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Harmonic generation of Li atoms in one- and two-photon Rabi-flopping regimes
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We present a comprehensive theoretical and computational study on harmonic generation (HG) of Li atoms in
one- and two-photon Rabi-flopping regimes where the population transfer from the ground 2s state to the excited
2p, 3s, and 3d states is substantial. Our all-electron approach is based on the time-dependent density-functional
theory and takes into account the polarization of the core and the dynamic response of the electrons to the laser
field. We show that the population oscillations in the time domain with the Rabi frequency � are reflected in
the fine structure of the HG spectra in the frequency domain on the scale of 2�. Our results also manifest that
even finer structures of the harmonic peaks on the smaller frequency scale originate from the pulse-shape-related
interference effects. These features are clearly seen in one-photon Rabi-flopping regime between the 2s and 2p

states. The pattern in the HG spectra becomes more complex in the two-photon Rabi-flopping regime involving
3s and 3d states. Our findings can be used for developing coherent control methods for HG in the Rabi-flopping
regime.
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I. INTRODUCTION

High-order-harmonic generation (HHG) is a fundamental
atomic and molecular process in strong laser fields that
continues attracting much interest in recent years both experi-
mentally and theoretically [1]. With tunable long-wavelength
lasers available, sufficiently high intensities without saturation
of ionization can be used for probing both valence and
core electrons. HHG processes have a capability of imaging
of atomic and molecular structures with high resolution
in spatial and temporal domains [2,3]. The multielectron
structural information can be retrieved by means of the HHG
interferometry, which is established as an effective approach
to resolving multielectron dynamics. With laser pulses as
short as a few femtoseconds, HHG spectroscopy can also
become a possible tool for probing chemical reactions on
a femtosecond time scale. Recently, the emphasis is more
and more shifted from observation of atoms and molecules
interacting with laser fields towards their control. Coherent
control of photon emission [4] and transient absorption [5] are
promising directions in further advancements of ultrafast laser
spectroscopy and other related applications.

Since the pioneering work of Rabi [6], coherent population
transfer among different energy states has been a powerful
technique in controlling quantum systems [7,8]. In a two-level
atomic system interacting with a resonant radiation field, the
dynamics of the electronic population presents well-known
periodic Rabi oscillations. The phase of Rabi oscillations is
associated with the so-called “pulse area.” When the latter
reaches the value of π (π pulse), the population transfer
between the two quantum states is complete. Rabi oscillations
play an important role in measuring the pulse area and
excited-state population. This is directly incorporated with the
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pulse duration, intensity, detuning from resonance, and the
transition dipole moment. Robust coherent control methods
based on the concept of Rabi oscillations are utilized in
various recent applications such as ultrafast manipulation of
Rydberg states [9–11], quantum information processing [12],
ensembles of cold atoms [13–15], etc.

Rabi flopping in multiphoton regime also became feasible
with advancements in laser technology and pulse shaping
techniques [16–18]. However, this regime requires stronger
radiation fields resulting in sloppy population transfer to the
target state. The process may become out of control when large
ac Stark shifts detune the system from the resonance [19]. It
should be noted that the origin and dynamics of the population
transfer and oscillations are qualitatively different for weak and
strong radiation fields [20,21]. In the one-photon transition, the
underlying mechanism of population oscillations is different
from that in the two-photon transition since in the latter case
the resonant intermediate states are affected. For the same
pulse area, complications get more serious as the length of the
pulse decreases and the peak intensity becomes higher.

Alkali-metal atoms are of particular interest in both ex-
perimental and theoretical studies of light-matter interaction.
For the theoretical description, it is important that alkali
atoms have a single electron outside the closed shell and
can be quite accurately represented by single-active-electron
(SAE) models [22,23]. A recent theoretical work [23] revealed
signatures of the carrier-wave Rabi flopping (CWRF) in the
harmonic generation spectra of potassium atoms. The CWRF
regime [24] is reached when the Rabi frequency becomes
comparable with the carrier frequency and characterized by
breakdown of the pulse area theorem. In Ref. [23], it was
found that the third harmonic in the harmonic generation
spectra of K atoms exhibits a complex structure in the CWRF
regime. Previously, a similar pattern was reported for the third
harmonic generated in narrow-band semiconductors [25].

In the present work, we study the influence of the coherent
population transfer in Li atoms on the harmonic generation
(HG) spectra in the one- and two-photon Rabi-flopping
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regimes. Lithium is the lightest alkali atom and has a single
s valence electron. On the other hand, it is the simplest atom
that exhibits intershell electron correlation which can provide
a richer testing ground for the theoretical investigation of
the interaction of the atom with intense laser fields. While
SAE models with the state-of-the-art effective potentials and
pseudopotentials may appear very accurate in description of
alkali atoms (see, for example, the review article [26] and
references therein), they still lack the dynamic multielectron
response of the atomic core to the laser fields, which may
be significant and affect the outer electron even when the
inner electrons are tightly bound. Our theoretical approach
goes beyond the SAE approximation and is based on the
self-interaction-free time-dependent density-functional theory
(TDDFT), which takes into account the electron exchange and
correlation through the exchange-correlation functional. Here
we use it specifically to study HG of Li atoms driven by strong
near-resonant laser fields with realistic parameters such as
carrier frequency, peak intensity, and pulse duration that can be
used to control the shape and structure of the harmonic peaks.
It should be noted that recent TDDFT studies [27–29] revealed
failures to describe the Rabi dynamics in two-electron model
systems initially in the ground singlet states. Such systems,
when treated by TDDFT with adiabatic exchange-correlation
functionals (where the potential at any time is a functional of
the density at that time), featured incomplete population trans-
fer to the excited states and detuned Rabi oscillations [28]. The
system is driven out of resonance when the density changes
significantly due to the population transfer to the excited states
thus causing a change in the adiabatic Kohn-Sham potential.
A conclusion was made [28,29] that nonadiabaticity of the
exchange-correlation functional is crucial to properly capture
the physics of Rabi oscillations, and adiabatic functionals
would fail to do so. However, as our calculations show,
this problem is not severe for the Li atom, which has only
one 2s electron outside the closed 1s shell. The transitions
of the valence electron do not affect too much the tightly
bound core electrons. That is why the Kohn-Sham mean field
experienced by the valence electron does not manifest dramatic
changes when the population transfer occurs between the
2s and excited states, and the system does not go off the
resonance.

For the one-photon Rabi-flopping case, we choose the
carrier frequency tuned into the resonance with the transition
between the ground 2s and the first excited 2p states (D-line
in the radiation spectrum of Li; the experimental wavelength
is 671 nm). The two-photon Rabi-flopping regime can be
reached when the carrier frequency of the laser pulse is tuned
into the two-photon resonance between the ground 2s state
and excited 3s or 3d states. In the HG spectra, we observe
characteristic oscillatory structures and explain their relations
to the Rabi flopping and pulse-shape-induced interferences.
We also discuss systematic shifts of the harmonic peaks when
the carrier frequency has a small detuning from the resonance.
Our findings can be used for the purpose of coherent control
of HG in the Rabi-flopping regime.

The paper is organized as follows. In Sec. II, we provide
a detailed description of our theoretical approach in the
framework of TDDFT and computational method. In Sec. III,
we discuss the results of the calculations and give necessary

theoretical explanations. Section IV contains concluding re-
marks.

II. METHOD

We use TDDFT to study harmonic generation of Li atoms
driven by strong near-resonant laser fields. The single-particle
potential is constructed by means of the Krieger-Li-Iafrate
(KLI) procedure [30] with self-interaction correction (SIC)
extended to the time-dependent (TD) problems [31]. For
the TD-KLI-SIC procedure [31] adopted here, we extend
Perdew and Zunger’s SIC form [32] to the time domain. It
has been shown [31] that the TDKLI procedure [33] can
be simplified considerably without the need of using the
nonlocal Hartree-Fock energy functional, in the construction
of the time-dependent optimized effective potential. Thus
the TD-KLI-SIC procedure [31] is computationally more
efficient and yet maintains high accuracy in the calculation
of the ground state energies, ionization potentials, excited
autoionizing resonances [34], as well as multiphoton ioniza-
tion dynamics [31,35]. Within the adiabatic approximation,
well justified in the case of low-frequency laser fields [36],
the TD-KLI-SIC single-particle potential can be expressed as
follows:

V s
σ (r,t) =

Nσ∑
j=1

ρjσ (r,t)
ρσ (r,t)

[
vjσ (r,t) + V̄ s

σj − v̄jσ

]
. (1)

Here indices j and σ enumerate spin orbitals (σ corresponds
to the spin projection, Nσ is the total number of electrons with
the spin σ ); ρjσ and ρσ are the spin-orbital density and the
total spin density, respectively:

ρjσ (r,t) = |ψjσ (r,t)|2,

ρσ (r,t) =
Nσ∑
j=1

ρjσ (r,t) (2)

[ψjσ (r,t) is the Kohn-Sham spin orbital]. The orbital-
dependent potential vjσ (r,t) includes the Hartree and
exchange-correlation parts as well as self-interaction cor-
rections. The mean values V̄ s

σj , v̄jσ are calculated with the
spin-densities ρjσ (r,t):

V̄ s
σj =

∫
d3rρjσ (r,t)V s

σ (r,t),

v̄jσ =
∫

d3rρjσ (r,t)vjσ (r,t). (3)

Equation (1) defines the potential V s
σ (r,t) up to an arbitrary

constant. However, since the exchange-correlation potential
vanishes at infinity in the space domain, its expectation value
with the highest-occupied spin-orbital ψmσ (r,t) must be equal
to that of the orbital-dependent potential vmσ (r,t) [30]:

V̄ s
σm = v̄mσ . (4)

The constraint (4) makes the potential (1) unique, and all
unknown constants V̄ s

σj (j < m) can be obtained solving a
set of linear equations [30].

For Li atoms, the procedure is particularly straightforward
since Nσ does not exceed 2. For the open-shell Li atom (the
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TABLE I. Absolute values of spin-orbital energies of Li. (A)
Present calculations (a.u.). (B) Experimental ionization energy of
Li [38] (a.u.).

Spin-orbital A B

1s ↑ 1.993
1s ↓ 2.476
2s ↑ 0.196 0.198

electronic structure 1s22s), the TD-KLI-SIC potential is spin-
dependent and can be explicitly written as follows, for the spin
up (↑) and spin down (↓), respectively [37]:

V s
↑(r,t) = ρ1↑(r,t)

ρ↑(r,t)

{
v1↑(r,t)

+
[ ∫

d3r
ρ2↑(r,t)ρ1↑(r,t)

ρ↑(r,t)

]−1

×
∫

d3r
ρ2↑(r,t)ρ1↑(r,t)

ρ↑(r,t))
[v2↑(r,t) − v1↑(r,t)]

}

+ ρ2↑(r,t)
ρ↑(r,t)

v2↑(r,t), (5)

V s
↓(r,t) = v1↓(r,t). (6)

For the orbital-dependent potentials vjσ (r,t), we use the
exchange-only approximation in the local spin-density (LSD)
form, and include Perdew-Zunger [32] self-interaction correc-
tions:

vjσ (r,t) = vH[ρ↑ + ρ↓](r,t) + vLSD
x [ρσ ](r,t)

− vH[ρjσ ](r,t) − vLSD
x [ρjσ ](r,t), (7)

where vH[ρ](r,t) and vLSD
x [ρ](r,t) are the Hartree and LSD

exchange potentials, respectively:

vH[ρ](r,t) =
∫

d3r ′ ρ(r,t)
|r − r ′| ,

vLSD
x [ρ](r,t) = −

[
6

π
ρ(r,t)

]1/3

. (8)

The spin-orbital energies computed by the time-independent
DFT using these potentials are listed in Table I. The highest-
occupied orbital energy is in a good agreement with the
experimental data for the ionization potential [38]. In Table II,
we list the one-electron excitation energies (2s → nl) cal-
culated as differences of the corresponding eigenvalues of
the time-independent DFT Hamiltonian. For comparison,
experimental excitation energies are also shown. As one can

TABLE II. 2s → nl excitation energies of Li. (A) Present
calculations (a.u.). (B) Experimental results [42] (a.u.).

nl A B

2p 0.0673 0.0679
3s 0.1219 0.1240
3p 0.1389 0.1409
3d 0.1401 0.1425

TABLE III. Transition dipole matrix elements 〈n′l′0|z|nl0〉 of Li.
(A) Present calculations (a.u.). (B) Reference [41] (a.u.).

Transition A B

2s → 2p 2.38 2.35
2s → 3p 0.113 0.129
2p → 3s 1.77 1.72
2p → 3d 2.33 2.27

see, the agreement is fairly good (within 2%). Of course,
the differences of the Kohn-Sham orbital energies are only
a zero-order approximation to the actual excitation energies
of the multielectron atom. A better approximation, including
the dynamical exchange-correlation effects, can be obtained
in the framework of the linear-response TDDFT [39,40]. For
the Li atom, however, the Kohn-Sham level of accuracy is
quite good and sufficient to determine the laser frequencies for
near-resonant excitations. The same is true for the transition
dipole matrix elements calculated between the one-electron
Kohn-Sham states with the principal quantum numbers n = 2
and n = 3 and listed in Table III. Accuracy of these matrix
elements is important for correct description of the excitation
dynamics in near-resonant laser fields. As one can see, the
quality of the calculated transition dipoles is rather good
even on the one-electron Kohn-Sham level; they agree well
with the matrix elements obtained by the precision linearized
coupled-cluster method [41].

To obtain the time-dependent electron densities and cal-
culate the harmonic spectra, one has to solve a set of the
time-dependent Kohn-Sham equations for the spin orbitals
ψjσ (r,t):

i
∂

∂t
ψjσ (r,t)=

[
−1

2
∇2 − Z

r
+ V s

σ (r,t) + vext(r,t)
]
ψjσ (r,t),

j =1, . . . ,Nσ . (9)

Besides the discussed single-particle potential V s
σ , the right-

hand side of Eq. (9) contains the Coulomb interaction with
the nucleus (Z is the nucleus charge) and interaction with
the external laser field vext(r,t). In our calculations, we use a
linearly polarized laser pulse; the envelope has a sine-squared
shape and contains 20 optical cycles (o.c.):

vext(r,t) = (F(t) · r), (10)

F(t) = F0 sin2 πt

T
sin ω0t, T = 40π

ω0
. (11)

To solve the set (9), we apply the time-dependent general-
ized pseudospectral (TDGPS) method which proved accurate
and efficient in our previous atomic TDDFT calculations (see,
e.g., Refs. [37,43–45]). For the TDGPS discretization in the
present calculations, we use 80 radial and 32 angular grid
points, and 4096 time steps per optical cycle. The equations (9)
are solved in space within a sphere with the radius 60 a.u.;
between 40 and 60 a.u. we place an absorber. Absorbed
parts of the wave packet localized beyond 40 a.u. describe
unbound states populated during the ionization process. We
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note that the absorber is located far enough from the nucleus,
so its influence on the excitation and ionization dynamics
is negligible. Because of the absorber, the normalization
integrals of the spin-orbital densities ρjσ (r,t) decrease in
time. The ionization probabilities Pjσ for each spin orbital
are determined by the densities calculated after the pulse:

Pjσ = 1 −
∫

d3rρjσ (r,T ). (12)

We note that for the moderate peak intensities used in the
calculations (up to 2×1012 W/cm2) only the highest-occupied
2s orbital of Li contributes to ionization while the tightly
bound inner shell 1s electrons do not leave the core. Then
the ionization probability of Li P reads as

P = P2↑. (13)

To calculate the HG spectra, we use a semiclassical
approach, where the basic expressions come from the classical
electrodynamics but the classical quantities such as dipole mo-
ment and its acceleration are replaced with the corresponding
quantum expectation values. The spectral density of radiation
energy can be expressed through the Fourier transforms of the
dipole acceleration a(t) or dipole moment d(t) [46]:

S(ω) = 2

3πc3
|̃a(ω)|2 = 2ω4

3πc3
|̃d(ω)|2; (14)

ã(ω) =
∫ ∞

−∞
dt a(t) exp(iωt), (15)

d̃(ω) =
∫ ∞

−∞
dt d(t) exp(iωt), (16)

(c is the speed of light) and the expectation values of the dipole
moment and its acceleration are defined as follows:

d(t) =
∫

d3r r [ρ↑(r,t) + ρ↓(r,t)]; (17)

a(t) = −
∫

d3r [ρ↑(r,t) + ρ↓(r,t)]

×∇
[
−Z

r
+ vext(r,t)

]
. (18)

They satisfy the same relation as the corresponding classical
quantities:

d2

dt2
d(t) = a(t). (19)

The expression for a(t) can be derived from that for d(t) with
the help of the Ehrenfest theorem. We note that only the nuclear
and external field potentials are present in Eq. (18). When
multielectron targets are treated exactly, the electron-electron
interaction does not contribute to the expectation value of
the dipole acceleration due to Newton’s third law since the
electrons are identical and have the same masses and charges.
In TDDFT, that means the exact exchange-correlation potential
(as well as the Hartree potential) does not contribute to the ex-
pectation value of acceleration (the zero-force theorem [47]).
For approximate exchange-correlation potentials, this is not
always true. Consequently, the length and acceleration forms
of the HG spectra (14) with the expectation values defined in
Eqs. (17) and (18) are not necessarily identical in TDDFT. This

is specifically the case for the TD-KLI-SIC approximation,
which is known to violate the zero-force theorem [48]. In this
study, we adopt the length form of the HG spectra as defined
by Eqs. (14), (16), and (17).

III. RESULTS AND DISCUSSION

A. One-photon Rabi flopping

In order to have an efficient control over the coherent
population transfer in the one-photon Rabi-flopping regime,
we set the carrier wavelength to 676 nm (ω0 = 0.0674 a.u.)
corresponding to a resonance one-photon transition between
the ground 2s and the first excited 2p states (D line in
the radiation spectrum of Li; the experimental wavelength
is 671 nm). Several peak intensities in the range 2×1011 to
2×1012 W/cm2 have been used in the calculations. Since the
excitation dynamics in the resonant field is closely related
to the Rabi oscillations and Rabi flopping, let us introduce
the Rabi frequency and pulse area. The Rabi frequency � is
defined as a product of the peak value of the laser electric field
F0 and transition dipole D between the resonant atomic states:

� = F0D. (20)

Then the pulse area 	 is a product of the Rabi frequency �

and the full width at the half maximum (FWHM) of the laser
pulse τ [for the sin2 pulse, the latter is just one half of the total
pulse duration T , see Eq. (11)]:

	 = �τ. (21)

In the Rabi-flopping regime, the population inversion after the
pulse occurs if the pulse area is equal to an odd integer in units
of π . For the simplified two-level system, it corresponds to the
total depletion of the initial ground state and full population
of the excited state. For more realistic multilevel system, this
is not the case because a part of the initial population of the
ground state may go to other (nonresonant) excited states. Still,
the population of the resonant excited state at the end of the
pulse can be very significant. If the pulse area is equal to an
even integer in units of π , then the most of the population
returns to the initial ground state after the pulse.

In Table IV, we present ionization probabilities, Rabi
frequencies, and pulse areas for different peak intensities used
in the calculations (our laser pulse always has a sin2 envelope
and duration of 20 o.c.). Note that the Rabi frequency is much

TABLE IV. Ionization probabilities (P), Rabi frequencies (�),
and pulse areas (	) for the resonant 20 o.c. sin2 laser pulses with the
carrier wavelength 676 nm.

Peak intensity (W/cm2) P � (a.u.) 	/π

2.0×1011 0.019 0.005 68 1.69
2.8×1011 0.031 0.006 72 2.00
3.0×1011 0.035 0.006 96 2.07
3.2×1011 0.038 0.007 19 2.13
5.0×1011 0.069 0.008 99 2.67
1.0×1012 0.135 0.012 71 3.77
1.3×1012 0.170 0.014 49 4.30
2.0×1012 0.268 0.017 97 5.33
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FIG. 1. Time-dependent populations of the ground and several
excited states of Li. The laser pulse has a sin2 shape, duration of 20
o.c., and peak intensity is 3.2×1011 W/cm2. The carrier wavelength
676 nm corresponds to a one-photon resonance between 2s and 2p

states.

less than the laser carrier frequency for all intensities in the
range. As one can see, at the highest intensity 2.0×1012 W/cm2

ionization of the Li atom is substantial. Using even higher
intensities may result in full ionization on the leading edge of
the laser pulse and suppression of harmonic generation. Based
on the pulse area calculated according to Eq. (21), one may
expect the largest ground state population after the 2π -pulse
with the peak intensity 2.8×1011 W/cm2. However, the pulse
area analysis is an approximate tool coming from the adiabatic
two-level system theory. Our numerical calculations show that
the largest ground state population after the pulse actually
corresponds to the peak intensity 3.2×1011 W/cm2 and pulse
area 2.13π . In Fig. 1, the time-dependent populations of the
ground (2s) and several excited Kohn-Sham states are shown.
Similar to the above discussion of the excitation energies and
transition dipoles, we should note here that for the Li atom
the Kohn-Sham populations are a good approximation for the
populations of the ground and singly-excited multielectron
states. Besides the resonant 2p state, significant populations
in the central part of the laser pulse are acquired by the 3s and
3d states; this happens because these two states are strongly
coupled to the 2p state (see transition dipoles in Table III), and
their excitation energies (Table II) are not far away from the
two-photon resonance with the ground state. On the contrary,
the population of the 3p state is very low (does not exceed
0.005) because this state is not accessible from the 2p state
through a one-photon process, and transitions from either 2s,
3s, and 3d states are far from resonance.

The time-dependent dipole moment for the same laser pulse
with the peak intensity 3.2×1011 W/cm2 is shown in Fig. 2.
The induced dipole moment features a deep low-frequency
modulation with the minimum of the envelope at the center
of the laser pulse. The modulation frequency is just the Rabi
frequency; for this particular laser pulse it is approximately
equal to one tenth of the carrier frequency: � ≈ 0.1ω0. The
minimum in the induced dipole corresponds to almost full
population transfer from the 2s state to the 2p state at half
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FIG. 2. Time-dependent induced dipole moment in the resonant
field. The laser pulse has a sin2 shape, duration of 20 o.c., and
peak intensity is 3.2×1011 W/cm2. The carrier wavelength 676 nm
corresponds to a one-photon resonance between 2s and 2p states.

pulse duration. Note that the dipole moment does not vanish at
the end of the laser pulse. It happens because some population
still remains in the excited 2p state. The frequency of the dipole
oscillations at the end of the pulse is not actually the carrier
frequency ω0 of the laser field but the excitation energy of the
2p state; the latter, however, is equal to ω0 in the resonant
field.

To calculate the spectrum of radiation emitted during
the interaction with the laser field, one has to perform the
Fourier transform of the induced dipole moment [see Eqs. (14)
and (16)]. Since we do not propagate the Kohn-Sham orbitals
beyond the end of the laser pulse, the temporal integration
in Eq. (16) is restricted to the interval from 0 to T , that is
the pulse duration. This approach assumes that the dipole
moment smoothly goes to zero at both beginning and end
of the pulse, otherwise the Fourier transform may contain
spurious contributions and noise because of abrupt change of
the integrand in Eq. (16). As one can see in Fig. 2, in the case of
the resonant (or near-resonant) field, at the end of the pulse the
dipole moment still oscillates with a quite large magnitude and
does not vanish. To avoid any unwanted effects in the Fourier
transform, before taking the integral in Eq. (16), we multiply
the dipole moment by the window function, which is equal to
unity in the central part of the laser pulse and smoothly goes
to zero at both t = 0 and t = T . In our calculations, we use
the following window function W (t):

W (t) =

⎧⎪⎪⎨
⎪⎪⎩

sin2
(

ω0t

8

)
, 0 � t < 4π

ω0
;

1, 4π
ω0

� t < T − 4π
ω0

;

sin2
(

ω0(T −t)
8

)
, T − 4π

ω0
� t � T .

(22)

Defined in this way, the function W (t) gradually raises from 0
to 1 during the first two optical cycles, remain equal to unity
for the next 16 optical cycles, and gradually decreases to zero
during the last two optical cycles.

In Fig. 3, we show the HG spectrum obtained by the
Fourier transform with the window function (22) for the same
laser pulse with the carrier wavelength 676 nm and peak
intensity 3.2×1011 W/cm2. The spectrum consists of distinct
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FIG. 3. HG spectrum of Li. The laser pulse has a sin2 shape,
duration of 20 o.c., and peak intensity is 3.2×1011 W/cm2. The
carrier wavelength 676 nm corresponds to a one-photon resonance
between 2s and 2p states. The inset shows enlarged structure of the
fifth harmonic with the spacing between two adjacent subpeaks equal
to 2�.

odd harmonic peaks manifesting fine oscillatory structures.
We note that at the laser wavelength 676 nm the third
harmonic already corresponds to the photon energy slightly
above the ionization threshold, so all generated harmonics are
above-threshold, and their frequency profiles are rather broad.
The most prominent feature of the spectrum is an oscillatory
structure superimposed onto the conventional harmonic peaks.
The spacing between the adjacent maxima of this structure
is about 0.2ω0, that is twice the Rabi frequency. The origin
of these fine oscillations in the frequency domain can be
understood from the analysis of the properties of the induced
dipole moment in the time domain, which is strongly affected
by the population transfer in the resonant field. In the two-level
system, the dipole moment vanishes when does so the popu-
lation of any of the two states strongly coupled by the field.
Although this example is oversimplified, it catches the physics
of the process; we can see a deep minimum of the dipole
moment induced by the field in the Li atom (Fig. 2) when the
2s state is almost depleted. The pattern in Fig. 2 exhibits two
well-separated portions shifted from each other by 5 o.c. or
half the Rabi period, π/�. Then we can represent the whole
function d(t) as a sum of left and right contributions,

d(t) = dL(t) + dR(t), (23)

and approximate the right contribution as the left one shifted
by π/�:

dR(t) = dL(t − π/�). (24)

Performing the Fourier transform of d(t), one obtains

d̃(ω) = 2 exp

(
i
πω

2�

)
cos

(
πω

2�

)
d̃L(ω). (25)

The spectral density of emitted radiation energy will manifest
an oscillatory structure with the adjacent maxima separated

by �ω = 2�:

S(ω) = 8ω4

3πc3
cos2

(
πω

2�

)
|d̃L(ω)|2. (26)

Although the above analysis is approximate, it reveals
the origin of the oscillatory structure in the HG spectrum.
This structure appears due to low-frequency modulation of
the time-dependent dipole moment. The modulation, in turn,
has its origin in the population oscillations with the Rabi
frequency. We should note that the modulation affects not
only the visible time evolution of the dipole moment (with
the carrier frequency ω0) shown in Fig. 2. Higher harmonics
also exhibit such a modulation. We can extract time profiles
for higher harmonics performing inverse Fourier transforms
on the limited frequency range, corresponding to the specific
harmonic. For example, taking the inverse Fourier transform
of d̃(ω) restricted to the frequency range [2.5ω0,3.5ω0], we
obtain the time profile for the third harmonic, and similar for
other harmonics. In Fig. 4, the time profiles for the harmonic
orders 3, 5, and 7 are shown. As one can see, the fifth and
seventh harmonics exhibit a well-pronounced low-frequency
modulation similar to that seen in Fig. 2. The time profile
for the third harmonic is somewhat different; although the
modulation is present, its frequency cannot be easily extracted
from the time profile since there is only one dominant
contribution from the time interval 13 to 15 o.c. Nonetheless,
the third harmonic also exhibits a subpeak structure in the
frequency domain (see Fig. 3) with the spacing between the
subpeaks approximately equal to 2�.
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FIG. 4. Time profiles of the third, fifth, and seven harmonics. The
laser pulse has a sin2 shape, duration of 20 o.c., and peak intensity is
3.2×1011 W/cm2. The carrier wavelength 676 nm corresponds to a
one-photon resonance between 2s and 2p states.
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FIG. 5. Fine structures of the fifth and seventh harmonics. The
subpeak spacing is less than 2�. The laser pulse has a sin2 shape,
duration of 20 o.c., and peak intensity is 1×1012 W/cm2. The carrier
wavelength 676 nm corresponds to a one-photon resonance between
2s and 2p states.

B. Effect of the pulse shape: interference oscillatory
structures in HG spectra

At higher peak intensities of the laser pulse, fine oscillatory
structures with the subpeak spacing less than 2� can be noticed
in the harmonic peaks. In Fig. 5, such structures contained
within 2� frequency intervals are clearly seen in the fifth
and seventh harmonics at the peak intensity 1×1012 W/cm2.
This phenomenon can be explained by interference of the
contributions to the HG spectrum coming from the leading
and trailing edges of the laser pulse. As early as in 1984, it was
discovered [49] that the spectrum of resonance fluorescence of
a two-level system has a multipeak structure. Similar structures
were found in the spectra of resonance ionization [50], reso-
nance autoionization [51,52] and multiphoton above-threshold
detachment [53]. In Refs. [52,53], a concept of adiabatic
Floquet states [54,55] was used to explain the multipeak
structures in the spectra. The same approach is applicable for
description of the HG spectra.

For the sake of simplicity, let us consider the case when the
carrier frequency is tuned into the exact resonance with the
transition between the 2s and 2p states. In this case, the time-
dependent wave function can be represented by an equally
weighted linear combination of two adiabatic Floquet states:

ψ = 1

2

{
exp

[
−i

∫ t

0
εa(τ )dτ

]
ψa

+ exp

[
−i

∫ t

0
εb(τ )dτ

]
ψb

}
, (27)

where ψa and ψb can be expanded in Fourier series:

ψa =
∑

n

ψa,n exp(−inω0t), (28)

ψb =
∑

n

ψb,n exp(−inω0t). (29)

The quasienergies εa , εb and Fourier components ψa,n, ψb,n

depend on time adiabatically through the pulse envelope
function. In the weak-laser-field limit, the adiabatic quasiener-
gies εa and εb become degenerate (and equal to the 2s

orbital energy), and the wave functions have the following
approximate expressions:

ψa ≈ 1
2 [ψ2s + exp(−iω0t)ψ2p], (30)

ψb ≈ 1
2 [ψ2s − exp(−iω0t)ψ2p], (31)

where ψ2s and ψ2p denote unperturbed time-independent 2s

and 2p wave functions, respectively. Then only the 2s state is
populated at the beginning of the laser pulse (t = 0).

With the wave function (27), the expectation value of the
induced dipole moment is calculated as follows:

d(t) = 1

4

{
〈ψa|z|ψa〉 + 〈ψb|z|ψb〉

+ exp

[
i

∫ t

0
(εa − εb)dτ

]
〈ψa|z|ψb〉

+ exp

[
i

∫ t

0
(εb − εa)dτ

]
〈ψb|z|ψa〉

}
. (32)

Note that in the resonance field the difference of adiabatic
quasienergies is equal to the adiabatic Rabi frequency defined
for the electric field peak value at time t :

εb(t) − εa(t) = �(t). (33)

Expanding the right-hand side of Eq. (32) in Fourier series,
one obtains

D(t) = 1

4

{∑
n

exp(inω0t)
[
daa

n + dbb
n

]

+ exp

[
i

∫ t

0
(εa − εb)dτ

] ∑
n

exp(inω0t)d
ab
n

+ exp

[
i

∫ t

0
(εb − εa)dτ

] ∑
n

exp(inω0t)
[
dab

−n

]∗
}
,

(34)

where

daa
n =

∑
m

〈ψa,m+n|z|ψa,m〉, (35)

dbb
n =

∑
m

〈ψb,m+n|z|ψb,m〉, (36)

dab
n =

∑
m

〈ψa,m+n|z|ψb,m〉. (37)

Due to parity restrictions, daa
n , daa

n , and dab
n are nonzero for

odd n only.
For the laser field parameters used in the present cal-

culations, the adiabatic Rabi frequency is much less than
the carrier frequency at any time: �(t) � ω0. Then the
interference oscillatory structure is well localized within a
single harmonic frequency profile. For the harmonic order
2n + 1, the time-dependent dipole moment is approximately
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expressed as

D2n+1(t) = 1

4

{
exp[i(2n + 1)ω0t]

[
daa

2n+1 + dbb
2n+1

]
+ exp

[
i(2n + 1)ω0t − i

∫ t

0
(εb − εa)dτ

]
dab

2n+1

+ exp

[
i(2n + 1)ω0t + i

∫ t

0
(εb − εa)dτ

]

× [
dab

−(2n+1)

]∗
}
. (38)

The Fourier transform of Eq. (38) gives the frequency profile of
the (2n + 1)th harmonic. An oscillatory pattern in this profile
appears due to the contributions of the last two terms in the
right-hand side of Eq. (38). To evaluate these two contributions
to the Fourier integral, we apply the saddle-point method. The
equations for the saddle points are as follows (ω being the
frequency value where the HG spectrum is calculated):

ω = (2n + 1)ω0 + [εb − εa](t), (39)

ω = (2n + 1)ω0 − [εb − εa](t). (40)

Obviously, real-valued t solutions of Eq. (39) exist only if
the frequency ω falls into the interval between (2n + 1)ω0

and (2n + 1)ω0 + �. Similarly, real solutions of Eq. (40) exist
if the ω value is between (2n + 1)ω0 − � and (2n + 1)ω0.
Since the function [εb − εa](t) is even for symmetric laser
pulses, Eqs. (39) and (40) each produce two saddle points, t1
and t2 = −t1, as shown in Fig. 6. The contributions from t1
(leading edge of the laser pulse) and t2 (trailing edge of the
laser pulse) interfere resulting in the oscillatory behavior of
the Fourier transform as a function of the frequency ω:

d̃(ω) ∼ dab
2n+1(t2) cos

[
1
2	(t2)

]
, (41)

where t2 is determined by ω according to the equation

ω = (2n + 1)ω0 + [εb − εa](t2) (42)

FIG. 6. Adiabatic quasienergies in the resonance field. The
time moments t1 and t2 denote the saddle points, and the shaded
areas represent the phase difference responsible for the interference
oscillations.

and

d̃(ω) ∼ [
dab

−(2n+1)(t2)
]∗

cos
[

1
2	(t2)

]
, (43)

where t2 is determined by the equation

ω = (2n + 1)ω0 − [εb − εa](t2). (44)

Equations (41) and (43) describe oscillations in the frequency
profile of the harmonic on the right and left of the central line
(2n + 1)ω0, respectively. The phase difference 	(t2) is given
by the shaded areas in Fig. 6 and represents the partial pulse
area:

	(t2) =
∫ t2

t1

dt[εb − εa](t) − (t2 − t1)[εb − εa](t2). (45)

The multipeak structure due to interference of the contribu-
tions from the leading and trailing edges of the laser pulse is
contained within the interval of the width 2� and appears on
both sides of the central line (2n + 1)ω0. The highest subpeaks
of this structure are shifted from the central line by the Rabi
frequency � corresponding to the peak intensity of the laser
pulse. The spectral density of the harmonic may exhibit a
multipeak structure due to interference as described above if
the peak intensity of the pulse is sufficiently high. For the
first interference minimum in the harmonic frequency profile
to show up, the pulse area must be greater or equal to π .
Since only the central part of the laser pulse (where the field is
strong enough) contributes to production of high harmonics,
in reality the pulse area should be substantially larger than
π to observe this multipeak structure. We should also note
that the theoretical description given above is accurate for a
two-level system but can be only approximate for real Li atoms.
Even in the close vicinity of the 2s-2p resonance, population
of the other excited states may be significant, especially at
high intensities of the laser field, and the resonance approx-
imation involving two adiabatic Floquet states may become
invalid.

C. Blue and red shifts of HG spectra near the resonance

In the vicinity of the resonance, the spectrum of emit-
ted radiation is enhanced and dominated by the transition
frequency between the 2s and 2p states, and its harmonics.
When the carrier of the driving laser field has a small detuning
from the resonance, the spectrum is still dominated by the
harmonics of the transition frequency, and not the carrier
frequency. Plotted on the scale of the carrier frequency, the
harmonic peaks in the spectrum manifest a blue or red shift
from odd integers, depending on the sign of the detuning. In
Fig. 7, we show the HG spectra for sin2 laser pulses with
the carrier wavelengths 650 nm and 700 nm. For 650 nm,
detuning from the resonance (676 nm) is positive (in terms
of the frequency), and for 700 nm, detuning is negative. As
one can see, the 650-nm and 700-nm spectra have pronounced
red and blue shifts, respectively. The shifts of the harmonic
peaks are linearly increasing with the harmonic order. This
pattern is well explained if it is understood that the positions
of the peaks are determined by odd integers of the transition
frequency. Then the very first peak is shifted by the negative
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FIG. 7. HG spectra of Li for the driving field wavelength
650 nm (dashed red line) and 700 nm (solid blue line). The laser
pulse has a sin2 shape, duration of 20 o.c., and peak intensity
is 3×1011 W/cm2. The 650-nm and 700-nm spectra are red- and
blue-shifted, respectively, from the conventional harmonic positions
corresponding to odd integer numbers.

value of the resonance detuning δ. For the harmonic of the
order 2n + 1, the shift is equal to −(2n + 1)δ. We note that
the systematic red and blue shifts of the harmonics can only
be detected in the close vicinity of the resonance. Far from the
resonance, the role of the transition frequency in the radiation
spectra is not so important, and the harmonic peaks return
to their conventional positions at odd integer multiples of the
driving field frequency.

D. Two-photon Rabi flopping

The two-photon Rabi-flopping regime can be reached
when the carrier frequency of the laser pulse is tuned into
the two-photon resonance between the ground 2s state and
excited 3s or 3d states. According to the data in Table II, the
corresponding wavelengths must be 748 and 650 nm. However,
we have found that larger population transfers to the 3s and 3d

states occur at slightly different carrier wavelengths, 730 and
640 nm, respectively. This may happen due to the interplay
between the one-photon 2s-2p and two-photon resonance
transitions, as well as because of slight difference between
the one-electron Kohn-Sham and TDDFT excitation energies.
In Fig. 8, we show the time-dependent populations for the
peak intensity of the laser pulse 5×1011 W/cm2 and carrier
wavelengths 730 and 640 nm. At the end of the laser pulse, the
population inversion is observed, with the largest population in
the 3s state (730 nm) and 3d state (640 nm). In the central part
of the pulse, one can see a complex pattern with comparable
populations of 2s, 2p, and 3s states at 730 nm and 2s, 2p,
and 3d states at 640 nm. This population behavior is reflected
in a more complex modulation of the dipole moments (see
harmonic time profiles in Figs. 9 and 10) and additional fine
structure of the harmonics in the frequency domain (Fig. 11)
not seen in the case of one-photon Rabi flopping at the
same peak intensity. At the carrier wavelength 730 nm, the
time profile of the third harmonic has a dominant maximum
in the center of the laser pulse, while the time profiles of
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FIG. 8. Time-dependent populations of the ground and several
excited states of Li. The laser pulse has a sin2 shape, duration of 20
o.c., and peak intensity is 5×1011 W/cm2. The carrier wavelength is
730 nm (top) and 640 nm (bottom).

the fifth and seventh harmonics exhibit several maxima and
modulations with the frequency higher than the Rabi frequency
for the 2s-2p transition (see Fig. 9). Accordingly, in the HG
spectrum (Fig. 11, upper panel) the fifth and seventh harmonics
have complex multipeak structures, while the 3rd harmonic
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FIG. 9. Time profiles of the third, fifth, and seventh harmonics.
The laser pulse has a sin2 shape, duration of 20 o.c., and peak intensity
is 5×1011 W/cm2. The carrier wavelength 730-nm corresponds to a
two-photon Rabi-flopping regime between 2s and 3s states.
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FIG. 10. Time profiles of the 3rd, 5th, and 7th harmonics. The
laser pulse has a sin2 shape, duration of 20 o.c., and peak intensity
is 5×1011 W/cm2. The carrier wavelength 640 nm corresponds to a
two-photon Rabi-flopping regime between 2s and 3d states.

is dominated by a single peak. At the wavelength 640 nm,
the pattern is somewhat different. Here the time profile of the
third harmonic displays a deep low-frequency modulation with
four distinct maxima (Fig. 10). This modulation is reflected
in a clear multipeak structure of the third harmonic in the
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FIG. 11. HG spectra of Li for the driving field wavelengths
730 nm (upper panel) and 640 nm (lower panel), corresponding to
two-photon Rabi flopping. The laser pulse has a sin2 shape, duration
of 20 o.c., and peak intensity is 5×1011 W/cm2.

frequency domain (Fig. 11, lower panel). The fifth harmonic
in the time domain has two main maxima, corresponding to
the modulation with the Rabi frequency (similar to that in the
one-photon Rabi-flopping regime, see Fig. 4). In the frequency
domain, this harmonic exhibits two distinct peaks separated
by 2�, although a fine higher-frequency oscillatory structure
is also present. Similar structures in the time and frequency
domains are also observed in the seventh harmonic.

IV. CONCLUSION

In this paper, we have studied harmonic generation of the
lithium atoms in one- and two-photon Rabi-flopping regimes
where the population transfer from the ground 2s state to
the excited 2p, 3s, and 3d states is substantial. The Li
atoms interacting with strong laser fields are described in the
framework of the self-interaction-free time-dependent density-
functional theory, taking into account dynamic multielectron
response to the external field. Using the time-dependent
generalized pseudospectral method with sufficient number of
spatial grid points and time steps ensures the accuracy and
efficiency of the computational procedure.

In the one-photon Rabi-flopping regime, when the carrier
frequency of the driving field is tuned in the resonance between
2s and 2p states, the spectrum of emitted harmonic radiation
exhibits a fine oscillatory structure, with the spacing between
the adjacent subpeaks equal to twice the Rabi frequency.
We have shown that this structure results from the low-
frequency modulation of the time-dependent dipole moment.
This modulation affects not only the fundamental frequency
component of the dipole moment but also the higher frequency
Fourier components. The low-frequency modulation of the
dipole moment has its origin in the Rabi oscillations of the
electronic population between the 2s and 2p states. Minima
in the envelope function of the dipole moment are observed
when the 2s or 2p population becomes extremely small. The
number of the minima and their position on the time scale
depend on the laser pulse area, that is the peak intensity and
pulse duration.

When the peak intensity is increased, the pattern in the
harmonic generation spectra becomes more complicated.
First, since we study not a two-level system but a realistic
multilevel atomic system, population transfer to other excited
states becomes more significant with increasing intensity
thus disrupting pure two-state Rabi oscillations. Second, the
pulse-shape-induced interference effects also become more
important at higher intensities. Using the concept of adiabatic
Floquet states, we have shown that interference of the contri-
butions to the harmonic generation spectra from the leading
and trailing edges of the laser pulse also leads to oscillatory
structures of the harmonic peaks but on a smaller frequency
scale, well within the double Rabi frequency interval.

Increasing the peak intensity and changing the carrier
frequency of the laser field, we can reach the two-photon Rabi-
flopping regime. With the electronic structure of Li atoms,
detuning the frequency by ±10% off the 2s-2p resonance, we
can tune into 2s-3s or 2s-3d two-photon resonances. In this
regime, depending on the frequency selected, the population
transfer to the 3s or 3d states may be substantial. In the
two-photon 2s-3s and 2s-3d transitions, the 2p energy level
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plays a role of an intermediate state. Since the detuning from
the 2s-2p resonance is not very large, population of the 2p

state may be significant, too. Then in the central part of the
laser pulse the population is transferred among three different
states (2s, 2p, 3s or 2s, 2p, 3d), and all these states may have
comparable populations. Such a behavior of the electronic
population is reflected in complex modulation patterns of
the dipole moment and complex oscillatory structures of the
harmonic peaks in the frequency domain.

In conclusion, we should note that the multipeak oscillatory
pattern emerging in the harmonic generation spectra in the
Rabi-flopping regime is not specific to the lithium atoms only.
With appropriate adjustment of the laser pulse parameters, it

can also show up in other atomic and molecular targets with a
similar structure of electronic energy levels.
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