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Calculation of Stark resonance parameters for valence orbitals of the water molecule
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An exterior complex scaling technique is applied to compute Stark resonance parameters for two molecular
orbitals (1b1 and 1b2) represented in the field-free limit in a single-center expansion. For electric dc field
configurations that guarantee azimuthal symmetry of the solution the calculation is carried out by solving a
two-dimensional partial differential equation in spherical polar coordinates using a finite-element method. The
resonance positions and widths as a function of electric field strengths are shown for field strengths starting in
the tunneling ionization regime and extending well into the over-barrier ionization region.
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I. INTRODUCTION

The study of water molecule vapor in strong fields has
been an area of recent interest, particularly in the field
of intermediate-energy ion-molecule collisions [1–7], where
capture and direct ionization processes compete. Most of
the theoretical studies are in the context of an independent-
electron approximation which involves a molecular orbital
(MO) representation. The first studies of the properties of
molecular orbitals exposed to laser pulses have also been
performed [8,9].

For the problem of strong electric dc fields numerous
investigations have been carried out for the hydrogen molec-
ular ion, where interesting structures occur in the resonance
width as a function of internuclear separation [10–12]. This
also carries over to the case of low-frequency ac fields, i.e.,
infrared laser fields, with the help of the Floquet method [13].
Experimentally, the investigation of water vapor is challenging
but possible [14–17]. Due to the importance of the water
molecule in applied fields (e.g., radiation therapy) one should
expect more work to be carried out in this research area in the
near future.

From the point of view of a theoretical description, the
subject is challenging due to the multicenter nature of the
combined Coulomb interactions. Thus, many investigations
in the context of electron or positron or ion scattering are
carried out in single-center approximations for the molecular
target. For a number of situations this approach appears to be
successful in that ionization (and capture) cross sections are
obtained which agree reasonably with experiment. This is in
part the case since experiments are usually not sensitive to the
orientation of the molecule during the collision.

A satisfactory description of the molecular structure of H2O
was obtained within the independent-electron approximation
by the self-consistent field (SCF) or variational Hartree-Fock
method with multicenter Slater orbitals [18]. The direct
application of these orbitals for collisional or strong-field
studies represents significant computational and methodolog-
ical challenges. An application of the SCF method using a
single-center Slater basis is available [19–21] and has been
used in some collision studies [22]. The molecular orbitals for
water from [21] have been compared to experimental electron
spectroscopy studies [23] and also to more sophisticated
calculations and were found to give reasonable agreement
with observations. For further studies of state-of-the-art
spectroscopy and calculations we refer the reader to [24].

In order to use a variational SCF solution for collisional or
strong-field perturbation studies one faces the need to define
a consistent molecular Hamiltonian. In the present work we
limit ourselves to two of the three molecular valence orbitals
of the water molecule where the wave functions are dominated
by a single angular momentum symmetry (1b1 ≈ 2px or
1b2 ≈ 2py); here we assume that the protons are in the y-z
plane, as shown in Fig. 1. For our approximate treatment
it is straightforward to obtain an effective single-electron
potential for each orbital. The calculation of Stark resonance
parameters for these approximate single-center molecular
orbitals represents a first step to be followed by more ambitious
modeling to be carried out in the future.

We present a complex scaling approach to study the effect
of an external dc field on the 1b1 ≈ 2px and 1b2 ≈ 2py MOs
of H2O, where the problem is expressed as a system of coupled
partial differential equations (PDEs) with an effective potential
that reflects the binding properties of each orbital. This paper is
organized as follows: The problem as formulated in spherical
polar coordinates is introduced in Sec. II, with some technical
details concerning the construction of the electronic potential
being described in Sec. II A. The exterior complex scaling
formalism and the implementation are explained in Sec. II C.
The numerical results are presented in Sec. III, followed by
conclusions in Sec. IV. Atomic units (� = me = e = 4πε0 =
1) are used throughout.

II. PDE APPROACH TO THE PROBLEM IN SPHERICAL
POLAR COORDINATES

The set of single-center wave functions introduced by
Moccia [19–21] is taken as a starting point in the present
approach. The general expression for the basis functions is
defined by a Slater-type orbital [19],

fn,l,m(ζ,r,θ,φ) =
√

(2ζ )2n+1

(2n)!
rn−1 exp(−ζ r)Sl,m(θ,φ), (1)

where the angular part Sl,m(θ,φ) represents real spherical har-
monics. The expansion coefficients and nonlinear coefficients
{ζi}, determined by Roothaan’s self-consistent-field procedure
[21,25], were used to construct a reduced form of the radial
functions that describe all the molecular orbitals, in particular
the 1b1 and 1b2 states. In Fig. 2 we depict schematically
how the orbitals are approximated as |m| = 1 eigenstates of
spherically symmetric potentials. For the purpose of this study,
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FIG. 1. Schematic display of the 1b1 ≈ 2px (shown in yellow
along the x axis) and 1b2 ≈ 2py (shown in blue along the y axis)
molecular orbitals. Also indicated (in green on the y-z plane) is the
orientation of the protons. The z axis (in red) is the direction of the
external electric field of strength F0.

the expansion of the orbital functions was truncated at n = 2
with their associated (n,l,m) combinations.

The framework for the present study involves the construc-
tion of the electronic potential as an effective orbital-dependent
potential Veff(r) extracted from the single-center Moccia wave
functions. Then we apply exterior complex scaling (ECS) to
determine the numerical solution of the problem associated
with a molecular orbital in the presence of a strong electric dc
field applied along the z direction. A PDE needs to be solved
to determine the resonance position and width.

The Schrödinger equation for the bound-state problem is
expressed in spherical polar coordinates as[

−1

2

d2

dr2
+ L̂2

2r2
+ Veff(r)

]
ψ = Eψ, (2)

where L̂2 is the orbital angular momentum operator.
Figure 1 shows a scheme of the geometry of the system,

where the orientation of the 1b1 and 1b2 MOs is represented
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FIG. 2. Electronic effective potential in atomic units for the 1b1 ≈
2px (black) and 1b2 ≈ 2py [blue (gray)] MOs of the H2O molecule.
The solid lines give the potential as derived from (2) using the SCF
orbitals and eigenenergies, while the dashed lines show the potentials
after the Latter correction is applied. The dot-dashed lines show the
eigenenergies obtained from the Moccia wave functions [21].

with respect to the plane where the protons are located. The
direction of the applied electric field along ẑ is included as
well.

A. Construction of an electronic effective potential

The effective potential is obtained in two steps: first, the
orbital energy and the STO are inserted into the single-electron
Schrödinger equation (2), which is then solved for V

(1)
eff (r). In

the second step we apply the so-called Latter correction [26] to
ensure that the asymptotic behavior of the potential is correct,
i.e., proportional to −1/r:

Veff(r) =
{

V
(1)

eff (r) for r < r0

−1/r for r > r0

}
. (3)

The point r0 is determined from V
(1)

eff (r0) = −1/r0 and is found
to be sufficiently large that the original self-consistent field
orbital energy used to derive V

(1)
eff (r) is close to the eigenenergy

of (2), with at least two significant digits of agreement, with
Veff(r) given by (3).

In Fig. 2, we show a comparison of the effective potential
V

(1)
eff (r) (solid lines), with black representing the 1b1 MO and

blue (gray) representing the 1b2 MO, derived from the Moccia
wave functions representing the 1b1 and 1b2 MOs [21], and the
transformed electronic potential Veff(r) (dashed lines) after the
Latter correction was implemented. The effective potentials for
the 1b1 and 1b2 MOs are given as the shallower and deeper
curves. As Fig. 2 illustrates, one drawback of the method
is that the effective potential is orbital dependent. A direct
consequence is that the value of r = r0, which sets the position
in r where the Coulombic tail is imposed, differs between the
MOs, being almost two times larger for the 1b2 compared to
the 1b1 MO.

B. H2O in an external electric dc field

Now that we have obtained an effective potential to define
the field-free Schrödinger equation (2) for an orbital obtained
in the SCF method, we proceed with the problem of the
molecule exposed to a strong dc field.

When an electric field is applied in the ẑ direction,
�F = F0ẑ, the separation-of-variables ansatz as applied to the

Schrödinger equation

ψ(r,θ,φ) = ψ(r,θ ) exp(imφ) (4)

leads to a PDE that represents the Stark problem for an H2O
orbital:

−1

2

∂2ψ

∂r2
− 1

2r2

(
cos θ

sin θ

∂ψ

∂θ
+ ∂2ψ

∂θ2

)

+
[

m2

2r2 sin2 θ
+ Veff(r) − E + F0r cos θ

]
ψ = 0. (5)

Here the complex eigenenergy E contains the information
about the resonance position (real part), i.e., ER and width 	

(imaginary part is −	/2), and may be expressed as

E = ER + iEI = ER − i
	

2
. (6)
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The imaginary part 	 is related to the lifetime of the decaying
state τ via 	τ = 1. For the 1b1 and 1b2 orbitals we have
m = ±1, respectively. The presence of the effective potential
Veff(r) makes this problem challenging in the sense that it is
not possible to obtain separable solutions like for the hydrogen
atom in which a pure Coulomb potential leads to separability
in parabolic coordinates [27]. It is then necessary to generate
a more general solution by solving the PDE numerically, e.g.,
by applying a finite-element method.

C. Exterior complex scaling

The ionization regime of the water molecule will be
described by means of a non-Hermitian Hamiltonian that
reveals discrete resonance eigenvalues containing information
about the quasibound states that tunnel through the barrier or
escape over the potential barrier for strong fields. Among the
different techniques implemented to compute the resonance
energies established methods are the complex scaling [28–30]
and exterior complex scaling [31]; the latter was introduced as
an extension of the former method. These have been widely
used in scattering problems [29,30] and also in time-dependent
Schrödinger equation problems for strong fields [32–34]. For
our aim of studying the field-ionization properties of H2O
orbitals, we implement a modified exterior complex scaling
technique in which the radial coordinates are extended into the
complex plane by a phase factor, which is turned on gradually
beyond some distance from the origin. This method allows us
to address the tunneling and over-barrier ionization problem
by avoiding the complication of describing quasibound states
with outgoing waves for r → ∞.

In the present work the complex scaling transformation is given
by

r → r exp[iχ (r)], (7)

where χ (r) is defined as a function of the r coordinate with the
purpose of making the scaling gradually effective from some
vicinity of r = rs on,

χ (r) = χs

1 + exp
[− 1

�r
(r − rs)

] . (8)

For given rs one has to choose �r to be sufficiently small, so
that the function χ (r) starts from small values at r = 0. For
large r it reaches the value χs.

The set of possible values for the asymptotic scaling angle
χs and the parameters rs and �r , which control where and how
quickly the scaling is turned on, was explored in detail in order
to establish how sensitive the PDE solutions are and to test the
effectiveness of the complex scaling technique to absorb the
outgoing wave. Numerous tests were carried out to ensure that
the “exact” results of Telnov [27] for atomic hydrogen orbitals
including 2p were reproduced.

In order to investigate the effects of the dc field on the H2O
orbital energies it is necessary to consider the extra terms that
the exterior complex scaling (7) introduces in the Schrödinger
equation (5). Additionally, we need to turn the scaling on only
in the regime r > r0 [Eq. (3)], such that we have a simple
Coulomb potential in the scaling region. In order to make
use of standard finite-element methods, the complex-valued
wave function is separated into real and imaginary parts, such
that a system of coupled differential equations is obtained as
follows:

− 1

2

∂2ψR

∂r2
− 1

2r2

(
cos θ

sin θ

∂ψR

∂θ
+ ∂2ψR

∂θ2

)
+

[
m2

2r2 sin2 θ
+ V R

eff(r)c2 − V I
eff(r)s2 − ERc2 + EIs2 + F0r cos θc3

]
ψR

+ [−V R
eff(r)s2 − V I

eff(r)c2 + ERs2 + EIc2 − F0r cos θs3
]
ψI = 0,

−1

2

∂2ψI

∂r2
− 1

2r2

(
cos θ

sin θ

∂ψI

∂θ
+ ∂2ψI

∂θ2

)
+

[
m2

2r2 sin2 θ
+ V R

eff(r)c2 − V I
eff(r)s2 − ERc2 + EIs2 + F0r cos θc3

]
ψI

+[
V R

eff(r)s2 + V I
eff(r)c2 − ERs2 − EIc2 + F0r cos θs3

]
ψR = 0. (9)

The labels R and I stand for real and imaginary parts,
respectively; also, the notation {ck,sk} is introduced to
represent {cos[kχ (r)], sin[kχ (r)]}, respectively, with k = 2,3
and χ (r) given in (8). Note that the effective potential
has real and imaginary parts on account of the coordinate
transformation (7).

The PDE system (9) is solved numerically on a rectangular
mesh defined by the (r,θ ) coordinates, which take values
in the domains [ε,rmax] and [η,π − η], respectively. The
parameters ε and η that define the coordinate ranges were
chosen to be of the order of 10−3 a.u., and the r coordinate
extends to rmax = 20 a.u. In order to find a correct set of
ψR(I )(r,θ ) solutions it is essential to impose proper boundary
conditions that ensure the wave functions vanish at the limits
of the mesh. For the |m| = 1 states we impose the condition
ψR(I )(ε,θ ) = ε sin(θ ) = εP 1

1 (θ ), which is consistent with the
assumption that at small r = ε the lowest term in an expansion

in associated Legendre polynomials dominates and behaves
like Ar2 sin(θ ).

We implemented a two-parameter root search for {ER,EI }
by solving the PDE as if it were an inhomogeneous problem.
We pick a location in the (r,θ ) plane where the probability
amplitude is expected to be large and vary {ER,EI }, i.e.,
effectively the complex energy E to maximize the amplitude.

III. STARK RESONANCE PARAMETERS

We explored the influence of a set of parameters involved in
the two-dimensional problem (9) on the eigenvalue ER + iEI

which describes the ionization process as an exponential
decay in time in terms of the resonance position and half
width. In addition to testing the code against known results
for atomic hydrogen [27], we have performed systematic
studies of our results for the H2O orbitals against a number
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FIG. 3. Resonance position (in atomic units) as a function of the
external field strength F0 (in atomic units) for the 1b1 (red circles)
and 1b2 (blue triangles) MOs of H2O.

of parameters in order to assess the accuracy of these results.
One parameter concerns the limiting resolution with which the
finite-element method proceeds (the MAXCELLSIZE parameter
in the Mathematica 10 implementation of NDSOLVE, which
we call �). For values � < 0.02 a.u. we find stability in
the eigenvalues (real and imaginary parts) of two to three
significant digits. For the results quoted below we then applied
the more stringent criterion of � = 0.01 a.u.

The second parameter which was investigated is the range
where the complex scaling function sets in, i.e., rs and �r in
Eq. (8). For the scaling method to work we require scaling
to set in for r > r0 when the effective potential represents a
simple Coulomb tail, which in practice is satisfied by rs > 2r0.
We also need �r < 2 a.u. to guarantee smooth turn-on in this
region. Small values of �r pose challenges for the automated
finite-element method since in the limit of �r → 0 one would
need to implement the derivative discontinuity in the solution
as discussed by Scrinzi [34]. We find stable results for the
real and imaginary parts of the eigenenergies at the level of
three significant digits for the range 10 < rs < 15 a.u. Larger
values would require an increase in the computational domain
beyond r = 20 a.u.

Finally, another systematic that was explored is the choice
of the ultimate scaling angle reached at large r , namely, the
value of χs in (8). For an accuracy demand of three significant
digits and the other parameters chosen in the ranges described
above stability in the resonance widths is achieved for 0.6 <

χs < 1.2 rad.
In Fig. 3 we show the resonance position ER as obtained

from the present calculations for the weakly bound 1b1 and
the strongly bound 1b2 valence orbitals as a function of
applied electric field strength F0. In the limit of zero field the
calculation reproduces the SCF eigenvalues of Moccia [21].
The field has to be strong (in comparison with atomic hydrogen
results for 2p orbitals [27]) in order to change the resonance
position appreciably. For the more deeply bound 1b2 orbital
the shift in resonance position saturates with field strength.

In Fig. 4 the resonance widths are shown for both orbitals
as functions of external field strength F0. The graphs display
threshold behavior at the weaker field strengths. As expected
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FIG. 4. Resonance width (in atomic units) as a function of the
external field strength F0 (in atomic units) for the 1b1 (red circles) and
1b2 (blue triangles) MOs of H2O. For comparison, atomic hydrogen
H(1s) ionization rates from Refs. [27,35] are shown as crosses.

we find a lower threshold (critical field strength) for the more
weakly bound 1b1 orbital. Interestingly, however, at a field
strength of about F0 = 0.3 a.u. the values for the widths cross;
that is, the deeper bound 1b2 orbital displays a larger ionization
rate as the field strength is increased further.

Also shown in Fig. 4 are the widths for the H(1s) orbital
from Refs. [27,35]. They can be compared to the 1b1 orbital
results since the binding energy is very close in the free-field
limit. Since the tunneling barrier is mostly in the asymptotic
regime where the potential energy has a −1/r tail, it is not
surprising that the widths for H2O(1b1) and H(1s) share some
similarity in shape. In the tunneling region H(1s) has an
ionization rate that is larger by about an order of magnitude. In
the over-barrier regime, however, the ionization rates come to
within a factor of 3. Reasons for why the 1b1 water molecular
orbital is harder to ionize than H(1s) have to do with the
different shapes of the orbital density [m = 1 vs the spherical
H(1s) density] and the substantially more attractive potential
at shorter distances.

An examination of contour plots of the densities �∗�, as
well as of the potential energies Veff(r) − F0z for different
field strengths (both as a function of r,θ ), allows us to make
the following observations. For field strengths F0 < 0.1 a.u.

there is a barrier the electrons need to penetrate in order to be
ionized. From the potential-energy plot shown in Fig. 3 one can
see that for weak fields (small values of F0) the barrier is longer
for the more deeply bound 1b2 orbital. This explains why the
ionization threshold occurs for F0 > 0.1 a.u. for this orbital,
which is about a factor of 2 larger than for the 1b1 orbital.

The field-strength region where the ionization rates (res-
onance widths) display a change in character, i.e., turn over
to rise much more gradually with the field strength F0, can
be characterized as a regime where there is a narrow potential
saddle at small θ in the vicinity of r ≈ 3 a.u., such that electron
flux can leave and is then accelerated by the electric field. The
crossing of the ionization rates for the 1b1 and 1b2 orbitals oc-
curs since the saddle in the potential becomes effectively lower
at strong fields for the 1b2 orbital. This can be inferred from
the comparison of the two effective potentials, which share the
same asymptotic behavior beyond r = 4.3 a.u. (see Fig. 2).
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TABLE I. Resonance positions and widths for different field
strengths (in atomic units). The numbers in parentheses indicate the
exponent k; that is, the numbers are to be multiplied by 10k .

1b1 1b2

F0 ER 	 ER 	

0.1 −0.506 1.14(−3) −0.689 4.04(−5)
0.2 −0.525 2.28(−2) −0.718 1.23(−2)
0.3 −0.546 6.74(−2) −0.760 7.51(−2)
0.4 −0.564 1.24(−1) −0.790 1.91(−1)
0.5 −0.580 1.90(−1) −0.796 3.11(−1)
0.6 −0.593 2.61(−1) −0.797 4.11(−1)

The origin for the different radial dependencies of the
effective potential for the two orbitals can be found in the
geometry of the water molecule. The weakly bound 1b1 orbital
has its lobes perpendicular to the plane defined by the location
of the three nuclei. Therefore, it is least affected by the two
protons. The 1b2 orbital explores the potentials due to the
protons more strongly in the SCF calculation of Moccia,
and therefore, the resulting (in our approximation spherically
symmetric) Veff(r) has a more attractive region in the range
0.7 < r < 4.3.

We summarize the results in Table I for further reference,
i.e., for future comparison with calculations based on other
models for the molecular orbitals.

IV. CONCLUSION

We have carried out a study of two of the three valence
orbitals of the water molecule, 1b1 and 1b2, in the presence

of an external electric dc field. The tunneling ionization and
over-barrier ionization regimes were explored by finding a
numerical solution to the PDE system defined by an effective
potential obtained from single-center Slater-type orbitals. The
exterior complex scaling parameters and a finite-element
resolution parameter were optimized to guarantee a minimum
of two to three significant digits for the solutions. The
resonance parameters that describe the ionization process,
resonance position, and width were explored over a wide range
of electric field strengths. We demonstrated how an increase
of the field strength beyond a critical point in the over-barrier
region led to a crossing between the ionization rates of the two
orbitals. Additional observations of the effective potential for
different field strengths were carried out to shed some light on
the interpretation of this behavior.

For practical applications this work needs to be extended
to deal with ac (laser) fields. For the hydrogen molecular ion
this was done using Floquet theory [13], where some parallels
were found between the monochromatic ac and the dc cases.
Experimental observations of strong-field ionization of water
vapor do exist for short, intense laser pulses [36,37]. One
needs to solve the time-dependent Schrödinger equation for
realistic simulations of these [8,9]. For far-infrared fields,
however, the Floquet approach can yield results that are not
too different from time-dependent solutions involving pulses
with a moderate number of laser cycles [38].
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