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Energy-loss spectroscopy of C60 fullerenes with twisted electrons: Influence of
orbital-angular-momentum transfer on plasmon generation
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Recent experimental progress in creating and controlling singular electron beams that carry orbital angular
momentum allows for new types of local spectroscopies. We investigate theoretically the twisted-electron-energy-
loss spectroscopy (EELS) from the C60 fullerene. Of particular interest are the strong multipolar collective
excitations and their selective response to the orbital angular momentum of the impinging electron beam. Based
on ab initio calculations for the collective response, we compute EELS signals with twisted-electron beams,
particularly in a transmission electron microscopy setup, and uncover the interplay between the plasmon polarity
and the amount of angular momentum transfer.
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I. INTRODUCTION

Collective excitations in nanostructures are at the heart
of the research field of nanoplasmonics [1]. A standard and
widely utilized method to access the details of such collective
modes is electron-energy-loss spectroscopy (EELS) [2]. With
the advent of vortex or twisted beams [3–5], it is timely to
explore the add-on features when performing EELS with such
beams. A particular aspect of vortex beams is that they carry a
definite and controllable amount of orbital angular momentum
(OAM), which is related to the topological charge of the vortex.
Remarkably, vortex beams were also realized in a transmission
electron microscope (TEM), allowing thus for atomic spatial
resolution. Typical phenomena associated with the OAM of
the twisted beam are dichroism in magnetic systems [6] and
different types of Landau states [7,8].

Using a concept similar to that for the generation of the
vortex beams [9], the angular momentum after scattering from
the probe can be determined. Exploiting this feature, one may
employ vortex-based EELS to investigate the system response
not only at a particular linear momentum transfer, but also for
a well-defined orbital angular momentum transfer (OAMT).
One consequence, for instance, is that multipolar excitations
can be accessed even at small (linear) momentum transfer,
which is known as the optical limit in conventional EELS.

A prominent molecular example, where the excitation
energy varies significantly with the multipolarity, is the C60

fullerene [10–12]. In our previous studies [13] we developed
an accurate model, based on first-principle calculations, that is
very suitable for studying EELS. In this paper we employ
a slightly improved version of the model with the main
focus on elucidating how the control of the OAMT can be
utilized to map out multipolar excitations. After introducing
the general theoretical formulation, we consider both the case
of an isolated molecule and the case of a two-dimensional
film of molecules. We show that by fixing the OAMT the
encoded phase information results in specific features in the
spectra. This effect is most pronounced for the spectroscopy
of a single molecule, but it also prevails for crystallized C60.
Although we focus on the C60 fullerene here, the methodology
and the formula below are general and applicable to other
systems.

The paper is organized as follows. In Sec. II we revisit
the basic formulation of EELS in view of a more general

projectile wave functions, such as “twisted” electrons. Our
parametrization of the underlying plasmonic response of the
system is also discussed. Based on this model, we first illustrate
the control of the multipolarity in Sec. III by studying the
vortex-based EELS from a single molecule. After that we turn
to a crystallized surface. Atomic units are used unless stated
otherwise.

II. THEORETICAL FORMULATION

Given that the initial and final asymptotic states of the
electrons are known and are denoted by, respectively, ψi(r)
and ψf (r), Fermi’s golden rule allows for the calculation of
the transfer rate as [14]

� ∝
∑
α �=0

|〈�α,ψf |V̂ee|�0,ψi〉|2δ(E0 + εi − Eα − εf ), (1)

where |�0〉 (|�α〉) is the ground (excited) state of the target
with corresponding energy E0 (Eα), εi,f is the energy of the
incoming or outgoing electrons, respectively, and V̂ee is the
Coulomb interaction. In a typical EELS setup the energy of
the impinging electrons is much higher than the typical target
excitations, which allows us to neglect exchange effects and
simplify the transfer rate (1) to

� ∝
∑
α �=0

|〈�α|V̂if |�0〉|2δ(E0 + εi − Eα − εf ). (2)

The operator V̂if = ∫
dr Vif (r)ψ̂†(r)ψ̂(r) (expressed in sec-

ond quantization) stands for the effective potential acting on
the target,

Vif (r) =
∫

dr′v(r − r′)ψ∗
i (r′)ψf (r′), (3)

while v(r) = 1/|r| is the Coulomb potential. The fluctuation-
dissipation theorem [15] provides a link of the expression (2)
to the density-density response function [16] χ (r,r′; ω) by

�(ω) ∝ −
∫

dr
∫

dr′Vif (r)Im[χ (r,r′; ω)]V ∗
if (r′). (4)

Here ω = εi − εf > 0 defines the energy loss. Alterna-
tively, one can combine the convolution with the Coulomb
potential in Eq. (3) with the response function by in-
troducing the dynamically screened interaction W (r,r′; ω)
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= v(r − r′) + δW (r,r′; ω) with

δW (r,r′; ω) =
∫

dr1

∫
dr2v(r − r1)χ (r1,r2; ω)v(r2 − r′),

(5)
yielding

�(ω) ∝ −
∫

dr
∫

dr′ψ∗
i (r)ψf (r)

× Im[δW (r,r′; ω)]ψi(r′)ψ∗
f (r′). (6)

We note that Eq. (6) can also be derived from classical
considerations [17].

So far the wave function of the ingoing or outgoing
electrons have not been specified. Depending on the actual
experimental setup, a wide range of scenarios is possible.
Here we focus on spectroscopy with beams carrying the orbital
angular momentum, called twisted electron beams. They can
be described by [18]

ϕ�k(r) = ei�φeikzF�(R), (7)

where cylindrical coordinates (R,φ,z) have been used. For
later convenience, we express the position vectors as r =
R + zez, with |R| = R, and ez stands for the unit vector in
the z direction. Note that the radial profile F�(R) (which
is kept general at this point) can depend on a transverse
momentum component. In the case of wide beams as compared
to the typical system size, transverse momentum transfer,
however, does not play an important role [19]. We will hence
omit this momentum dependence of the profiles F�(R). The
normalization is fixed by the orthonormality condition

〈ϕ�k|ϕ�′k′ 〉 = δ��′δ(k − k′). (8)

Provided such twisted electrons scatter from a target besides
the momentum in the longitudinal direction, angular momen-
tum might be transferred. The consequences of this effect
depend on how the outgoing electrons are detected. We now
focus on two typical scenarios.

A. Conventional TEM

In the TEM setup electrons are collected in a wide-angle an-
alyzer after being transmitted through the sample [17,20]. For
this reason, the angular momentum of the outgoing electrons
is not determined. Assuming the electron beam is prepared in a
twisted state ϕ�k(r) and is detected with transverse momentum
p⊥, one finds for the momentum-resolved EELS signal

d��(ω)

dp⊥
∝ −

∫
dr

∫
dr′ei�(φ′−φ)eip⊥·(R−R′)eiω(z′−z)/k

× F ∗
� (R)F�(R′)Im[δW (r,r′; ω)]. (9)

Here we have approximated the longitudinal momentum trans-
fer q by q = ω/k, which is obtained by a first-order Taylor
expansion in ω/εi . The angular momentum of the twisted beam
thus directly influences the EELS signal provided the angular
distribution is recorded. Integrating over all possible detection
directions, on the other hand,

��(ω) =
∫

dp⊥
d�(ω)

dp⊥
,

yields the total cross section [17]

��(ω) ∝ −
∫

dR
∫ ∞

−∞
dz

∫ ∞

−∞
dz′eiω(z′−z)/k|F�(R)|2

× Im[δW (R + zez,R + z′ez; ω)]. (10)

An important conclusion to be drawn from Eq. (10) is that
the influence of the angular momentum on the EELS spectra
enters through the radial beam profile (which depends on �).
This is the case if the signal is collected by integrating over all
possible directions.

B. Detection of angular momentum

The situation changes if the angular momentum of the
scattered electrons is detected explicitly. Experimentally, this
can be achieved by a holographic vortex filter that the
scattered beam traverses, thus separating the different angular
momentum components by the propagation direction [21].
In this case the OAMT � = � − �′ becomes an important
control parameter [6]. Note that this characterization is only
possible if the respective axes of the ingoing and outgoing
beams coincide. In general, this is an approximation that is
adequate for targets smaller than the beam waist [19]. Based
on this assumption, we can most conveniently compute the
effective potentials by solving Poisson’s equation

∇2Vif (r) = −4πϕ∗
�k(r)ϕ�′k′(r), (11)

exploiting the cylindrical symmetry. The ansatz Vif (r) =
ei�φeiqzw�,�′(q; R) (where q = k − k′) reduces Eq. (11) to
the radial Poisson equation[

d2

dR2
+ 1

R

d

dR
+ �2

R2
− q2

]
w�,�′(q; R)

= −4πF�(R)F�′(R), (12)

which is solved in terms of the its Green’s function
gmq(R,R′) = π (2 − δm,0)Im(qR<)Km(qR>). Here Im(x) and
Km(x) denote the modified Bessel functions of the first and
second kinds, respectively. As usual, R< = min(R,R′) and
R> = max(R,R′). For the radial part of the potential one finds

w�,�′(q; R) = −4π

∫ ∞

0
dR′R′g|�−�′|q(R,R′)F ∗

� (R′)F�′(R′).

(13)

For a target possessing almost perfect spherical symmetry
such as the C60 molecule, the expansion of the density-density
response function in terms of fluctuation densities reads

χ (r,r′; ω) =
∑
νLM

ξνL(ω)ρνL(r)ρνL(r ′)Y ∗
LM (r̂)YLM (r̂′). (14)

Therefore, Eq. (4) attains the form

���′(ω) ∝ −
∑
νLM

Im[ξνL(ω)]

∣∣∣∣∫ dr ρνL(r)Y ∗
LM (r̂)Vif (r)

∣∣∣∣2

.

(15)

An important special case occurs if the beam axis points
through the center of the C60 molecule, as the integration over
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FIG. 1. Illustration of the plasmon modes by the area in the x-z
plane where the model fluctuation densities ρνL,M=0(r) > 0 (light
green) and ρνL,M=0(r) < 0 (darker blue). (a) Volume plasmons V 1
(top) and V 2 (bottom), (b) symmetric surface plasmons for L = 1,2,
and (c) antisymmetric surface modes with L = 1,2.

the angle φ is simplified by∫ 2π

0
dφ Y ∗

LM (r̂)ei�φ = 2πP̃ M
L (cos θ )δ�,M. (16)

Here P̃ M
L (x) stands for the associated Legendre polynomials

normalized in accordance with the spherical harmonics. The
selection rule � = M limits the sum over L by L � |�| in
Eq. (15) and hence excludes certain multipolar modes.

C. Density-density response of the C60 molecule

The central ingredient determining the (vortex) EELS signal
is the density-density response function of the system, which
comprises all types of excitations present in the system.
This includes plasmons and particle-hole (p-h) excitations.
Qualitative insights into the collective density fluctuations can
be gained from semiclassical considerations [22,23], where
the electronic density C60 molecule is approximated by a
spherical shell. The density can thus only fluctuate at the inner
and the outer surface, respectively, giving rise to symmetric
or antisymmetric oscillations and a volume plasmon. Our
parametrization from Ref. [13] provides an accurate fit to
the full-fledged first-principles calculations based on time-
dependent density-functional theory (TDDFT) and yet allows
for an intuitive classification of the plasmon modes as given
in the semiclassical model. In particular, the density-density
response function χ (r,r′; ω) is expanded as in Eq. (14),
identifying the index ν with the radial quantum numbers.
We distinguish between symmetric surface (SS) plasmons
characterized by ν equal to the SS and multipolarity L � 1,
antisymmetric surface (AS) plasmons (with ν equal to the AS
and L � 1), and two types of volume plasmons (ν = V 1,V 2
and L = 0). The quenching of the volume plasmons (which
is lacking in the semiclassical shell model) is a consequence
of the delocalized nature of the electron density. The plasmon
modes entering our model are sketched (up to L = 2) in Fig. 1.

The model from Ref. [13] is constructed from fitting
functions for the spectra ξνL(ω) and the fluctuation densities
ρνL(r), which allows for an accurate modeling of the full
density-density response function [24]. Here we use an
improved version of the fitting procedure for the frequency
dependence. Taking the spectral functions ξTDDFT

νL (ω) from our
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FIG. 2. Multipeak fits of the frequency dependence ξνL(ω) of the
density-density response function [cf. Eq. (14)] in terms of (a) and
(b) the volume, (c) and (d) the symmetric surface, and (e) and (f) the
antisymmetric surface plasmons. Solid gray lines show the TDDFT
results ξTDDFT

νL (ω) from Ref. [13]; solid red lines the fitted frequency
dependence ξfit

νL(ω) and dashed lines the individual peak contributions
[see Eq. (17)].

TDDFT calculations, we select the dominant peaks assuming
a generic form

ξTDDFT
νL (ω) ≈ ξfit

νL(ω) =
NνL∑
i=1

AiνL

2�iνL

(ω + i�iνL)2 − �2
iνL

. (17)

The weights AiνL, peak frequencies �iνL, and broadening �iνL

are then obtained from a least-squares fit. The obtained spectra
(up to � = 2) are compared to the results of the ab initio
calculations from Ref. [13] in Fig. 2.

III. RESULTS

With the general theoretical formulation from Sec. II
and an accurate model for the fluctuation densities and the
corresponding spectra at hand, we can now analyze the
inelastic scattering of the vortex beams from the C60 molecule.
In line with a typical experimental realization [4,7,25], we
choose Laguerre-Gauss modes as an approximation to the
profile F�(R) of the vortex beams:

F�(R) = 2√
�!W0

(√
2R

W0

)|�|
e−(R/W0)2

L
p

|�|(2(R/W0)2). (18)

Here L
p

|�|(x) denote the associated Laguerre polynomials. We
set the radial node number to be p = 0. Note that ϕ�(r)
is not an eigenstate of the free-particle Hamiltonian in this
case. However, as the energy is carried in the longitudinal
(z) direction, the energy of the beam is still sharply defined.
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FIG. 3. Radial part w�in,�out (q; R) of the effective potential for the
typical value q = 0.01 a.u., with 0 � �in � 3 and 0 � �out � 3.

Representing the vortex beams by the Laguerre-Gauss profile
(18) shifts the dependence on the transverse momentum to
the beam waist W0. We assume that W0 is preserved upon
scattering, an approximation that relies on the small size of the
molecules on the scale of W0. By varying W0 of the outgoing
beam, we confirm that this assumption is justified to very good
accuracy. This can be understood by the weak dependence of
the effective potential on the beam profile, which is discussed
now.

A. Effective potential

In Fig. 3 we present the radial part of the effective potential
Vif (r) as discussed in Sec. II B for typical values of the beam
waist W0. As we can infer from Fig. 3, the effective potential
quickly drops with increasing OAMT � = �in − �out, which
is explained by the decreasing overlap of the respective beam
profiles. The potential displays a plateau behavior around
R = 0 for �in = �out, while it vanishes at this point for �in �=
�out. The asymptotic behavior is determined by e−qR/

√
qR,

i.e., for small momentum transfer as typically encountered
in high-energy EELS, the effective potential can be quite
long ranged, affecting the molecules situated far away from
the beam axis. This is very different from photons carrying
orbital angular momentum. In a conventional EELS setup,
the effective potential reads 4π/q2eiq·r and thus exhibits a
quadratic divergence for q → 0. The effective potential caused
by scattering of twisted electrons, on the other hand, shows
a logarithmic divergence, as expected for a two-dimensional
regularization due to using beams with a finite width.

B. Loss spectra: Beam focused on a molecule

If the beam axis passes through the molecule’s center the
selectivity with respect to the OAMT is most pronounced due
to Eq. (16). As the energy of impinging electrons is high (εi =
60 keV), the longitudinal momentum transfer is in the range
of q � ω/

√
2εi � 0.03 a.u. approaching the optical limit for

the C60 molecule. As previously discussed [13], the dominant
excitations for small q are the SS plasmons and the dipole SS
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FIG. 4. Twisted-electron-energy-loss spectra when the beam axis
coincides with the center of the C60 molecule (beam waist W0 =
30 a.u.). (a) Fixed outgoing angular momentum Lout = 0 for different
angular momenta Lin of the impinging beam. (b) Loss spectra for the
same incoming angular momenta as in (a), but without fixing Lout.
The spectra have been normalized and shifted for better visibility.

plasmon in particular. Volume plasmons, however, can also be
induced due to the radial dependence of the beam. Increasing
the OAMT |�|, we expect that the loss spectra are shifted to
higher energies, as the frequencies of the SS plasmons grow
with the multipolarity.

To confirm this dependence, we computed the loss spectra
for different values of �in and fixed the angular momentum of
the scattered electrons at �out = 0. The OAMT to the system
is thus � = �in.

To evaluate Eq. (15) we use the radial fluctuation densities
ρνL(r) and plasmon spectra ξνL(ω) from Ref. [13]. After
solving the radial Poisson equation (12) by Eq. (13), the effec-
tive potential Vif (r) is projected on the spherical harmonics
with respect to the molecule’s center. Finally, the remaining
integration over the distant from the center r is performed. The
momentum transfer is replaced by q = ω/k.

The resulting normalized spectra are presented in Fig. 4(a).
For �in = �out = 0, only volume plasmons can be excited,
leading to a broad loss spectrum, which is consistent with
the frequency dependence in Fig. 2(a). For � = 1, dipole
plasmons can be induced (predominantly the SS plasmon).
The loss spectrum is therefore similar to the optical absorption
spectrum [26]. Increasing the OAMT, the plasmon dispersion
with respect to the multipolarity leads to a shift of the spectra
to higher energies. Furthermore, due to the changed beam
profile, AS plasmons can also be induced, which further shifts
the spectra. The dependence of the loss spectra on the angular
momenta is quantified in Table I, where we give the overall
peak positions (obtained by a Lorentzian fit) as a function of
�in and �out.
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TABLE I. Energy losses ω where the cross section is peaked,
computed by performing a fit by a single Lorentzian in the peak
region. The beam has a waist of W0 = 30 a.u. and is aligned with the
molecule’s center. Values are shown in eV.

��������out

�in

0 1 2 3 4

0 26.29 21.88 25.55 26.81 27.07
1 21.88 24.97 21.87 25.53 26.74
2 25.55 21.87 24.89 21.87 25.53
3 26.81 25.53 21.87 24.85 21.87
4 27.07 26.74 25.53 21.87 24.82

The situation changes drastically if the requirement of
detecting the outgoing angular momentum is dropped. As
elaborated upon in Sec. II A, the effect of the OAMT should
diminish. This is indeed consistent with our results for this case
[Fig. 4(b)]. The loss spectra exhibit a very weak dependence
on the initial angular momentum of the beam, which arises
due to a changed beam profile only. Hence, not detecting the
angular momentum leads to a loss of phase information that is
directly reflected in the featureless spectra.

C. Loss spectra: Crystalline phase

Conducting an EELS experiment on isolated C60 is very
challenging, as preparing single molecules on the substrate
used in the TEM setup is hardly possible. It is much more likely
that the fullerenes crystallize on the surface of the substrate,
forming a few layers of an fcc crystal [lattice constant
a(C60) = 1.4154 nm at room temperature]. To describe this
setup theoretically, based on the previously employed model,
we assume that the individual contributions of the molecules
can be summed to obtain an adequate approximation to the
response of the crystal:

�
crys
��′ (ω) ∝ −

∑
n∈latt

∑
νLM

Im[ξνL(ω)]

×
∣∣∣∣∫ dr ρνL(r)Y ∗

LM (r̂)Vif (r + rn)

∣∣∣∣2

. (19)

Here rn denotes the lattice sites. This treatment ignores the
hybridization of the plasmon modes into corresponding bands.
The significance of such effects is not completely understood at
the moment; calculations for the condensed phase [27] report
quite similar spectra as compared to the gas phase [23]. As
thin films are best suited for TEM experiments, we consider
a single layer of molecules here. The geometry of the C60 is
compared to the typical beam extensions in Fig. 5.

Note that the beam axis does not pass through most of the
molecules’ centers, resulting in less sharply defined OAMT
(which is defined with respect to the beam). The scenario of
decentered beams questions the assumption of keeping the
beam axis and waist W0 constant throughout the scattering
process. For the molecules located not to far from the vortex
center, including the area of maximum intensity (which has
the largest contribution to the total signal), the validity of this
approximation has been underpinned in Ref. [28].

Analogously to the single-molecule case, we first analyze
the scenario where the angular momentum of the outgoing

(a) (b)

FIG. 5. Illustration of the (111) surface layer of C60 molecules
(gray circles) along with the beam profile F�(R) (density plot) for (a)
� = 0 and (b) � = 1. The direction of the phase variation is indicated
by the black arrow.

electrons is explicitly detected. Evaluating the cross section
(19) yields the loss spectra presented in Fig. 6. First we
note that the difference between the spectra, when varying
the OAMT, is not as pronounced as for the single molecules.
This is a result of the collective response of many molecules
located off-center with respect to the beam axis, as the OAM
(which depends on the reference coordinate system) of the
beam is blurred when considered from the fullerenes’ point of
view. Hence, despite the total OAMT being fixed, off-center
molecules experience different many OAM components.
Hence, the multipolar excitations cannot be controlled as
efficiently as before. Nevertheless, the phase information
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FIG. 6. Loss spectra for scattering from one layer of fcc C60

(W0 = 30 a.u.) for different values of the OAM of the ingoing beam
Lin and fixed outgoing OAM Lout = 0 (geometry as in Fig. 5). The
curves have been normalized to the same frequency-integrated value.
The region in the dashed rectangle is magnified in the bottom panel.
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FIG. 7. Loss spectra for scattering from one layer of fcc C60 as in
Fig. 6, but without fixing the outgoing OAM Lout.

encoded in the OAM of the vortex beam leads to notable
differences in the loss spectra. Generally, the trend is as in
Sec. III B: The increased probability to induce multipolar
excitations with growing OAMT shifts the spectra to higher
frequencies. This behavior is mostly reflected in the less
and less pronounced shoulder at ω � 19 eV (see the zoom
in the bottom panel in Fig. 6), which corresponds to the
dominant feature of the SS dipole plasmon [see Fig. 2(c)].
Hence, the contribution of the dipolar plasmons is suppressed.
Interestingly, the peak ω � 7.5 eV is enhanced with increasing
OAMT as well. This peak corresponds to series of particle-
hole excitations p-h in the bound-state manifold [29]. The
increasing weight of p-h excitations as compared to the
plasmons is a signature of a more inhomogeneous driving
acting on the system, as collective excitations only exist at
small wave vectors (small angular momenta, respectively).
This effect can also be observed in Fig. 4. Mapping out the
p-h excitations induced by vortex beams based on our ab initio
approach from Ref. [29] is left for future work.

To demonstrate that the modification of the spectra in Fig. 6
depends on the phase of the vortex beam, we recompute the loss
spectra assuming that the OAM of the outgoing electrons is not
detected (Fig. 7). Analogously to the discussion in Sec. III B,

we find that the spectra for different ingoing OAM Lin are
basically identical, except for the case Lin = 0. The latter is
due to a quite different beam profile [see Fig. 5(a)]. Hence,
it is truly the OAM of the vortex beams (which is pure phase
effect) that can induce multipolar excitations and thus give rise
to specific features in the loss spectra.

IV. CONCLUSION

We presented the theoretical description of twisted-
electron-energy-loss spectra for cases when (i) the scattered
electrons are detected in the full solid angle and (ii) the
angular momentum of the scattered electrons is detected.
While for (i) the angular momentum of the beam, encoded
in the phase, has no influence, we showed that it plays an
important role in case (ii), particularly if the beam is aligned
with the single-molecule center. We applied the developed
theory for EELS with twisted electrons for fixed molecules
and for a single layer of crystallized fullerenes. The numerical
findings are in line with the formal expectations: Measuring
the outgoing OAM of the beam allows controlling the OAMT
and thus the multipolar excitations. This is directly reflected
in the loss spectra. In contrast, detecting only the energy
of the scattered electrons leads to almost identical spectra
with varying OAM, since the phase information is lost and
only the varying beam profile influences the overall spectra.
So we advocate the OAM-resolved vortex-based EELS as
a powerful technique to access new information about the
system’s excitations, particularly those of multipolar character.

ACKNOWLEDGMENTS

We are indebted to Thomas Schachinger and Michael
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