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Noise-induced transport in the motion of trapped ions
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The interplay of noise and quantum coherence in transport gives rise to rich dynamics relevant for a variety
of systems. In this work, we put forward a proposal for an experiment testing noise-induced transport in
the vibrational modes of a chain of trapped ions. We focus on the case of transverse modes, considering
multiple-isotope chains and an “angle trap,” where the transverse trapping varies along the chain. This variation
induces localization of the motional modes and therefore suppresses transport. By suitably choosing the action
of laser fields that couple to the internal and external degrees of freedom of the ions, we show how to implement
effective local dephasing on the modes, broadening the vibrational resonances. This leads to an overlap of the
local mode frequencies, giving rise to a pronounced increase in the transport of excitations along the chain. We
propose an implementation and measurement scheme which require neither ground-state cooling nor low heating
rates, and we illustrate our results with a simulation of the dynamics for a chain of three ions.
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I. INTRODUCTION

The observation of quantum coherences in the process
of excitonic transport in photosynthetic complexes [1,2] has
fostered the analysis of the roles of coherence and noise
in transport processes in general. While coherent dynamics
may lead to an improvement of transport times due to
superradiance and similar phenomena [3], it has also been
shown that in simplified models of photosynthetic complexes
a certain noise level can be beneficial to suppress destructive
interferences or compensate energy differences that would
lead to localization of excitations [4,5]. The phenomenon has
been analyzed in various systems, showing that transport can
be favored by noise in ultracold atoms [6], chains of quantum
dots [7], or condensed-matter setups [8].

Ion chains constitute an appealing platform for the
experimental exploration of complex dynamics due to their
high degree of controllability. For example, chains of few
ions in linear Paul traps have been used to simulate Ising
spin chains [9,10], open-system dynamical maps [11], and
quasiparticle dynamics in many-body systems [12]. In
Penning traps, controlled spin dynamics have recently been
realized with hundreds of trapped ions [13]. Other studies
have focused on thermodynamic behavior, demonstrating
thermalization of a spin coupled to a bosonic environment [14]
and energy transfer along a chain of up to 37 ions [15].

The richness of the dynamics of trapped-ion systems can
be further expanded through the addition of optical potentials
to controllably modify the spatial structure of the crystal and
its motional modes [16]. Indeed, dipole potentials have been
proposed and used for the investigation of friction models [17–
20]. Similar experimental techniques have been suggested
for the generation of coherent superpositions of motional
states of small crystals [21], and for simultaneous cavity
cooling of all axial modes of an ion chain [22]. The proposed
extension of nonlinear spectroscopy to ion traps can enable
the measurement of small couplings and nonlinear dynamics
of motional excitations [23–25]. An essential requirement for
these schemes, the realization of phase-stable and controllable
standing waves, has been recently demonstrated [26].

Previous studies of transport of vibrational excitations in ion
traps have analyzed the role of the spatial structure, the impact
of disorder [27], and the onset of Fourier’s law as a result of dis-
order or dephasing [28]. Furthermore, a procedure to measure
heat transport was presented in [28]. However, the proposal
in [28] does not offer a simple and scalable way to introduce
local and time-dependent energy fluctuations. We now take a
crucial step further by introducing a method for the experimen-
tal implementation of local dephasing noise on the vibrational
excitations by means of fluctuating optical potentials.

As an application of our idea, we show how it can be
used to observe noise-induced transport in a system which
would otherwise exhibit localized excitations (see Fig. 1).
An example of such a scenario is provided by a so-called
“angle trap,” i.e., a radio-frequency trap with a transverse
trapping frequency which depends on the axial position of
the ion. Such traps have already been built and used for the
realization of small thermal machines [29–31]. Alternatively,
localization of transverse modes can be achieved trapping
different isotopes of a given ion species, since the transverse
trapping frequency depends on the mass [32].

The article is organized as follows: In Sec. II we describe
vibrational dynamics in the weak-coupling regime, in which
the variation of transverse trapping leads to localization of the
vibrational excitations, and provide realistic parameters for
angle-trap and multi-isotope ion chains. Section III discusses
different possible strategies to observe noise-induced trans-
port, including an analysis of drawbacks of previous proposals.
In Sec. IV we explain our procedure to introduce local fre-
quency fluctuations by means of optical fields, while in Sec. V
we discuss how to detect the transport of vibrations. Section VI
shows the expected results of an implementation with a small
chain of three ions. A final discussion is included in Sec. VII.

II. TRANSVERSE VIBRATIONAL DYNAMICS
AND MODE LOCALIZATION

In this section we describe the transverse vibrational
dynamics of a chain of singly charged ions in cases where
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FIG. 1. Sketch of ions in an inhomogeneous trap, together with
the energy levels of their vibrational states. (a) If the differences in
local frequency are large compared with the couplings, there is no
energy transfer along the chain. (b) The addition of local frequency
fluctuations allows excitations to resonantly hop from site to site.

the normal modes can be localized. We treat the potential in
harmonic approximation about the equilibrium positions of the
ions, and assume that the frequencies in the three directions
are different enough that we can analyze the motion in only
one transverse direction, which we call x. We focus on the
regime where the transverse frequencies are much larger than
the Coulomb couplings between ions, so that the interaction
terms can be described as hopping of one vibrational excitation
from one ion to another.

We consider two simple experimental setups where one can
observe localization of the transverse modes in an ion trap.
The first one is an angle trap, that is, a trap with electrodes
forming an angle, such that the transverse trapping frequency
depends on the axial coordinate z of the ion [33]. Alternatively,
one can use a chain with different isotopes of the same
ion species, resulting in small differences in the transverse
trapping frequency experienced by each isotope [32]. In both
cases, choosing suitable trapping parameters one can make
the differences in transverse frequencies much larger that the
coupling constants, so that the transverse vibrational modes of
the chain are localized.

A. Transverse motion in an angle trap

We consider first the case of ions of equal mass in a trap in
which the transverse frequency depends on the axial position
of the ion. Such a trap was proposed as a single-ion heat
engine [29,30], and its experimental demonstration has been
recently published [31]; details about the trap design and
features can be found in [33].

Formally, the potential for the transverse degrees of freedom
can be written as V = V0 + Vint, where V0 contains the terms
of the potential that depend separately on the different ions,

V0 =
N∑

j=1

mω2
j

2
x2

j , (1)

with xj the transverse coordinate of the j th ion and ωj the
local transverse frequency. This local frequency includes a

renormalization due to the Coulomb interaction with the other
ions in the form

ω2
j = ω2

x,j − ω2
z

∑
k �=j

(
l

djk

)3

. (2)

Here, ωx,j is the transverse trap frequency for ion j and l is a
distance unit given by

l =
(

e2

4πε0mω2
z

)1/3

. (3)

The term Vint contains the Coulomb-interaction terms between
ions,

Vint = mω2
z

∑
j<k

(
l

djk

)3

xjxk. (4)

Defining the usual creation and annihilation operators aj ,a
†
j

associated with the position and momentum operators xj ,pj ,
and considering that the coupling strengths are much weaker
than the transverse trapping frequencies, one gets an effective
Hamiltonian for the modes in the form H = H0 + Hc. Here,
H0 contains local terms,

H0 = �

N∑
j=1

ωja
†
j aj , (5)

and Hc couples sites describing tunneling of vibrational
excitations from one ion to the other due to their Coulomb
interaction:

Hc = �

∑
j<k

cjk(a†
j ak + a

†
kaj ) , (6)

where the coupling constants take the form

cjk = 1

2

ω2
z√

ωjωk

(
l

djk

)3

. (7)

The present form of the Hamiltonian is valid as long as |cj,k | �
ωx with ωx a typical transverse frequency. The excitations that
diagonalize this Hamiltonian are localized in the regime when
|cj,k| � |ωj − ωk| for all pairs of ions. This means that the
degree of localization of the normal modes depends on how
the local frequency differences compare with ω2

z/ωx .
We now discuss some parameters which are relevant for our

proposal, based on the trap described in [33]. Axial trapping
frequencies for 40Ca+ in this trap are typically in the order of
10–500 kHz, while transverse frequencies can be chosen in
the range from 200 to 600 kHz. The key trap feature is the
dependence of the transverse trapping on the axial coordinate.
Under the previous conditions, this trap exhibits a variation of
about 10% in the transverse frequency for a axial displacement
of about 250 μm. For a crystal with three 40Ca+ ions and
an axial trapping frequency of 40 kHz, leading to a distance
between ions of about 40 μm, and with transverse frequencies
around 440 kHz, differences of approximately 5 kHz are
measured between neighboring ions. For these parameters,
localization of the transverse modes has been experimentally
demonstrated.

When modes are localized, transport of vibrational excita-
tions along the chain is suppressed: it is possible to excite
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the motion of one ion at one end of the chain without
significantly affecting the vibrational state of an ion at the
other end of the chain. This is in strong contrast with the
situation in a homogeneous trap, where motional modes are
delocalized and have support over the chain as a whole, thus
leading to transport of excitations. Increasing the axial trapping
frequency in the angle trap, the ions can be brought closer
to each other and the difference in the transverse trapping
experienced by the different ions is reduced while coupling
strengths are increased. This in turn suppresses the localization
of the modes, which for small distances become wavelike,
approximating the delocalized modes of a homogeneous trap.

B. Transverse modes in a multi-isotope chain

In a standard linear trap, the desired differences in local
transverse frequency can be achieved using different isotopes
of the same ion species. This gives a limited number of
possibilities, but we note that Yb+ has seven observationally
stable isotopes (five of them with no nuclear spin), and is
a species of frequent use in ion-trap setups. For a transverse
frequency of about 500 kHz, the frequency difference between
consecutive stable isotopes would be of about 3–6 kHz, which
is of the same order as the frequency variations reported in the
previous subsection for representative values in the angle trap.

A detailed analysis of the modes for chains of ions with
different masses can be found for instance in [34]. To use a
notation similar to the one in the previous subsection, we now
choose a reference isotope of mass m0 to define reference trap
frequencies ωz,0 and ωx,0. The definition of the length scale
in Eq. (3) is then modified accordingly, replacing mω2

z by the
reference values. The equilibrium positions of the ions are not
affected by their masses, and so the Coulomb interaction takes
the same form as in Eq. (4), with the same replacement for
mω2

z . The pseudopotential experienced by each ion depends
on its mass, resulting in a transverse trap frequency for each
ion of the form [32]

ωx,j = m0

mj

ωx,0. (8)

The equations that describe the local frequency shift due to the
Coulomb interaction, and the interaction terms between ions,
Eqs. (2) and (4), must also be modified replacing ωz and m

by ωz,0 and m0. In this way all equations from the previous
subsection are generalized to the multi-isotope case.

One then defines local creation and annihilation operators
for the transverse motion taking into account the different
masses and (renormalized) local frequencies. The final Hamil-
tonian takes the same form as in the previous subsection but
with the coupling coefficients cjk in Eq. (6) now given by

cjk = 1

2

ω2
z√

ωjωk

m0√
mjmk

(
l

djk

)3

. (9)

We note that the inverse dependence on the mass of the local
trap frequency, Eq. (8), does not lead to a simplification of
this formula unless the renormalization shift is negligible. As
before, the form of the coupling Hamiltonian (6) is obtained
neglecting counter-rotating terms which do not conserve the
total number of local excitations.

III. NOISE-INDUCED TRANSPORT

The main idea of the present proposal is to study the
transition between a regime of localized excitations to one
where transport is possible due to the action of external noise.
Indeed, local dephasing of the transverse modes can broaden
the resonances and bridge the gap between neighboring
ions, thus allowing the excitations to tunnel across sites
(each site corresponding to a particular ion). In this way,
transport properties of the chain are altered by means of
additional dephasing noise, which can be introduced coupling
the transverse motion with internal degrees of freedom. This
idea was already contained in [28], but the two methods
considered there for the realization of the dephasing noise
are not suitable for the kind of dynamics we want to analyze.

The first procedure proposed in [28] was the addition of
electric noise to the electrodes, leading to fluctuations in the
transverse trapping. In order to have some impact on the
transport trapping, these fluctuations should not be global.
This requires working near the surface of segmented traps
which can produce potentials that vary significantly over the
scale of the interparticle distance. However, because of the ion
proximity to the surface, this procedure comes at the expense
of additional motional heating [35].

The second strategy proposed in [28] was the introduction
of disorder in the motional frequencies using a coupling to the
internal states in the form

Hint =
∑

j

�ωa
†
j ajσ

z
j (10)

and taking an initial state where each ion is put in a
superposition of the two internal states. The implementation
of this Hamiltonian requires two noncopropagating laser
beams inducing two-photon processes involving absorption
and emission into different beams. An initial superposition
state like the one considered will give rise to a distribution
of frequencies in which each local frequency is modified in
the form ωj → ωj ± �ω where the sign is random and all
realizations are averaged. This can indeed modify the transport
properties in the chain, as shown in [28]. Nevertheless, the
disorder introduced in this way is static, and in general will
not be sufficient to prevent localization of excitations in the
scenarios we consider.

We are interested in modifying these ideas to obtain a
dynamical broadening of the resonances that can induce
transport of otherwise localized vibrational excitations. We
now discuss some alternatives:

(1) One can implement a coupling of the form of the above
Hamiltonian (10), but leaving all the spins in the ground
state, and instead making the quantity �ω site dependent, i.e.,
�ω → �ωj . This might be done if the beams are not plane
waves, but have a spatial intensity gradient along the chain axis
(taking advantage of the fact that typical ion distances are much
longer than a wavelength). For the disorder to be dynamical,
one needs to introduce during the experiment pseudorandom
axial shifts of this wave front, so that the frequency differences
between neighboring ions vary during the experiment. This
requires having a fluctuating optical field, negligible forces on
the axial direction, and optical frequency shifts comparable
with the frequency gap between neighbors.
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(2) One can implement exactly the Hamiltonian proposed
in [28], but modify the way disorder acts to make it dynamic.
Instead of starting with a superposition of all possible
internal states and keep this quantum superposition during
the experiment, one can take initially one single internal state
(for example, all spins down) and then apply pseudorandom
individual spin flips on different ions during the experiment.
This again leads to a bimodal frequency distribution for each
ion at a given time, but now the frequency becomes time
dependent. In order for this to lead to transport of excitations,
the differences introduced in the transverse frequencies must
approximately match the gap between neighboring ions (since
the frequency distribution for each site is bimodal and not
continuous).

(3) An even more basic variation of (2) would be just to
implement Hamiltonian (10) and initialize the spins in an
alternating pattern (up, down, up, down...) for the internal
state. Then one can modify the frequency differences between
neighboring ions by global spin flips.

Only the first of these three alternatives provides a con-
tinuous broadening of each resonance while it also allows
one to control the correlations in the frequency variations
of the different ions. Indeed, the spatial correlations are
determined by the axial shape of the wave front considered,
which can be given, for instance, by a standing wave, a tightly
focused beam [36], or a speckle pattern [37–40]. Therefore
we restrict to this scheme and analyze its implementation in
the next section. We note that for the case of short chains, the
dynamics we study can be reproduced with simpler schemes.
The proposal we develop in the following, however, has the
important advantage of being scalable to longer chains.

IV. IMPLEMENTATION OF THE LOCAL NOISE

The scheme we consider uses a � level structure with levels
|1〉,|2〉,|e〉 (see Fig. 2). Here, the upper level could be a P level
and the two lower levels could be S levels with a hyperfine
or Zeeman splitting. Alternatively, the levels |1〉 and |2〉 could
be an S and a D level respectively; our scheme only involves
virtual transitions between these levels, with no need for the
long coherence times required for an optical qubit. Two lasers
couple each of the lower levels to the upper level very far
off resonance so that population of the upper level remains
negligible. The couplings to the upper level have detunings of
order �, while the Rabi frequencies from the lower levels to the
upper one are �j (j = 1,2). Also the indirect transition from
|1〉 to |2〉 is taken to be off-resonant so that atoms stay all the
time in level |1〉, but virtual transitions affect non-negligibly
the vibrational dynamics.

The field coupling the occupied level |1〉 to the upper
level is assumed to correspond to a running wave propagating
perpendicular to the chain, with a spatially varying wave front
along the chain. The length scale in z direction must be shorter
than the distance between ions, but long enough that optical
forces along the chain axis are weak. The laser coupling level
|2〉 to |e〉 is taken to be a running wave; the propagation
direction of this laser can be chosen freely in order to obtain
a convenient Lamb-Dicke parameter ηx = kx

√
�/(2mωx) �

0.3, large enough to have significant coupling to the transverse

FIG. 2. (a) Scheme of the level structure required for the
implementation of local transverse frequency fluctuations by means
of lasers. The detunings are assumed to be large enough that all ions
stay in level |1〉 at all times. (b) Orientation of the lasers coupling to
the two optical transitions. The transition from |1〉 to |e〉 is taken to
be off-resonantly driven by a running field in the transverse direction
with a wave front of varying intensity along the axial direction. This
intensity profile must be pseudorandomly shifted, and must have
spatial variations over a scale smaller than the distance between ions,
while smooth enough that axial forces remain weak. The transition
from |2〉 to |e〉 is driven by a single laser at an angle that can be tuned
to the desired Lamb-Dicke parameter.

modes but not so large that terms of order higher than η2
x

become relevant.
For simplicity, here and in the following we give expres-

sions for the optical Hamiltonian acting on a single ion; the
extension to several ions is straightforward. The Hamiltonian
we consider is of the form

H =
∑
s=1,2

�s

2
[σ+,se

−i�s tfs(�r) + H.c.], (11)

where s runs over the two lower levels, �s is the detuning of
each laser with respect to the corresponding dipolar transition,
�s gives the laser amplitude, and �r is the position of the
ion. We have assumed that each of the laser fields couples
with only one of the lower levels, and we have defined the
raising operators σ+,s = |e〉〈s| with s = 1,2. The Hamiltonian
is written in interaction picture with respect to the electronic
levels, and after a rotating wave approximation to leave out
terms that rotate at twice the optical frequencies. The complex
functions fs contain the spatial dependence of the fields, and
read

f1(�r) = eik1xxfz(z), (12)

f2(�r) = ei�k2·�r . (13)

Here, �k2 is the wave vector of the laser coupling to level |2〉,
while the field that couples to level |1〉 is the product of a
running wave in the transverse direction with an axial profile
given by fz. We note that for arbitrary fz the function f1

does not satisfy the wave equations for the optical field. We
assume, however, that the axial spatial variations have a scale
much larger than λ1x = 2π/|k1x |, so that this factorization is
a good approximation.
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Applying standard procedures to eliminate the upper level,
one gets essentially the same effective Hamiltonian as in [28],
except for the spatial dependence of the fields. For the
derivation, one needs to assume

|�| 
 |�1|,|�2|,�,|δL|,|δL ± ωn|, (14)

where � is the decay rate from the upper level (otherwise
spontaneous decay cannot be neglected), δL is the detuning
of the Raman transition between |1〉 and |2〉, and ωn are the
frequencies of the motional modes. The resulting effective
Hamiltonian is composed of two parts, one that is diagonal with
respect to the internal levels and corresponds to an ac-Stark
shift,

H1 = |1〉〈1| |�1|2
4�

|fz(z)|2 + |2〉〈2| |�2|2
4�

, (15)

and one that gives a Raman coupling between internal levels:

H2 = �∗
1�2

4�
fz(z)∗|1〉〈2|e−i(kxx−δLt) + H.c., (16)

where kx = k1x − k2x is the transverse component of the effec-
tive wave vector of the Raman transition. In this expression, we
are neglecting a dependence of the form exp{ik2zz} assuming
that it does not give rise to resonant contributions that can
create axial excitations (it does cause an axial dependence of
the phase of the driving, which is irrelevant for our purposes).

The coupling to the transverse position operator x in H2 can
then be used to introduce the desired variation in the transverse
frequencies, due to virtual processes that involve the creation
and elimination of a phonon. The prefactor fz will make this
frequency shift different for the different ions in the chain,
and this axial profile is assumed to be shifted pseudorandomly
during the experiment. Hamiltonian H1 contains a term that
acts like an undesired optical potential and that in general, if
�1 and �2 are comparable, is much larger than the desired
effect. To reduce the magnitude of this unwanted potential, we
will assume that

|�1| � |�2|. (17)

The second term in H1 is a constant shift in energy that can
be reabsorbed by changing to a different rotating frame so that
one gets in H2 a time dependence with a detuning δ′

L instead
of δL.

We now assume that H2 is sufficiently far off-resonance
from all transitions, so that the dominant effect comes from
second-order perturbation theory, which requires

|�1�2|
4|�| � |δ′

L|,|δ′
L ± ωn|. (18)

Under this assumption, considering that the ions stay at all
times in level |1〉, and adding the remaining part of H1, one

obtains the following effective Hamiltonian for the motion:

Heff = |�1|2
4�

|fz(z)|2
{

1 − |�2|2
4�

[
1

δ′
L

+ η2
x

δ′
L + ωx

+ η2
xa

†
xax

(
1

δ′
L + ωx

+ 1

δ′
L − ωx

)]}
. (19)

This expression is achieved using an expansion in the Lamb-
Dicke parameter ηx , and neglecting the coupling to axial modes
since spatial variations along z are assumed to be weak.

All the terms that do not involve the mode operators can be
canceled out if the detunings and couplings satisfy the relation

4� = |�2|2
(

1

δ′
L

+ η2
x

δ′
L + ωx

)
. (20)

We note that condition (17) makes it possible to satisfy
this equality without breaking assumption (18). When con-
dition (20) is satisfied, we find the desired Hamiltonian:

Heff = −
∣∣∣∣�1�2

4�

∣∣∣∣
2

|fz(z)|2 η2
x a†

xax

(
1

δ′
L + ωx

+ 1

δ′
L − ωx

)
,

(21)

which induces a shift in the transverse frequency that depends
on the axial position of the ion with respect to the intensity
profile that controls the intensity of the Raman transition. By
pseudorandomizing this profile, one finally obtains dephasing
of the transverse modes enabling transport along a chain of
previously localized modes.

Equality (20) involves a transverse frequency ωx which
will be slightly different for the different ions. However, the
corresponding term appears multiplied by η2

x which is small,
the differences in frequencies are also small, and δ′

L must be
larger than the trapping frequency ωx , so the effect of these
frequency differences in Eq. (20) can be neglected. It should
also be noticed that the cancellation need not be perfect for
the scheme to work; it is enough to require that the optical
forces along the axial direction are much smaller than the
Coulomb repulsion so that the positions of the ions do not
vary significantly due to these forces.

We note that the statistical properties of the frequency
fluctuations experienced by the ions will strongly depend
on the shape of the axial profile and the kind of variations
introduced in it. We consider for instance the simple case of an
axial standing wave with constant amplitude and wavelength
but varying phase: in this case the fluctuations in Eq. (21) will
be contained between two limiting values, with a probability
distribution given by the values taken by the function sin2. The
fluctuations on different ions will have correlations determined
by the wavelength: by choosing λz = 8d/(2n + 1), the fluctu-
ations for ions at a distance d will be uncorrelated, while at
distance 2d they will be anticorrelated. Spatial correlations can
be suppressed or reduced using instead a speckle pattern, which
will give rise to pseudorandom spatial distributions [37–40],
or tightly focused beams pointing pseudorandomly at varying
ions.

A realistic implementation of our scheme could be carried
out with the following parameter values: ωx ∼ 2π × 400 kHz,
� ∼ 2π × 100 GHz, �2 ∼ 2π × 2 GHz, so that δ′

L ∼
2π × 10 MHz. The amplitude of the fluctuations can be
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tuned through �1; a choice of 2π × 200 MHz gives local
frequency variations between zero and about 2π × 20 kHz.
The case of a multi-isotope chain requires closer attention. We
consider specifically the case of the even-numbered isotopes
of ytterbium [41]. Consecutive isotopes have a difference in
frequency for the S-P dipole transition of about 1 GHz, a
difference which is negligible comparable to the detuning
chosen from this transition � ∼ 2π × 100 GHz. Also, by only
choosing even-numbered isotopes, with no hyperfine structure,
one avoids any additional complexity in the structure of the
lower levels so that the presented scheme holds for all ions in
the chain.

V. MEASUREMENT

The goal of the final measurement is to observe the impact
of noise on transport. To achieve this, it is enough to first
introduce a driving at the frequency of an ion on one edge of
the chain, let the system evolve under the dynamics including
frequency fluctuations, and at the end measure the occupation
of the different local modes to detect whether the motional
excitation has spread over the chain.

Depending on the amount of heating present, it may happen
that by the time one wants to measure the transport, heating
has masked everything else. For chains with more than a
few ions, initial ground-state cooling becomes also extremely
demanding. To tackle these problems, it can be useful to
consider a different, a bit more sophisticated approach, which
allows one to “filter out” the purely thermal contributions to the
excitations. The idea is very simple and relies on the fact that
thermal noise is symmetric in phase space, i.e., excitations
introduced by thermal noise have no preferred phase. This
means, if one first displaces an ion at one end of the chain and
at a later time measures first moments of the form of 〈xj 〉 and
〈pj 〉, thermal noise cannot contribute to the observed value,
and the signal must be entirely due to the initial excitation.

Measuring the first moments directly is not trivial in
trapped ions; standard measurements of the motion involve
sideband excitations and return the population of the different
vibrational levels. However, it is straightforward to measure
the first moments from a combination of displacement pulses
and measurements of the mean occupations. Let us consider a
displacement superoperator D(αj ) acting on ion j , which acts
on the annihilation operator in the form D(αj )aj = aj + αj .
The application of such a pulse followed by a measurement of
the mean excitation of site j gives the result

nj (αj ) = 〈[D(αj )aj ]†[D(αj )aj ]〉
= 〈a†

j aj 〉 + |αj |2 + 2Re(α∗
j 〈aj 〉). (22)

This means that 〈aj 〉 can be extracted by combining the
measurement results for different phase choices, in the form

〈aj 〉 = 1

3|αj | [nj (|αj |) + e2πi/3nj (|αj |e2πi/3)

+ e−2πi/3nj (|αj |e−2πi/3)], (23)

where 〈aj 〉 must be interpreted as Tr(ρaj ).
The measurement of first moments to observe the transport

due to local phase fluctuations has the problem that the
fluctuations themselves lead to a fast averaging out of the phase

of the first moments. One can avoid this problem averaging
over absolute values in the form of |〈aj 〉|2, where the angle
brackets indicate the quantum-mechanical mean for a given
realization of the fluctuations, and the bar above stands for the
statistical average over different realizations. This is equivalent
to an average over mean occupation numbers excluding the
contributions corresponding to thermal noise in the trap or
imperfect initial ground-state cooling.

One should note that if the system is coupled to an
environment which is the source of the heating, the excitations
being transported will suffer from damping. However, in a
typical ion setup the rate for damping of vibrations is lower
by many orders of magnitude than the rate at which thermal
excitations are introduced in the system, and thus the strategy
proposed is an appropriate solution for the filtering of the
excitations of interest.

VI. EXPECTED BEHAVIOR FOR SHORT CHAINS

As a simple illustration of the ideas presented, we consider
a chain of three sites. Taking parameters from [33], we
set an axial frequency ωz = 2π × 40 kHz, such that the
nearest-neighbor couplings from Eq. (7) are approximately
2π × 1.45 kHz. Local transverse frequencies are taken to be
2π × 435, 439.5, and 445 kHz. For these parameter values the
modes are strongly localized and therefore transport between
sites is suppressed: Fig. 3, bottom left, shows the evolution
of populations of the three sites as function of time when
an initial excitation is introduced in site 1; the maximum
probability to find the excitation in site 3 at a later time is of
about 2%.

In contrast, the top-left figure shows the results in the
presence of frequency fluctuations due to a global standing
wave as proposed in Sec. IV. Its amplitude is taken to be
such that it induces shifts between zero and 2π × 6 kHz. The
fluctuations are introduced by randomly setting the phase of the
standing wave, letting the system evolve by the corresponding
fixed Hamiltonian for a time interval of 20 μs, and then shifting
the phase again. In order to eliminate correlations between the
frequency shifts experienced by neighboring ions, we choose
a ratio of 8/(2n + 1) between the wavelength of the standing
wave and the distance between ions. As can be seen in the
figure, in this scenario excitations tend to become equally
distributed over the three sites, with an equilibration time scale
of about 5 ms. We note that the behavior is similar to the one
obtained if independent frequency fluctuations are introduced
in each site.

For the Hamiltonian considered, the evolution of site
populations when the initial state of site 1 is a coherent state
|α〉 with |α| = 1 is the same as when exactly one vibrational
excitation is introduced in that site. If the initial state is a
coherent state with a different value of |α|2, the results are
simply rescaled by this value. Working with coherent states
has some advantages: calculations of the evolution involving
large numbers of excitations can be done efficiently using the
formalism of Gaussian states [42], and coherent states can be
created in the laboratory in a more direct way than states with
a definite number of excitations.

Although the approach to equilibrium observed in the
previous figures is clearly not exponential, an exponential fit
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FIG. 3. Motional excitation dynamics in an inhomogeneous three-ion chain with local dephasing. We consider a chain with three ions with
local frequency differences of the order of 2π × 5 kHz and nearest-neighbor couplings of about 2π × 1.5 kHz (more details in the text). Left
panels show plots the population of sites 1 (blue), 2 (red), and 3 (green) as a function of time, when an initial excitation is placed in site 1.
Bottom left: Unitary time evolution in the absence of frequency fluctuations. Top left: Frequency fluctuations are produced by a global standing
wave with fluctuating phase; the noise amplitude here is taken to be Anoise = 2π × 3 kHz (frequency shifts lie between 0 and 2Anoise); the
axial wavelength is taken to be λz = 8d/(2n + 1) with d the distance between ions, so that neighboring ions experience uncorrelated shifts.
Fluctuations are left constant over a time step of t = 20 μs and then suddenly switched to another random value; the results are averaged over
600 realizations (not enough for convergence but enough to see representative behavior). The right-hand side panel shows approximate rates
for equilibration of the system for different values of the amplitude of the frequency fluctuations (blue circles). For comparison, we show with
red crosses the rates found with no spatial correlations.

of the evolution of the population of site 3 can be used to
obtain an approximate value of the equilibration rate. In the
right panel of Fig. 3 the results of this fit are shown with blue
circles, for the same parameters as the previous figures. The
rate for equilibration of the excitation among the different sites
depends on the strength of the fluctuations applied, and the
limits of very weak or very strong dephasing are detrimental
for transport.

The red crosses in the plot correspond to the rates obtained
for a case with the same probability distribution for the
frequency of each individual ion, but with no spatial corre-
lations. The effect of spatial correlations is found to become
significant for large frequency fluctuations. In this regime, the
correlations of the fluctuations on sites 1 and 3 for the case of
a standing wave lead to a slower equilibration compared with
the uncorrelated case. This has a simple explanation: for large
fluctuations, the oscillations in the evolution of populations
are suppressed, and the rates for equilibration scale like the
inverse of the dephasing amplitude. A standing wave with
no correlations between neighboring ions has anticorrelated
fluctuations between sites 1 and 3; this can be described by
an additional term in the master equation, which enhances the
decay of coherences between those two sites.

In the plots so far no thermal noise is included, and the initial
state is assumed to be perfect vacuum. In practice, the motion
of a trapped ion will experience thermal heating to some extent
which greatly depends on the kind of trap. For an experiment
lasting some milliseconds, one could expect a few thermal
phonons [35]. Also, perfect ground-state initialization can be
very demanding, and a few excitations might already be present
in the initial state. As an example, Fig. 4 shows the same as
Fig. 3 (top left) but including thermal noise on all sites, and
an initial population of 0.2 in each site. For simplicity, thermal

noise is modeled by the standard master equation describing
the coupling to a Markovian reservoir characterized by a rate
2κ and a mean excitation number n̄ corresponding to thermal
equilibrium [43]. We take n̄ = 1.5 × 107, and an increase of
0.15 phonons per ms for each ion (which gives a coupling
κ = 5 × 10−9 ms−1).

FIG. 4. Effect of residual thermal excitation. Same as in Fig. 3
(top left) but including an initial residual occupation of 0.2 in each
site and heating noise during the experiment, with an increase of
0.15 phonons per ms per ion. The inset illustrates how the proposed
measurement scheme filters out the thermal behavior; thus, the
plot shows only the population of each site as consequence of the
initial injected excitation being transported throughout the chain,
ntr

j = |〈aj 〉|2 (more details in the text).
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In principle, the transport dynamics can be inferred from the
plots in presence of thermal noise subtracting the excitations
that are due to imperfect initial state preparation and heating
during the experiment. Nevertheless, this requires a reliable
characterization of these processes. Indeed, one should be able
to prove, for instance, that the tendency observed in Fig. 4 to
an equilibration of the excitations is not due to a difference
in the noise rates. Alternatively, one can solve this problem
performing measurements of the first moments as discussed
in the previous section. In this way one can filter out thermal
excitations using the fact that thermal noise has no preferred
phase. The results are shown in the inset of Fig. 4, where a
behavior very similar to the one of Fig. 3 (top left) can be
recovered.

VII. CONCLUDING REMARKS

We have shown how the use of appropriately chosen lasers
can lead to local dephasing noise for the transverse vibrational
degrees of freedom of ions in a chain. The method we propose
is scalable, and the fluctuations introduced with this procedure
take time-dependent pseudorandom values from a continuum
distribution, features which represent an improvement with

respect to previous proposals [28]. As an illustration of the
idea, we consider the example of vibrations in an angle
trap or a multiisotope chain, where the variations of local
trapping frequency lead to localization of the excitations. In
this scenario, we show how the addition of local fluctuations
can bridge the frequency gaps and allow for the tunneling of
excitations.

The results presented demonstrate how local dephas-
ing noise suppresses localization permitting transport. This
scheme can be extended to include situations with a stationary
flow of excitations by combining our proposal with the
methods proposed in [28] for the measurement of heat flows in
systems which include sources and sinks. We expect that these
tools will contribute to the implementation of more general
simulations of quantum transport in noisy and disordered
environments using ultracold trapped ions.
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