions with binding energy EB =
11.7 eV = 0.43 a.u.. Simple core-Hartree wave functions in
a screened potential have been applied to calculate all the
necessary (one-electron) atomic matrix elements [56], cf. (20).

In Fig. 3 we display the two-color ATI probability P(�)(ϑp)
as function of the emission angle ϑp (horizontal axis) and
the sideband number � (vertical axis). The sideband � gives
directly the net number of laser photons from the NIR field that
are either absorbed or emitted by the outgoing photoelectrons.
The ATI probabilities are encoded by colors and are shown
for an infinitely extended target. Results are compared for the
two-color ATI by a plane-wave XUV beam (upper panel) as
well as for a XUV Bessel beam with cone opening angles
ϑk = 0.2 rad (middle panel) and ϑk = 0.5 rad (lower panel),
respectively. In these computations we applied a XUV beam
with the rather high frequency ωX = 3 a.u. = 81.6 eV and
for a NIR laser field with ωL = 0.05 a.u. = 1.36 eV and
amplitude AL = 0.1. As seen from Fig. 3, the photoelectron
distributions exhibit an almondlike shape for which the largest
number of sidebands occurs at ϑp � 90 ◦, while only the
main photoline (� = 0) is seen along the beam axis, i.e.,
for ϑ = 0 ◦ and 180 ◦. This shape of the photoelectron
distributions is well predicted also by the semiclassical cutoffs,
Eq. (13), as indicated by the white dotted curves in the
figures.

For the two-color ATI by a plane-wave XUV beam, the
calculated photoelectron distribution agrees qualitatively well
with the calculations by Kazansky and co-workers [26]. While
no photoelectrons are seen in this case along the axis for plane
waves [cf. Fig. 3(a)], this changes in the case of a twisted Bessel
XUV beams in Figs. 3(b) and 3(c). For such Bessel beams, the
photoionization probabilities along the beam axis increases
with the cone opening angle ϑk . We note that the plane-wave
result is of course recovered in the paraxial approximation for
ϑk → 0.

To analyze the localization effects of the target, we use
the different dichroism signals as defined in Sec. II E and
Table I. Figure 4, for example, shows these dichroism signals
as function of the emission angle ϑp and sideband number �

of the emitted electrons, and with the magnitude of the signals
encoded by colors in the (seven) rows of the figure. We here
applied a Bessel beam of the same frequency ωX = 81.6 eV
and opening angle ϑk = 0.2 as in Fig. 3, and with the projection
of the angular momentum m = 4. Detailed computations
are carried out for the three target sizes σb = 1 nm (left
column), σb = 10 nm (middle column), and σb = 100 nm
(right column), and for photoelectrons that are observed at
the azimuthal angle ϕp = 90 ◦ with regard to the impact
vector b0 = b0 ex with b0 = 30 nm as the center of the target.
While all the dichroism signals are quite different from each

other for a small target (left column) and, hence, sensitive
to the particular localization of the target, these differences
become less pronounced as the target size increases. For target
sizes (much) larger than the typical width of the rings in the
Bessel beam, moreover, the dichroism signals approach the
two limits: They either vanish identically if the product of
the helicities of the two-color field is positive, �X �L = +1
(cf. the right panels of rows 3, 5, and 7), or these signals
coincide with the known circular dichroism for �X �L = −1
(cf. the right panels of rows 1, 2, 4, and 6). Let us note also
that the (usual) circular dichroism signal in row 1 appears
to be rather insensitive to the size of the target. In fact,
these dichroism signals do not depend much on the details
of the applied matrix elements as, in the electric-dipole
approximation, the prefactor in Eq. (23) cancel in the ratio
that is formed by any dichroism. Finally, the black dotted
curves indicate the cut-off values of the number of sidebands
as given analytically by Eq. (13). That means, while we
can calculate a dichroism signal also outside the almond-
shaped area, its measurement might be challenging since the
photoionization probability is very small in these regions,
cf. Fig. 3.

Due to the phase of the XUV Bessel beam, a localization
of the target affects not only the (polar) angular emission
of the photoelectrons but may result also in a nontrivial
azimuthal distribution. Therefore, Fig. 5 shows the same
as Fig. 4 but here as function of the azimuthal angle ϕp

and for a Bessel beams with slightly higher photon energy
ωX = 5 a.u. = 136 eV and for a target centered at b0 = 25 nm.
In this figure the photoelectrons are assumed to be observed
under the polar angle ϑp = 45 ◦ with regard to the beam axis.
An azimuthal anisotropy of the ATI probabilities is found
for the localized targets as it was obtained before for the
azimuthal distribution of photoelectrons [47]. This anisotropy
of the ionization probabilities occurs of course also in the
dichroism signals, while no azimuthal dependence appears for
the usual circular dichroism (first row). As for the polar-angle
dependence in Fig. 4, all dichroism signals become either zero
or simply approach the circular dichroism for sufficiently large
targets.

IV. SUMMARY AND CONCLUSIONS

In this work we investigated the two-color ATI of atoms and
ions if light from a weak XUV Bessel beam is combined with
a strong NIR laser field. While the emission of photoelectron
occurs due to the weak XUV beam, the energy and angular
distribution of the photoelectrons is affected by the plane-wave
NIR field due to a net absorption or emission of one or several
laser photons. Thus, the interaction of the atoms with such a
two-color field results in sidebands to the normal photoline that
are affected not only by the intensity and temporal structure of
the NIR field but also by the location and extent of the atomic
target as well as by the spin and orbital angular momenta of
the two fields involved.

Emphasis in our analysis has been placed upon the energy
spectra and angular emission of the photoelectrons as well as
on the asymmetry in the photoelectron spectra if some of the
SAM or OAM components of the fields are flipped relative to
each other. For a XUV Bessel beam and a plane-wave NIR
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FIG. 5. The same as Fig. 4 but as function of the azimuthal angle ϕp and for a Bessel beams with photon energy ωX = 5 a.u. = 136 eV.
Here the photoelectrons are observed under the polar angle ϑp = 45 ◦ with regard to the beam axis and for a impact parameter b0 = 25 nm.

field, seven different dichroism signals can be defined. These
signals differ for localized target but become either zero or
coincide with the usual circular dichroism for macroscopically
extended targets, similar as for Bessel beams with a small
opening angle. Our investigation of two-color strong field
ATI with XUV vortex Bessel beams and the discussion of
the seven different dichroism signals opens up avenues for

future investigations of the interaction of atomic and molecular
targets with twisted light in the high-intensity regime.
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Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D.
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Radcliffe, W. B. Li, S. Düsterer, S. Fritzsche, A. Mihelic,
K. G. Papamihail, and P. Lambropoulos, Two-Photon Excitation
and Relaxation of the 3d-4d Resonance in Atomic Kr, Phys. Rev.
Lett. 104, 213001 (2010).

[22] W. Helml et al., Measuring the temporal structure of few-
femtosecond free-electron laser x-ray pulses directly in the time
domain, Nat. Photon. 8, 950 (2014).

[23] T. Leitner, R. Taı̈eb, M. Meyer, and P. Wernet, Probing pho-
toelectron angular distributions in molecules with polarization-
controlled two-color above-threshold ionization, Phys. Rev. A
91, 063411 (2015).
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L’Huillier, V. Véniard, R. Taı̈eb, A. Maquet, and M. Meyer,
Polarization effects in two-photon nonresonant ionization of
argon with extreme-ultraviolet and infrared femtosecond pulses,
Phys. Rev. A 69, 051401 (2004).

[25] O. Guyétand, M. Gisselbrecht, A. Huetz, P. Agostini, R. Taı̈eb, V.
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SEIPT, MÜLLER, SURZHYKOV, AND FRITZSCHE PHYSICAL REVIEW A 94, 053420 (2016)
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