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Crossover from tunneling to multiphoton ionization of atoms
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We present a theory illuminating the crossover from strong-field tunneling ionization to weak-field multiphoton
ionization in the interaction of a classical laser field with a hydrogen atom. A simple formula is derived in which
the ionization amplitude appears as a product of two separate amplitudes. The first describes the initial polarization
of the atom by virtual multiphoton absorption and the second the subsequent tunneling out of the polarized atom.
Tunneling directly from the ground state and multiphoton absorption without tunneling appear naturally as the
limits of the theory.
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I. INTRODUCTION

Traditionally the interaction of a strong laser field with
an atom which leads to ionization is considered to occur
by two contrasting mechanisms, as limiting cases of the

so-called Keldysh parameter γ =
√

Ip

(2Up) , where Ip is the

atom ionization potential and Up is the laser ponderomotive
potential. The Keldysh parameter can be represented in atomic
units also as γ = ω(2Ip)1/2/E0, where the classical laser
electric field has frequency ω and strength E0. For γ < 1
or low frequency and high intensity, ionization proceeds by
tunneling out of the atomic potential under the influence of
the potential supplied by the field. When γ > 1, for high
frequency and relatively low intensity, then direct absorption of
several photons occurs, giving rise to ionization and possibly
“above-threshold” ionization (ATI) due to absorption of further
photons by electrons already in the continuum.

The earliest theoretical treatments were based on the
“strong-field approximation” (SFA) by Keldysh [1], Faisal [2],
and Reiss [3], known as the KFR approach or simply “Keldysh
theory.” An enormous number of papers have appeared since
on the subject of ionization in strong fields and here we
give only examples to illustrate the further development of
the SFA ideas. Shortly after the publication of the Keldysh
paper, Perelomov and co-workers [4] examined the problem in
more detail. In particular they introduced the idea of treating
the final electronic state in the semiclassical approximation
with emphasis on the classical action function. They also took
into account the effect of the atomic potential on the final
state [5] and used the “imaginary-time” method for tunneling.
A similar approach using semiclassical wave functions and
imaginary-time tunneling is adopted by Mur et al. [6].

Yudin and Ivanov [7] emphasized the phenomenon of nona-
diabatic energy absorption during tunneling and illustrated
its importance particularly in the region γ ≈ 1. Around the
year 2000, in response to new experiments on ionization

*klaiber@mpi-hd.mpg.de
†briggs@physik.uni-freiburg.de

using free-electron lasers, the theory was developed further
[8] particularly to describe the region of large γ ≈ 30–100,
where multiphoton processes dominate completely.

An alternative description of the nonadiabatic tunneling
mechanism giving increased tunneling probability was made
by Klaiber et al. [9]. Here the energy absorption during
tunneling is treated by classical mechanics. Clearly, however,
as explained in more detail below, the energy gain can also be
thought of as the absorption of photons during the tunneling
process.

There are also a number of useful reviews of the subject.
For example, a critique of the SFA is given in Ref. [10] as well
as a detailed discussion of tunneling in the combined fields of
laser and atom and the possibility of nonadiabatic tunneling.
Becker and Faisal [11] discuss the SFA in the more general
context of “strong-field S-matrix theory” and a more recent
exposition of Keldysh theory is given in Ref. [12].

In summary, one can say that the SFA and its extensions
have been very successful in describing the ionization of atoms
by laser fields. The basic SFA involves the approximation of
the exact T -matrix element for the ionizing transition by a
matrix element of the form

f =
∫ ∞

−∞
〈φf (t ′)|VF (t ′)|φi(t

′)〉 dt ′, (1)

where |φi〉 is the initial eigenstate of the atom alone, |φf 〉
is the continuum eigenstate of the laser field alone, and
VF is the interaction of the atomic electron with the laser
field. From the outset [1] it was shown that both limits
of multiphoton ionization and ground-state tunneling are
contained in this theory. This is plausible if one considers that
in a Floquet picture |φf 〉 contains the electron coupled to any
number of photons, so that multiphoton ionization is described.
Additionally, in the opposite limit of γ < 1, a semiclassical
description of |φf 〉 in the classical laser field corresponds to a
tunneling interpretation. Nevertheless, a clear physical picture
of the intermediate region and the transition between the two
limits does not emerge.

In certain cases fully numerical calculations are now
available [13–15]. In a recent paper [16] such a numerical
study of ionization in extremely strong laser fields was
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reported. The results were interpreted by pointing out that
tunneling may not only occur directly out of the atomic
ground state (the hydrogen atom was used as an example).
Rather, excitation of the atom to higher bound states may
occur followed by tunneling. Indeed, since the binding energy
is then much reduced, as in the nonadiabatic case, tunneling is
more efficacious from such excited states. In fact the picture
presented corresponds to “over-the-barrier” ionization out
of excited states without the need for tunneling. Although
plausible, we feel that such a picture is not quite correct. The
authors considered that the real time-independent hydrogen
eigenstates must first be populated by multiphoton absorption.
Since for the case of hydrogen the first excited N = 2 manifold
lies 10.4 eV above the ground state, a significant multiphoton
transition is required to populate these states.

Here we put forward an alternative picture in which
the dominant role is played not by real eigenstates but by
virtual “off-the-energy-shell” states of the hydrogen atom.
For infrared and visible photons these energy states lie far
below the N = 2 excited manifold but nevertheless tunneling
can occur from them. We show that the picture of virtual
absorption allows a simple description of the smooth transition
from tunneling to multiphoton ionization to be given. We make
clear from the outset that our aim is not to develop a theory
with which to confront specific experimental data. There one
cannot compete with fully numerical methods. Rather it is to
expose the physical mechanism of laser-atom interaction and
to explain in a simple picture how the crossover from tunneling
to multiphoton ionization arises.

When an atom is subject to an electric field whose frequency
is not resonant with transition to an eigenstate, there is an in-
teraction and distortion which is usually referred to classically
as polarization of the electron cloud. In the quantized photon
picture this is ascribed to the virtual absorption of photons.
After each photon absorption there is a changed wave function
and, since the energy is higher, this wave function usually
extends to larger distance. That is, as each photon is absorbed
virtually, the atom “swells” in extent. Clearly, ionization by
real photon absorption or by tunneling can occur readily from
such extended and weakly bound virtual states. A calculation
of this process of virtual excitation followed by tunneling is
the subject of this paper.

Already in 1988, virtual multiphoton off-shell atomic states
were used to provide the first explanation of electron angular
distributions in ATI of the hydrogen atom [17] by comparison
with experiments of Feldmann et al. [18]. Unfortunately,
although studied extensively in the unpublished work of
Kracke [19] and used in ion-atom collisions [20], no further
discussion of the nature and properties of such wave functions
seems to have been published.

The plan of the paper is as follows. In Sec. II we present a
critique of the standard scattering theory used to calculate the
transition amplitude (T -matrix element) to continuum states.
We show that the transition amplitude to a continuum state can
be represented in an intuitively appealing way in that it appears
as a direct product of the amplitude for virtual n-photon ab-
sorption and the probability for subsequent tunneling from this
virtual excited state. The results of calculations for the realistic
case of the three-dimensional hydrogen atom are presented in
Sec. III. The virtual absorption wave function is calculated

numerically by iteration of the inhomogeneous Schrödinger
equation and for the tunneling wave function the quasistatic
approximation is employed using a separation in parabolic co-
ordinates. The results indeed exhibit a smooth and continuous
transition from optimum tunneling directly from the ground
state to dominant multiphoton ionization as the Keldysh
parameter is varied. Throughout we use atomic units in which
the electron charge, the electron mass, and � are equal to unity.

II. THE BASIC EQUATIONS

A. The strong-field approximation

The dynamics of ionization of an initially bound electron
in a strong laser field is essentially decided by the competition
between two electric fields: that of the parent nucleus and that
of the external laser. As such there is great similarity with the
theory of electron exchange in ion-atom collisions where the
two competing fields are those of the two nuclei and involve
two frames of reference, the laboratory frame of the parent
nucleus and the moving frame of the incident nucleus. Indeed
over-the-barrier ionization was first formulated for the ion-
atom problem. This analogy will emerge also in the formulas
presented here and perhaps casts a new light on the SFA.

We consider a total Hamiltonian

H (t) = Hi + VF (t) = K + V + VF (t) = Hf + V, (2)

where K is the electron kinetic energy operator, V is the
nuclear potential, and VF (t) is the interaction between electron
and laser field (considered to be a classical field). The electron
wave function at time t is given by solution of the equation

H (t)�(t) = i
∂�(t)

∂t
. (3)

The transition probability amplitude from an initial to a final
state at time t can be expressed in two equivalent post and
prior forms; i.e.,

f (t) = 〈φf (t)|�+
i (t)〉 = 〈�−

f (t)|φi(t)〉. (4)

The two exact wave functions propagate forward in time with
�+

i (t) → φi as t → −∞ and backward in time with �−
f (t) →

φf as t → ∞, respectively. If one considers that φi is an
eigenstate of Hi and φf is an eigenstate of Hf , then from the
Schrödinger equation one can show that

f (t) =
∫ t

−∞
〈φf (t ′)|V |�+

i (t ′)〉 dt ′ (5)

for the post form or

f (t) =
∫ ∞

t

〈�−
f (t ′)|VF (t ′)|φi(t

′)〉 dt ′ (6)

for the prior form. These two expressions are exact.
An approximation that has received much attention for

ionization is the SFA of Eq. (1). In the formalism of rear-
rangement given here, one notes that φf (t) is an eigenstate of
the (electron + field) Hamiltonian Hf . Hence this is a Volkov
state and the SFA is made simply by replacing �+

i in Eq. (5)
by the initial state φi . Interestingly, although often termed
“nonperturbative,” now the SFA appears as the first Born term
for rearrangement of the electron between eigenstates of the
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two potentials:

f SFA =
∫ ∞

−∞
〈φf (t ′)|V |φi(t

′)〉 dt ′. (7)

As in general rearrangement scattering [21], one can show
that the equivalent first Born approximation putting �−

f ≈ φf

in the prior form, Eq. (6), is identically equal, i.e.,

f SFA =
∫ ∞

−∞
〈φf (t ′)|VF (t ′)|φi(t

′)〉 dt ′, (8)

so that one can use either potential in the first Born SFA
rearrangement matrix element.

In the length gauge the Volkov state reads (in units with
e = � = m = 1 and c = 137)

φV
f (r,t) = exp[i( p + A(t)/c) · r − i

∫ t

dt ′( p + A(t ′)/c)2/2],

(9)
where A is the vector potential. This is simply the Kramers-
Henneberg space-translated plane wave [2] describing the elec-
tron stationary in the moving field. The additional exponential
energy and momentum factors involving A are identical to the
“electron translation factors” appearing on final-state wave
functions in ion-atom electron capture, where the electron is
also stationary in the moving field of the ion [22]. This justifies
our view of the SFA as a collisional rearrangement process in
the first Born approximation.

In approximate evaluations in collision theory, the time-
integrated forms, Eqs. (5) and (6), of the transition amplitude
are usually preferred to the direct projection forms, Eq. (4).
Basically this is because, if φi and φf are orthogonal as is
usually the case, the forms in Eq. (4) give zero for the first-order
amplitude whereas the integral forms in Eqs. (7) and (8) give
a finite result.

By contrast, in numerically accurate propagations of the
time-dependent wave function it is more direct to use the
projection form, Eq. (4). This is the strategy adopted in this
paper and it removes a certain ambiguity in the physical
interpretation of the SFA when the two equivalent forms, Eqs.
(7) and (8), are used. In Eq. (7) one would say that ionization
out of the initial state occurs by the electron scattering from its
parent nucleus and then accessing the Volkov state, describing
either tunneling or absorption of photons depending upon the
value of γ . However, Eq. (8) would be interpreted as an initial
absorption of a single photon via VF , followed by overlap on
the same Volkov state. Which physical picture is correct?

In the following we describe ionization in a unified way in
that we approximate �+

i in Eq. (5) essentially by a product of
a state which initially has absorbed virtually a certain number
of photons and a semiclassical state describing subsequent
tunneling in the full potential of the nuclear and laser electric
fields. This describes a continuous transition from tunneling
to a multiphoton regime according to which element of the
product states is dominant.

B. The approximate transition matrix element

We begin, not with the standard form, Eq. (5), of the transi-
tion amplitude, but with the direct time propagation of Eq. (4):

f (t) = 〈φf (t)|�+
i (t)〉 = 〈 pf |U (t, − ∞)|φi〉, (10)

where 〈 pf | is the final momentum state of the continuum
electron, |φi〉 is the initial atomic state, and(

H (t) − i
∂

∂t

)
U (t,t ′) = 0 (11)

is the full time propagator. Our approach is to approximate the
time development as occurring initially, up to a time ti with
the laser field as a perturbation, followed by a propagation in
the static field of the laser plus atomic Coulomb potential. That
is, we write the full time-development operator as a product,

f (t) = 〈 pf |U (t,ti)U (ti , − ∞)|φi〉
= 〈 pf |U (t,ti)|ψ(ti)〉, (12)

where |ψ(ti)〉 is an off-shell atomic state with photons
absorbed virtually. This describes an initial polarization of
the atom by the laser field. In the next section this state is
expanded in states in which a given number n of photons has
been absorbed virtually. The operator U (t,ti) then describes
the subsequent tunneling transition of the electron to a final
ionized state. Then we write

〈 pf |U (t,ti)|ψ(ti)〉 =
∫

d rf 〈 pf |rf 〉〈rf |U (t,ti)|ψ(ti)〉.
(13)

Since the propagation through the tunneling region and
beyond as a continuum electron is described subsequently by
a semiclassical wave function, we define ionization probability
as given by the probability density |〈rf |U (t,ti)|ψ(ti)〉|2 at a
point rf , corresponding to the exit from the tunneling region.
In Appendix B it is shown that, as a result of the imaging
theorem [23], when the quantum propagator U (t,ti) can be
replaced by its semiclassical approximation, this transition
probability density is equal to the transition probability
density |〈 pf |U (t,ti)|ψ(ti)〉|2 in momentum space.

The matrix element to be calculated can be written as an
integral of the product of the transition amplitude to a virtual
state multiplied by the tunneling amplitude; i.e.,

�+(rf tf ) ≡ 〈rf |U (tf ,ti)|ψ(ti)〉

=
∫

〈rf |U (tf ,ti)|r i〉〈r i |ψ(ti)〉d r i

=
∫

K(rf tf ,r i ti) ψ(r i ti)d r i , (14)

where we have introduced the kernel K(rf tf ,r i ti).

III. THE OFF-SHELL WAVE FUNCTIONS

We consider ionization of a hydrogen atom; i.e., we
take Hi ≡ H0 = K + V where V (r) = −κ/r , the ionization
potential Ip = κ2/2, and nuclear charge κ = 1. The initial
bound 1s ground state is

ψ0(r) =
√

κ3

π
exp[−κr]. (15)

The first task is to calculate the virtual state |ψ(ti)〉. We
approximate the exact state by its lowest-order perturbation
result. Hence, for this part of the ionization process the
laser field is taken to be effectively a cw pulse. Then, the
hydrogen atom is driven by a periodic circularly polarized
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FIG. 1. The normalized off-shell Coulomb wave functions for
n-photon virtual absorption with ω = 0.025 a.u. From left to right
n = 0–16.

laser with electric field F(t) = E0x̂ cos[ωt] + E0ŷ sin[ωt].
The time-dependent Schrödinger equation then reads

H0|ψ(t)〉 − r · F(t)|ψ(t)〉 − i
∂|ψ(t)〉

∂t
= 0. (16)

Since the laser field is periodic the state vector can be expanded
in a Floquet Fourier series

|ψ(t)〉 = exp[iIpt]
∑

j

|ψj 〉 exp[−ijωt]. (17)

Inserting this expression into the Schrödinger equation, mul-
tiplying by exp[inωt], and integrating over all time yields

[H0 + (Ip − nω)]|ψn〉

= E0

2
[(x + iy)|ψn−1〉 + (x − iy)|ψn+1〉]. (18)

This equation describes the population of the state |ψn〉 by
absorption or emission of a photon from neighboring states.
Since we consider the initial state as the ground state, in
accordance with perturbation theory we retain only the lower
state in the inhomogeneous term to give

[H0 + (Ip − nω)]|ψn〉 =E0

2
(x + iy)|ψn−1〉. (19)

This is the inhomogeneous equation for the off-shell Coulomb
wave functions. In Ref. [17] it was solved iteratively in a
numerical procedure for the absorption of up to nine photons to
calculate the angular distribution of ATI continuum electrons.
Here we restrict discussion to virtual states which are still
bound. In Appendix A we show how the inhomogeneous
equation for the radial wave function is derived and solved.
The method goes back to Dalgarno and Lewis in 1955 [24]
and was used often in early work on multiphoton ionization
(e.g., in Refs. [25–27]). The results are shown in Fig. 1 for
the radial density |R̃n(r)|2 as a function of distance r from
the nucleus. Since the absolute magnitude of the virtual wave
functions decreases strongly with n, we have normalized each
magnitude to unity by defining R̃n(r) ≡ Rn(r)/Rn(rn), where
rn is the position of the wave-function maximum. For circular
polarization the orbital angular momentum quantum numbers
(l,m) are simply l = m = n.

The absorption of multiple photons is usually depicted as
a vertical process in the atomic potential but the main feature

of the off-shell wave functions shown in Fig. 1 is that, as the
energy and angular momentum of the electron increase, the
wave function has its maximum at larger and larger r values.
In Fig. 1, to illustrate clearly the shift of the wave function from
the nucleus, the modulus squared of each wave function for
successive photon absorption has been normalized by dividing
by its maximum value. The actual magnitude of the wave
function decreases with each iteration n due to a factor En

0 in
the normalization.

Of course, the shift of the wave function to larger distances
as binding energy decreases is also a feature of the on-shell
eigenstates of the hydrogen atom. The effect is amplified here
by the dipole operator in the inhomogeneous term. The im-
portant point for subsequent tunneling is that this virtual wave
function has significant amplitude in the tunneling region of the
combined atomic and laser electric field potential. As shown
in the next section, this leads to enhanced tunneling out of
virtually excited states compared to that from the ground state.

It is interesting to compare the energy gain by virtual photon
absorption treated here with the energy gain calculated in the
“nonadiabatic” tunneling picture of Ref. [9]. Since the former
is calculated in the quantum picture and the latter in classical
mechanics, the quantities to be compared are somewhat
arbitrary. However, to be precise, we plot the effective total
radial energy of the quantum case against the total energy of
the classical case, both evaluated in the tunneling direction
x. That is, we plot −(κ2

n + n(n + 1)/r2)/2 [see Eq. (A3)] at
the maximum value of the wave function against the energy
(ṙ2/2 − rE0 − κ/r) for the classical energy gain [9]. This
comparison is shown in Fig. 2.

In the cases γ = 0.66 and γ = 2.0, Figs. 2(a) and 2(b), with
low frequency ω = 0.025 a.u. there is reasonable quantitative
agreement but good qualitative agreement. For γ = 0.66, the
frequency implies that the energy increase, due to five photons
absorbed, is small on the energy scale shown. However, the
quantum calculation shows the wave function penetrating into
the tunneling region as photons are absorbed. The same is
true for the multiphoton ionization regime γ = 6.0 shown in
Fig. 2(c). Here one observes 16 photons absorbed virtually
with the energy increasing as a function of position in almost
exactly the same way as in the classical calculation. Of course
many photons corresponds to the classical limit but the close
agreement of the two estimates of energy versus position is
quite noteworthy.

IV. THE TUNNELING WAVE FUNCTION

The second task is the calculation of the tunneling proba-
bility amplitudes for different starting values of ri in Eq. (14)
and integration over ri to obtain the total ionization probability
amplitude. From Eq. (14) we calculate the wave function at
the tunnel exit as

�+(rf ) =
∫

K(rf ,r i) ψn(r i) d r i . (20)

The tunneling wave function, i.e., the kernel as a function of r i ,
with the (static) field of strength E0 in the x direction, satisfies
the Schrödinger equation(

−


2
− 1

r
− xE0

)
K = −κ2

n

2
K, (21)
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(a)

(b)

(c)

FIG. 2. The total potential in the x direction. The dots indicate
the position of the wave function maximum as a function of energy
for increasing number of photons. The dashed line is the classical
energy gain.

where κ2
n ≡ 2(Ip − nω). Following Refs. [28,29] the tunneling

wave function is calculated in parabolic coordinates (η,ξ,ϕ)
with x = (η − ξ )/2, y = √

ηξ cos ϕ, and z = √
ηξ sin ϕ since

the equation separates in these coordinates. The tunneling is
described by the η equation and, as shown in detail in Ref. [30],
can be taken to the lowest order in �, i.e., the Wentzel-Kramers-
Brillouin solution. This gives the semiclassical tunneling
wave function. Of course the virtual wave function ψn(r i)
in Eq. (20) is calculated in spherical coordinates with the
z axis perpendicular to the plane of polarization. Then, for
circular polarization, the state with angular momentum l = n

is populated and with the highest m = n value. The electron
density in the excited state is aligned in the xy plane and
correspondingly we take m = 0 only with respect to the
parabolic φ dependence, which gives optimum tunneling [30].
With these approximations the function K(rf ,r i) can be

calculated and the integral over r i in Eq. (20) performed
numerically. Note that, in parabolic coordinates, the integrand
is exactly of the form considered by Landau and Lifshitz [28]
for ionization from the ground state. In their calculation they
simply assumed a particular starting point r i . Here we have
performed the integral over all r i .

The final ionization probability is a product of the two
competing processes of multiphoton absorption and under-
the-barrier tunneling. In perturbation theory, the n-photon
wave function ψn(r i ti) contains a time-dependent phase
factor exp [i(Ip − nω)ti]. Hence we treat each n-photon state
separately corresponding to a different final energy. Also, to
make the calculation of tunneling probability tractable, as in
Ref. [9], we describe tunneling in the static electric field at
a time corresponding to the maximum of the field strength.
Then the differential ionization probability out of a state with
n photons absorbed virtually is time independent:

dPn

d rf

= |�+
n (rf tf )|2 =

∣∣∣∣
∫

K(rf ,r i) ψn(r i) d r i

∣∣∣∣
2

. (22)

The n-photon absorption probability decreases as E2n
0

whereas the tunneling probability increases exponentially in
(Ip − nω). Below, we consider a fixed frequency, low enough
to justify the quasistatic tunneling approximation but requiring
many photons to be absorbed to reach the ionization threshold.
Varying γ then corresponds to varying field strength. The
maximum value of the field strength determines the height
of the potential barrier for tunneling and so has a decisive
effect on the tunneling probability. The competition between
the probability to access a state by photon absorption and the
probability to tunnel out from that state decides the dominant
mode of photoionization. The results illustrate this influence
of the laser field strength on the ionization mechanism and are
presented in Fig. 3.

V. THE IONIZATION PROBABILITIES

In Fig. 3 we show the ionization probabilities as a function
of the number of virtually absorbed photons, up to an energy
corresponding to the top of the potential barrier. To illustrate
the relative probabilities for ionization from each virtual state,
we plot the quantity

P rel
n = |�+

n (rf )|2
|�+

max(rf )|2 (23)

for each n, where |�+
max|2 corresponds to the n value giving

maximum ionization probability and rf is the tunnel exit.
In all cases, ω is fixed at a value of 0.025 a.u. Direct
photoionization corresponds to absorption of 20 photons. For
small γ equal to 0.66, shown in Fig. 3(a) and corresponding to
a field strength of 0.04 a.u., ionization occurs most probably
directly out of the ground state. Principally this is because the
height and width of the potential barrier falls with increasing
maximum field strength and tunneling probability depends
upon it exponentially. Here the barrier is such that tunneling
can take place from the ground state. Although tunneling from
higher-energy states is even more probable, this is more than
offset by the reduced probability of photon absorption, leading
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FIG. 3. The relative probabilities of ionization as a function of
increasing numbers n of virtually absorbed photons of frequency
0.025 a.u.

to a monotonic decrease of ionization probability as a function
of the number of photons absorbed.

By contrast, at high value 6.0 of γ , Fig. 3(c), the picture is
quite different. In this case the field strength is only 0.003 a.u.
and the height of the barrier suppresses tunneling strongly
from the lower-energy states. Here one sees a monotonic
increase of probability with photons absorbed corresponding
to enhanced tunneling out of successively higher-energy states.
Clearly this limit corresponds to direct multiphoton ionization,
as in the ATI calculations of Ref. [17]. Paradoxically, it is the
increasing tunneling rate that leads to the increase of ionization
probability with photon number, which is normally referred to
as the multiphoton ionization limit. As field strength decreases
this leads in turn to the most probable transition being due to
no tunneling at all, i.e., over-the-barrier release of electrons.

Note that we are comparing always relative probabilities as
a function of photons absorbed. Since the field strength is ten
times lower, the absolute probabilities are lower for γ = 6.0
than for γ = 0.66 due to the lower field strength for fixed
photon frequency.

FIG. 4. The relative probabilities of ionization as a function of
increasing numbers n of virtually absorbed photons for ω = 0.05 a.u.

As one might expect, intermediate values of γ interpolate
between these two limits and exhibit preferential tunneling
from virtual excited states which are still below the top of the
barrier. For the higher-energy states the probability falls again
even though tunneling is enhanced. The example γ = 2.0,
corresponding to field strength 0.01 a.u., is shown in Fig. 3(b).
Here the calculation predicts that a maximum ionization
probability occurs for three-photon absorption, followed by
tunneling. The three panels of Fig. 3 illustrate nicely the
crossover from ground-state tunneling to multiphoton ioniza-
tion without tunneling.

The same pattern emerges for different values of ω,
although for higher frequencies, since for hydrogen γ =
ω/E0, the crossover to predominant ground-state tunneling
(and even over-the-barrier escape) occurs at values of γ

exceeding unity. This is illustrated in the subsequent figures
where we consider the two cases of ω = 0.05 a.u. and 0.1 a.u.

In Fig. 4(a), we show the relative probabilities for ω =
0.05 a.u. and γ = 1.0 giving E0 = 0.05 a.u. Already for this
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FIG. 5. The relative probabilities of ionization as a function of
increasing numbers n of virtually absorbed photons for ω = 0.10 a.u.

field strength there is most probable tunneling out of the ground
state and the multiphoton excitation probability falls off rapidly
for n = 1. At intermediate γ = 2.0, shown in Fig. 4(b), the
most probable tunneling has shifted to n = 1. At higher γ = 8,
Fig. 4(c), corresponding to field strength E0 = 0.006, the
transition to preferential multiphoton ionization has been made
completely. The same is true for ω = 0.10 and γ = 8.0 shown
in Fig. 5. However, for this frequency, the field is E0 = 0.012
and only the virtual absorption of two photons is necessary to
reach the top of the barrier. In the case of ω = 0.10 (not shown),
already at γ = 2.0, the field E0 = 0.05 is such that the barrier
is so low that ionization occurs over the barrier after the absorp-
tion of just one photon and there is essentially no tunneling.

VI. CONCLUSIONS

We have derived a simple intuitive expression, Eq. (14),
describing the ionization of the hydrogen atom by a classical
laser field as consisting of two steps. The ionization amplitude
then factors into a product of the separate amplitudes of the two
steps occurring. The first step is a polarization of the atom and
energy increase of the electron due to the virtual absorption
of photons. The second step is the tunneling of the virtually
excited electron out of the total (atom + field) static potential
leading to ionization.

The virtual absorption of photons leads to the electron
gaining energy as it recedes from the nucleus and this
mechanism supports the supposition of Klaiber et al. [9], who
described the nonadiabatic energy gain by classical mechanics.
Indeed, there is close agreement, for a large number of photons
absorbed, between the energy gain predicted in our quantum
perturbation theory and that ascribed to classical motion.

The results for the relative ionization probabilities as a
function of the number of virtually absorbed photons are
presented for fixed laser frequencies but low enough as to
require many photons to be absorbed to reach the ioniza-
tion threshold. The Keldysh parameter γ then is inversely
proportional to the peak field strength and this decides the
position and value of the peak of the tunneling potential that is
decisive for the tunneling probability. The results demonstrate
a continuous smooth transition between the two limits in which
the maximum probability is associated with direct ground-state
tunneling for the higher strengths and complete multiphoton
absorption for lower strength fields.

FIG. 6. Schematic picture of the crossover from tunneling to
multiphoton ionization.

The transition is indicated schematically in Fig. 6, which
emphasizes that, contrary to the usual depiction of a vertical
transition in space, as the electron absorbs energy by virtual
photon absorption, the atomic wave function swells in size.
Schematically and following tradition, γ ≈ 1 is shown as the
intermediate crossover region. However, as we have seen in
the example of ω = 0.10 a.u., the tunneling region and indeed
direct over-the-barrier field ionization can set in for γ values
greater than unity.
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APPENDIX A: OFF-SHELL COULOMB WAVE FUNCTIONS

The inhomogeneous equation for the off-shell Coulomb
wave function is given in Eq. (19):

[H0 + (Ip − nω)]|ψn〉 =E0

2
(x + iy)|ψn−1〉.

In spherical coordinates this is

[H0 + (Ip − nω)]|ψn〉 = rE0

2
sin(θ )eiφ|ψn−1〉. (A1)

Projecting on spherical harmonics yields an iterative
equation for the radial part of the excited states ψn. With
ψ0(r) = R0(r)Y0,0(θ,φ)/r and R0(r) = 2

√
κ3r exp(−κr) the

first-order equation reads

R′′
1 (r) − 2R1(r)

r2
+

(
2

(
−Ip + ω + κ

r

))
R1(r)

= −
√

2

3
rE0R0(r). (A2)

The nth-order equation to be solved iteratively is

R′′
n(r) +

(
−κ2

n − n(n + 1)

r2
+ 2κ

r

)
Rn(r)

= −
√

2n

2n + 1
rE0Rn−1(r)

≡ f (r), (A3)

where κ2
n ≡ 2(Ip − nω).
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The homogeneous equation has two solution functions that
are

y1(r) = W 1
κn

,n+ 1
2
(2rκn),

y2(r) = M 1
κn

,n+ 1
2
(2rκn), (A4)

where M and W are the Whittaker functions. Taking into
account the asymptotic behavior of these functions the nth
off-shell wave function in the three-dimensional Coulomb
potential can be given via the expression for the radial
functions,

Rn(r) = −y1(r)
∫ r

0
dz

f (z)y2(z)

W (z)
+ y2(r)

∫ r

∞
dz

f (z)y1(z)

W (z)
,

(A5)

with the Wronskian W = y1y
′
2 − y2y

′
1.

APPENDIX B: IMAGING THEOREM

With a final measured momentum state | p〉 the probability
amplitude f (t), the projection on the exact time-propagating
state, can be written as f (t) = 〈 p|�+(t)〉 ≡ �̃+( p,t). One
notes that for a free electron this is just the Fourier transform

of the exact spatial wave function. However, it is defined
more generally, e.g., in an asymptotic Coulomb potential. The
imaging theorem (IT) [23] shows that, in a region where the
semiclassical approximation is valid, the amplitude �̃+( p,t)
can be related to the position wave function �+(r,t) of
Eq. (14), which is the quantity we calculate. Specifically, in
the semiclassical approximation for the time propagator, the
IT equates the probabilities,

|�̃+( p,t)|2d p = |�+(r,t)|2d r, (B1)

at all points connecting the momentum p with position r
(and vice versa) along a classical trajectory. We have put
r = rf , the position corresponding to the barrier exit for each
virtual state energy. Thereby we equate the probability density
in position space with the probability density for projection
onto a momentum state. This means that we have assumed
that semiclassics is valid immediately following the electron’s
transition to a continuum state. This is an approximation but is
compatible with our use of semiclassics to describe the under-
the-barrier motion. The IT also lends credence to the strategy
of Ni et al. [15], who use classical mechanics to propagate
numerically calculated probability densities backward in time
to the tunneling region.
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