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Polarizabilities and tune-out wavelengths of the hyperfine ground states of 87,85Rb
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The static and dynamic polarizabilities and the tune-out wavelengths of the ground state of Rb and the
hyperfine ground states of 87,85Rb have been calculated by using the relativistic configuration interaction plus
core polarization (RCICP) approach. It is found that the first primary tune-out wavelengths of the 5s1/2,F = 1,2
states of 87Rb are 790.018187(193) and 790.032602(193) nm, respectively, where the calculated result for
the 5s1/2,F = 2 state is in good agreement with the latest high-precision measurement 790.032388(32) nm
[R. H. Leonard et al., Phys. Rev. A 92, 052501 (2015)]. Similarly, the first primary tune-out wavelengths of
the 5s1/2,F = 2,3 states of 85Rb are 790.023515(218) and 790.029918(218) nm, respectively. Furthermore, the
tune-out wavelengths for the different magnetic sublevels MF of each hyperfine level F are also determined by
considering the contributions of tensor polarizabilities.
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I. INTRODUCTION

If an atom is placed in an ac electromagnetic field, the
energy shift due to the Stark effect can be written as

�E ≈ − 1
2αd (ω)F 2 + · · · , (1)

where αd (ω) is the dynamic dipole polarizability of the
quantum state at frequency ω and F is the strength of the
ac electromagnetic field. When the frequency ω is zero,
α(0) is called static polarizability. When the frequency ω

tends to a certain value, the dynamic polarizability goes to
zero, and the corresponding wavelength is called the tune-out
wavelength.

With the recent development of atomic manipulation and
measurement in experimental optical traps, studies on the
polarizabilities of atoms and ions have been of great interest.
The knowledge of static polarizabilities can be used to evaluate
the Stark effect [1] and the blackbody-radiation (BBR) shift
[2], which are very important for determining the uncertainty
of the atomic clock [3–5].

The tune-out wavelength was initially introduced by
LeBlanc and Thywissen [6], and they discussed its application
in multispecies atom traps. The atom trapped in the optical
lattice is released, while the other atoms are still strongly
trapped when the wavelength of the trapping laser is equal
to the tune-out wavelength of the atom. In addition, high-
precision measurement of the tune-out wavelength can be used
to test atomic structure calculations [7]. Up to now, the tune-out
wavelengths of Rb [8–10], K [7], and metastable states of He
[11] have been measured in experiment. The longest tune-out
wavelength of the ground state of K is measured with an
uncertainty of 1.5 pm [7]. This experiment provides the most
accurate determination of the ratio of the 4s-4p3/2 and 4s-4p1/2

line strengths of K, and the uncertainty is half as much as the
theoretical uncertainty [12]. Recently, a tune-out wavelength
of the 5s1/2,F = 2 state of 87Rb was measured with an accu-
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racy of about 30 fm [9] by using a condensate interferometer.
This accuracy is better than the precision of other previously
measured tune-out wavelengths [7,11,13,14]. The tune-out
wavelength of the 5s1/2,F = 1,MF = 0 magnetic sublevel of
87Rb has also been measured with subpicometer accuracy by
Schmidt et al. [8]. These experiments give some very good
opportunities for testing the theories.

In this paper, the static and dynamic polarizabilities and
tune-out wavelengths of the ground state of Rb and the
hyperfine ground states of 87,85Rb have been calculated
by using the relativistic configuration interaction plus core
polarization (RCICP) approach. First, the wave functions,
energies, and transition matrix elements of the fine structure
of Rb are computed. Then, combining the most accurate
5s-5pJ and 5s-6pJ matrix elements [9,14] with the RCICP
results, the static and dynamic polarizabilities and three tune-
out wavelengths of the 5s1/2 state are determined. Finally,
after considering the hyperfine splittings, the dipole matrix
elements between the hyperfine states, the static and dynamic
polarizabilities, and the tune-out wavelengths of the hyperfine
ground states of 87,85Rb are also determined. In Sec. II, a
brief description of the theoretical method is presented. In
Secs. III and IV, the energies, matrix elements, static and
dynamic polarizabilities, and tune-out wavelengths of the fine-
and hyperfine-structure states are computed. In Sec. V, a few
conclusions are pointed out. The units used in the present
calculations are atomic units, in which the mass of an electron
me and � have a numerical value of 1 and the speed of light is
137.0359991.

II. FORMULATION AND CALCULATIONS

The RCICP method is used in the present calculations. The
details of the calculation method are similar to those reported in
[15,16]. The starting point is the Dirac-Fock (DF) calculation
for the Rb+ ground state. The single-electron orbitals of the
core are made up of the linear combinations of some analytical
S-spinor basis functions, which were introduced by Grant
and Quiney [17,18]. S spinors can be treated as relativistic
generalizations of the Slater-type orbitals.
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TABLE I. The cutoff parameters ρ�,j of the polarization potential
of Rb+.

� J ρ�,j (a.u.)

s 1/2 2.4254
p 1/2 2.3448

3/2 2.3450
d 3/2 2.8047

5/2 2.8222

The effective interaction potential of the valence electron
with the core is written as

H = cα · p + βc2 + Vcore(r), (2)

where α and β are 4 × 4 matrices of the Dirac operator, p is
the momentum operator, and c is the speed of light [18]. The
core operator is

Vcore(r) = −Z

r
+ Vdir(r) + Vexc(r) + Vp(r). (3)

The direct interaction Vdir(r) and exchange interaction Vexc(r)
of the valence electron with the DF core are calculated without
any approximation. The �,j -dependent polarization potential
Vp is semiempirical and can be written as

Vp(r) = −
3∑

k=1

α(k)
core

2r (2(k+1))

∑
�,j

g2
k,�,j (r)|�,j 〉〈�,j |. (4)

Here, the factors α(k)
core are the static kth-order polarizabilities

of the core electrons. In the present calculations, dipole
polarizability is 9.076 a.u. [19], quadrupole polarizability is
35.41 a.u. [19], and octupole polarizability is 314 a.u. [20].
g2

k,�,j (r) = 1 − exp(−r [2(k+2)]/ρ
[2(k+2)]
�,j ) is the cutoff function

to make the polarization potential finite at the origin. The cutoff
parameters ρ�,j that can be tuned to redo the energies of the
ns,npJ ,ndJ states are listed in Table I.

The effective Hamiltonian of the valence electron is
diagonalized in a large L-spinor basis. L spinors can be treated
as relativistic generalizations of the Laguerre-type orbitals
[17,18]. This basis can be enlarged until completeness without
any linear dependence problem.

III. RESULTS OF FINE STRUCTURE

A. Energies

Table II gives the present theoretical energy levels for a few
low-lying excited states of Rb, which are compared with exper-
imental energies from the National Institute of Standards and
Technology (NIST) tabulation [21]. The polarization potential
parameters ρ�,j are tuned to give the correct experimental
energies of 5s, 5pJ ,4dJ . Hence, the spin-orbit splittings of 5pJ

and 4dJ are the same as experimental values. It is worth noting
that the spin-orbit splittings of the 6pJ ,7pJ ,5dJ , and 6dJ states
are also very close to experimental values. For example, the
spin-orbit splittings of 5pJ and 6pJ states are 0.0010825 and
0.0003536 hartree in theory, which are in good agreement with
the experimental values of 0.0010826 and 0.0003532 hartree.
The spin-orbit splittings of 4dJ and 5dJ states are 0.0000023

TABLE II. Theoretical and experimental energy levels (in
hartrees) for a few low-lying excited states of Rb. The energies are
given relative to the energy of the Rb+ core. The experimental data
come from the National Institute of Standards and Technology (NIST)
tabulation [21].

State J Present Experiment

5s 1/2 −0.1535067 −0.1535066
5p 1/2 −0.0961927 −0.0961927

3/2 −0.0951102 −0.0951101
4d 5/2 −0.0653180 −0.0653178

3/2 −0.0653157 −0.0653158
6s 1/2 −0.0616926 −0.0617762
6p 1/2 −0.0454285 −0.0454528

3/2 −0.0450749 −0.0450996
5d 3/2 −0.0363087 −0.0364064

5/2 −0.0362956 −0.0363929
7s 1/2 −0.0335803 −0.0336229
4f 7/2 −0.0314334 −0.0314329

5/2 −0.0314333 −0.0314328
7p 1/2 −0.0266661 −0.0266809

3/2 −0.0265057 −0.0265211
6d 3/2 −0.0227249 −0.0227985

5/2 −0.0227150 −0.0227881
8s 1/2 −0.0211350 −0.0211596
5f 7/2 −0.0201079 −0.0201073

5/2 −0.0201077 −0.0201072
5g 7/2 −0.0200232 −0.0200233

9/2 −0.0200232 −0.0200233

and 0.0000131 hartree in theory, which are also consistent with
the experimental values of 0.0000020 and 0.0000135 hartree.

B. Dipole matrix elements

Table III gives the reduced electric dipole (E1) matrix
elements for a number of low-lying excited-state transitions
of Rb. The matrix elements are calculated with a modified
transition operator [30–32],

r = r −
[

1 − exp

(−r6

ρ6

)]1/2
αd r
r3

. (5)

The cutoff parameter ρ used in Eq. (5) is 2.5279 a.u., which
is the average of the s,p, and d cutoff parameters (note the
weighting of s is doubled to give it the same weighting as
the two p and d orbitals). The present RCICP calculations
are compared with the relativistic many-body perturbation
theory all-order method (RMBPT all-order) [22,23] and the
relativistic coupled cluster with single, double, and triple
excitations (RCCSDT) calculations [24]. For the 5s-5pJ

transitions, the differences among the present RCICP, RMBPT
all-order, and RCCSDT theoretical results are not larger than
1%. The present RCICP results have good agreement with
the average values of experiments [27–29] and the results of
Leonard et al. [9]. For the 5s-6pJ transitions, the present
RCICP results agree with some available results [14,23,24]
very well, and the experimental values lie in the middle of the
present RCICP results and other theoretical results.
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TABLE III. Comparison of reduced electric dipole (E1) matrix elements (in a.u.) for the principal transitions of Rb with experimental
results and other theoretical calculations.

Transition RCICP RMBPT all-order [22,23] RCCSDT [24] RCCSD [25] Expt.

5s-5p1/2 4.221(21) 4.253(34) 4.26(3) 4.26115 4.233(2)a

4.2339(16) [9]
5s-5p3/2 5.962(30) 6.003(48) 6.02(5) 6.01328 5.978(4)a

5.9760(23) [9]
5s-6p1/2 0.313(4) 0.333 0.342(2) 0.3235(9) [14]
5s-6p3/2 0.513(5) 0.541 0.553(3) 0.5230(8) [14]
6s-5p1/2 4.150(12) 4.145(10) 4.1187 4.144(3)
6s-5p3/2 6.052(17) 6.047(13) 6.0145 6.048(5)
6s-6p1/2 9.723(17) 9.721(24) 9.6839
6s-6p3/2 13.660(25) 13.647(34) 13.5918
4d3/2-5p1/2 8.028(40) 8.037(43) 7.9802 8.07(2)
4d3/2-5p3/2 3.625(18) 3.628(20) 3.6029 3.65(2)
4d3/2-6p1/2 5.2257(87) 4.717
4d3/2-6p3/2 2.2810(40) 2.055
4d5/2-5p3/2 10.880(54) 10.889(58) 10.8149 10.96(4)
4d5/2-6p3/2 6.846(12) 6.184
5d3/2-5p1/2 1.297(56) 1.616 1.184(3)
5d3/2-5p3/2 0.640(26) 0.787 0.59(2)
5d3/2-6p1/2 18.209(98) 18.195(87) 18.1341
5d3/2-6p3/2 8.2131(56) 8.205(27) 8.1778
5d5/2-5p3/2 1.909(77) 2.334 1.76(3) 2.290(42) [26]
5d5/2-6p3/2 24.645(16) 24.621(80) 24.5410
4d3/2-5f5/2 4.630(96) 4.614(39) 4.5951
4d5/2-5f5/2 1.238(26) 1.234(10) 1.2287
4d5/2-5f7/2 5.54(18) 5.518(45) 5.4948
5d3/2-4f5/2 25.382(11) 25.357(56) 25.3138
5d5/2-4f5/2 6.786(68) 6.779(14) 6.7677
5d5/2-4f7/2 30.35(51) 30.316(64) 30.2657
|〈5p3/2||D||5s1/2〉|2
|〈5p1/2||D||5s1/2〉|2 1.994(40) 1.992(65) 1.997(62) 1.99145 1.995(3)a

1.99221(3) [9]

aThese values are the average of several experiments [27–29] and are given by Leonard et al. [9].

The ratio of the line strengths, which are the square of
electric dipole matrix elements of the 5s-5p1/2 and 5s-5p3/2

transitions, is also given in Table III. This ratio should exactly
be 2.0 in the nonrelativistic limit. The deviation of this ratio
comes from the slight differences of radial wave functions
for the spin-orbit doublet arising from the small differences
of energies [33]. The present RCICP ratio 1.994(40) is in
excellent agreement with the average experimental value of
1.995(3), larger than the latest experimental ratio of 1.99221(3)
which has been determined by the measurement of the tune-out
wavelength and the experimental matrix element of 5s-5p1/2

of 4.233 [9]. So far none of the theoretical results are within the
latest experimental error bar, but the RMBPT all-order result
is the closest to this latest experimental ratio.

C. Polarizabilities of the ground state

The static scalar polarizability is written as

α(k)(0) =
∑

n

f
(k)
ni

ε2
ni

, (6)

where f
(k)
ni is the oscillator strength and εni is the exci-

tation energy of the transition. The oscillator strength is

defined as

f
(k)
ni = 2|〈LiJi‖rkCk(r)‖LnJn〉|2εni

(2k + 1)(2Jn + 1)
. (7)

Table IV gives the present and some available theo-
retical and experimental dipole, quadrupole, and octupole
polarizabilities of the 5s1/2 state of Rb. It is found that the

TABLE IV. The dipole α(1), quadrupole α(2), and octupole α(3)

polarizabilities (in a.u.) of the 5s1/2 state of Rb.

5s1/2 α(1) 10−3α(2) 10−5α(3)

Present RCICP 317.05(3.10) 6.479(1) 2.381(44)
DFCP [34] 317.62 6.4810 2.3783
CICP [35] 315.7 6.480 2.378
RCCSD [36] 316.17
RCCSD [37,38] 318.47/318.3(6) 6.491(18)
MBPT-SD [39] 317.39
RMBPT all-order [22,40] 316.4/322(4) 6.525(37) 2.374(16)
RMBPT [20] 6.520(80) 2.37
Expt. E × H [41] 319(6.1)
Expt. [42] 318.79(1.42)
Expt. [43] 320.1(6)
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present RCICP results agree with the DiracFock plus core
polarization (DFCP) results [34] very well. The DFCP method
is the same as the present RCICP method except that DFCP
uses the B-spline basis. The RCICP dipole polarizability is
larger than that calculated by the nonrelativistic configuration
interaction plus core polarization (CICP) [35], RCCSD of Lim
et al. [36], and the RMBPT all-order method [40] but smaller
than the RCCSD result of Kaur et al. [37,38], the earlier
relativistic many-body perturbation with single, double ex-
citations (MBPT-SD) result [39], and the experimental values
[41,42]. If the experimental electric dipole matrix elements
of the 5s-5pJ transitions [9] are used in the calculation of
polarizabilities, the static dipole polarizability of the 5s state
is 318.743 a.u., which agrees with the experimental result [42]
very well. So the differences in static dipole polarizabilities
between experiments and the present results are mainly from
the differences in the 5s-5pJ matrix elements. The latest
experimental value [43], 320.1(6) a.u., is larger than most of
the theoretical and other experimental values.

The present quadrupole and octupole polarizabilities of the
5s state are close to the results of CICP, RMBPT, RCCSD, and
RMBPT all-order. The differences between the present RCICP
calculations and other available results [20,22,35,37,38] are
not more than 0.6%.

D. Tune-out wavelengths of the ground state

The dynamic dipole polarizabilities computed with the
usual oscillator strength sum rules can be written as

α(1)(ω) =
∑

n

f
(1)
ni

ε2
ni − ω2

. (8)

The core polarizability is given by a pseudospectral oscillator
strength distribution [35]. The distribution is derived from the
single-particle energies of the Hartree-Fock core and is listed
in Table V. Each separate (n,l) level is identified with one
transition with a pseudo-oscillator strength that is equal to the
number of electrons in the shell. The excitation energy is set
by adding a constant to the Koopman energies and tuning the
constant until the core polarizability is equal to the known core
polarizability from the oscillator strength sum rules.

Table VI shows the present three tune-out wavelengths of
the 5s1/2 state of Rb, which are compared with the RMBPT
calculations and some available experiments. In the present
calculations of dynamic polarizabilities, the matrix elements
of 5s-5pJ and 5s-6pJ transitions are replaced by the most
accurate experimental values [9,14]. There are two cases in

TABLE V. Pseudospectral oscillator strength distribution for
Rb+. Transition energies εn are given in atomic units.

n εn fn

1 551.524651 2.0
2 75.117766 2.0
3 12.201477 2.0
4 1.592215 2.0
5 67.974337 6.0
6 9.575915 6.0
7 0.878715 6.0
8 4.800593 10.0

TABLE VI. Tune-out wavelengths λzero (in nm) of the 5s1/2 state
of Rb.

Transition RCICP RMBPT Expt.

5s-5p1/2
790.02765(20) 790.0261(7) [9] 789.85(1) [10]

790.034(7) [12] 790.018(2) [13]
5s-5p3/2

423.02428(391) 423.05(8) [12] 423.018(7) [14]
5s-6p1/2

421.07565(49) 421.08(3) [12] 421.075(2) [14]
5s-6p3/2

which the tune-out wavelengths occur. The first case is
when the tune-out wavelength exists between np1/2 and the
np3/2 spin-orbit doublet, such as when the 790.02765-nm
wavelength lies in the 5s-5pJ splitting and the 421.07565-nm
wavelength lies in the 5s-6pJ splitting. The present tune-out
wavelength, 790.02765 nm, is shorter than the early RMBPT
result [12] by 0.007 nm but agrees with the latest RMBPT
result, 790.0261(7) nm, very well. There are two experiments
[10,13] investigating the longest available tune-out wavelength
of the 5s state. The experiment of Lamporesi et al. [13],
790.018(2) nm agrees with the RMBPT and the present RCICP
theoretical results very well. The experiment of Catani et al.
[10], 789.85(1) nm, has a big difference from the available
values [9,12,13] and the present RCICP calculation. The
reason for this difference should be because the light is not
linearly polarized in this experiment [10]. The present tune-out
wavelength near 421 nm agrees with the RMBPT result [12]
and the experimental result [14] perfectly. The second case
is when the tune-out wavelength occurs when the wavelength
is shorter than the 5s-np3/2 transition wavelength and longer
than the 5s-(n + 1)p1/2 transition wavelength, such as when
the 423.02428-nm wavelength lies between 5p3/2 and 6p1/2.
This tune-out wavelength also has good agreement with the
experimental result [14] and the MBPT result [12].

IV. RESULTS OF HYPERFINE STRUCTURE

A. Energies and reduced matrix elements

According to first-order perturbation theory, the energy for
a hyperfine state |LJIF 〉 is given [44,45] by

E = ENLJ + WF , (9)

where ENLJ is the energy of the unperturbed fine-structure
state and WF is the hyperfine interaction energy, which can be
written as

WF = 1

2
AR + B

3
2R(R + 1) − 2I (I + 1)J (J + 1)

2I (2I − 1)2J (2J − 1)
, (10)

where A and B are hyperfine-structure constants and it is
usual to give the A and B coefficients in megahertz, where
1.0 MHz = 1.519829903 × 10−10 a.u.

R = F (F + 1) − I (I + 1) − J (J + 1). (11)

F is the total angular momentum of the hyperfine state, I is
the nuclear spin (I = 3/2 for 87Rb and I = 5/2 for 85Rb), and
J is the total angular momentum of the atomic state.

The hyperfine interaction energies of the different hyperfine
levels of the 5s1/2,5pJ , and 6pJ states of 87,85Rb are listed in
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TABLE VII. The hyperfine interaction energies of the hyperfine
states of 85Rb and 87Rb. The notation a[b] means a × 10b. Hyperfine-
structure constants are from other studies.

J A (MHz) B (MHz) F WF (a.u.)

87Rb ,I = 3/2
5s 1/2 3417.341307 [22] 1 − 6.4922[−7]

2 3.8953[−7]
5p 1/2 406.2 [22] 1 − 7.7169[−8]

2 4.6302[−8]
5p 3/2 84.845 [22] 12.52 [22] 0 − 4.5978[−8]

1 − 3.4986[−8]
2 − 1.1098[−8]
3 2.9489[−8]

6p 1/2 132.565 [22] 1 − 2.5185[−8]
2 1.5111[−8]

6p 3/2 27.700 [22] 3.593 [22] 0 − 1.5036[−8]
1 − 1.1427[−8]
2 − 3.6080[−9]
3 9.6225[−9]

85Rb ,I = 5/2
5s 1/2 1011.910813 [39] 2 − 2.6914[−7]

3 1.9224[−7]
5p 1/2 120.7 [39] 2 − 3.2108[−8]

3 2.2934[−8]
5p 3/2 25.038 [46] 26.011 [46] 1 − 1.7218[−8]

2 − 1.2756[−8]
3 − 3.1143[−9]
4 1.5248[−8]

6p 1/2 39.11 [39] 2 − 1.0402[−8]
3 7.4301[−9]

6p 3/2 8.25 [39] 8.40 [44] 1 − 5.6891[−9]
2 − 4.2027[−9]
3 − 1.0156[−9]
4 5.0211[−9]

Table VII. The hyperfine-structure constants A and B originate
from other studies [22,39,44,46]. The energy shifts of the 5s1/2

state are about one or two orders of magnitude larger than
those of the 5pJ ,6pJ excited states. Similarly, the hyperfine
splittings of the np1/2 states are obviously larger than the
splittings of the np3/2 states.

The dipole matrix elements between the hyperfine states are
calculated by using the Wigner-Eckart theorem. The transition
matrix elements between the two hyperfine states |niLiJiIFi〉
and |ngLgJgIFg〉 can be written as

〈LgJgIFg‖rkCk(r)‖LiJiIFi〉

= (−1)I+Jg+Fi+kF̂i F̂g

{
I Ji Fi

k Fg Jg

}

×〈LgJg‖rkCk(r)‖LiJi〉, (12)

where k = 1 for a dipole transition and F̂ = √
2F + 1.

The absorption oscillator strength f
(k)
gi for a transition from

hyperfine state g → i is defined as

f
(k)
gi = 2|〈LiJiIFi‖rkCk(r)‖LgJgIFg〉|2εgi

(2k + 1)(2Fg + 1)
. (13)

TABLE VIII. The partial derivatives for the matrix elements of
5s-5pJ and 5s-6pJ transitions with respect to the initial- and final-
state binding energies.

Transition ∂A

∂E5s

∂A

∂Ej

5s1/2-5p1/2 31.070953 − 1.800089
5s1/2-5p3/2 44.794208 − 4.888183
5s1/2-6p1/2 − 17.415952 136.505937
5s1/2-6p3/2 − 23.446857 208.756559

In the present calculations, in order to consider energy-
dependent correction of the matrix elements, the matrix
elements are treated as parametric functions of their binding
energies [16]. The functional form is

Aij (Ei,Ej ) ≈ Aij (E0,i ,E0,j ) + ∂Aij

∂Ei

(Ei − E0,i)

+ ∂Aij

∂Ej

(Ej − E0,j ), (14)

where E0,i and E0,j are the binding energies without any
hyperfine splitting. The partial derivatives are evaluated by
redoing the calculations with the slightly different polarization
potentials and leading to the change in the reduced matrix
elements. The partial derivatives of matrix elements are listed
in Table VIII.

B. Dipole polarizabilities of the hyperfine ground states

The dynamic dipole polarizabilities are computed with the
usual oscillator strength sum rules in Eq. (8), where the sum
over n includes all allowable hyperfine-structure transitions.
In the calculations of polarizabilities for the hyperfine states,
the resonance transition energies of hyperfine levels of the
5s,5pJ ,6pJ states are replaced by the experimental results
[47]. The uncertainties of these resonance transition energies
reach 3.8 × 10−8 eV.

The dipole polarizability also has a tensor component for
states with F > 1/2. It can be written as

α
(1)
T (ω) = 6

(
5Fg(2Fg − 1)(2Fg + 1)

6(Fg + 1)(2Fg + 3)

)1/2

×
∑

i

(−1)Fg+Fi

{
Fg 1 Fi

1 Fg 2

}
f

(1)
gi

ε2
gi − ω2

. (15)

The dipole polarizabilities of the hyperfine levels can be
calculated by the following equation [30]:

α
(1)
Mg

(ω) = α(1)(ω) + α
(1)
T (ω)

3M2
g − Fg(Fg + 1)

Fg(2Fg − 1)
. (16)

Table IX gives the static scalar and tensor dipole polar-
izabilities of the hyperfine ground states of 87,85Rb. There
are no other theoretical or experimental results that can be
directly compared with the values in Table IX. However,
the hyperfine stark shift, which is the difference in scalar
polarizabilities between the hyperfine states with the same
(L,J ) but different F quantum numbers, can be compared with
other theoretical and experimental results. Table X gives the
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TABLE IX. The scalar α(1) and tensor α
(1)
T dipole polarizabilities

of the hyperfine ground states of 87,85Rb. The notation a[b] means
a × 10b.

State F α(1) (a.u.) α
(1)
T (a.u.)

87Rb 5s1/2 1 318.699491 1.5883[−5]
5s1/2 2 318.709441 − 8.8203[−5]

85Rb 5s1/2 2 318.702958 2.0494[−5]
5s1/2 3 318.707444 − 4.0621[−5]

differences in scalar and tensor polarizabilities of the hyperfine
ground states of 87,85Rb in atomic units. There are some studies
of the hyperfine Stark shifts of 87,85Rb [31,48–51] that are
often reported as the Stark shift coefficients k, with units
of (Hz/(V/m)2. These units are converted into atomic units
by multiplying 0.4018778 × 108 [30]. The present hyperfine
Stark shift of 87Rb is slightly smaller than the relativistic
configuration interaction plus many-body perturbation (RCI +
MBPT) [48] and the relativistic linearized coupled-cluster with
single, double, and partially triple contributions (RLCCSDT)
[49] and larger than the perturbation theory [31]. This value is
also between the experimental value [50] by Mowat et al. and
the experimental value [51] by Dallal and Ozeri. The present
hyperfine Stark shift of 85Rb is larger than perturbation theory
[31] and the experimental value [50].

The tensor polarizabilities of the hyperfine states do not
exceed 10−4 a.u. in magnitude. The tensor polarizability of
the F = 1 ground state of 87Rb is positive, and that of the
F = 2 ground state of 87Rb is negative. The difference of the
present tensor polarizabilities of the F = 2 and F = 1 ground
states of 87Rb is −1.0409 × 10−4 a.u., which is more negative
than the experimental value of −0.8841 × 10−4 a.u. [51]. The
difference between experiment and the present calculation
is 1.568 × 10−5 a.u., which is larger than the experimental
error bar of 1.045 × 10−5 a.u. The tensor polarizability of
the F = 2 ground state of 85Rb is positive, and that of the
F = 3 ground state of 85Rb is negative. The difference of

tensor polarizabilities of the F = 3 and F = 2 ground states
of 85Rb is −6.1115 × 10−5 a.u. There are no other comparable
theoretical and experimental data available at present.

The energy-dependent corrections of the dipole matrix
elements play an important role in the calculation of dynamic
polarizabilities. Omitting the matrix element correction results
in hyperfine Stark shifts of about half these values, namely,
5.454 ×10−3 a.u. for 87Rb and 2.423 ×10−3 a.u. for 85Rb,
respectively.

C. Tune-out wavelengths of the hyperfine ground states

1. 87Rb

Hyperfine splittings lead to two new features in the tune-out
wavelengths. One feature is that the splitting of the 5s1/2 state
has resulted in two duplicate sets of tune-out wavelengths, that
is, for the F = 1 and F = 2 hyperfine ground states. Another
feature is that the hyperfine splittings of the 5pJ,F state have
also resulted in the creation of additional tune-out wavelengths
that arise from two adjacent hyperfine states. The hyperfine
splitting of the 5p1/2 state has resulted in one additional
tune-out wavelength, located between the 5p1/2,F = 1 and
5p1/2,F = 2 states. The hyperfine structure with regard to the
5p3/2 state brings two additional tune-out wavelengths, located
between the three 5p3/2,F = 1,2,3 levels with allowed dipole
transitions to the 5s1/2,F = 2 hyperfine state or between the
three 5p3/2,F = 0,1,2 levels with allowed dipole transitions
to the 5s1/2,F = 1 hyperfine state. There are several tune-
out wavelengths that are defined as the primary tune-out
wavelengths, which are the closest to the tune-out wavelengths
calculated without the hyperfine splittings.

Table XI gives the tune-out wavelengths of the two
hyperfine ground states of the 5s1/2 state of 87Rb. These
wavelengths are given to six digits after the decimal point
to ensure that all the differences of the tune-out wavelengths
are at least two digits. The longest tune-out wavelengths
near 794 nm occur in the hyperfine splitting of the 5p1/2

state. These tune-out wavelengths are hard to detect due

TABLE X. The difference of scalar and tensor dipole polarizabilities of the hyperfine ground states of 87,85Rb. The notation a[b] means
a × 10b.

Method �α(1) (a.u.)

87Rb: α(1)(F = 2) − α(1)(F = 1)
Present RCICP 0.995[−2]
RCI + MBPT [48] 0.997(8)[−2]
RLCCSDT [49] 0.997(3)[−2]
Perturbation theory [31] 0.972[−2]
Expt. [50] 0.99(24)[−2]
Expt. [51] 0.9967(32)[−2]

85Rb: α(1)(F = 3) − α(1)(F = 2)
Present RCICP 4.486[−3]
Perturbation theory [31] 4.311[−3]
Expt. [50] 4.389(96)[−3]

87Rb: α
(1)
T (F = 2) − α

(1)
T (F = 1)

Present RCICP − 1.0409[−4]
Expt. [51] − 0.8841(1045)[−4]

85Rb: α
(1)
T (F = 3) − α

(1)
T (F = 2)

Present RCICP − 6.1115[−5]
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TABLE XI. Tune-out wavelengths λzero (in nm) of the 5s1/2,F =
1 and 5s1/2,F = 2 states of 87Rb. �λ (in nm) is the shift of the primary
tune-out wavelengths compared to the tune-out wavelengths of the 5s

state. Tune-out wavelengths are given to six digits after the decimal
point.

F = 1 F = 2

λzero �λ(10−3) λzero �λ(10−3)

794.970633 794.984469
790.018187 −9.46 790.032602 +4.95
780.233113 780.246852
780.232827 780.246413
423.021740 −2.42 423.025808 +1.46
421.670240 421.674241
421.073131 −2.51 421.077158 +1.51
420.296547 420.300560
420.296519 420.300519

to the very small energy splittings of the hyperfine states.
The second tune-out wavelengths near 790 nm are the
first primary tune-out wavelengths, which lie between the
excitation thresholds of the 5p1/2 and 5p3/2 states. The first
primary tune-out wavelengths of the 5s1/2,F = 1,2 states are
790.018187 and 790.032602 nm, respectively. The present
calculation, 790.032602 nm of the 5s1/2,F = 2 state, is larger
than the latest experimental value of 790.032388(32) nm [9],
and the difference is 0.000214 nm. This difference is still
about 7 times larger than the experimental error bars. The
tune-out wavelengths near 423 nm are other primary tune-out
wavelengths, which lie between the excitation thresholds of
the 5p3/2 and 6p1/2 states. Similarly, the tune-out wavelengths
near 421.07 nm are also primary tune-out wavelengths, which
lie between the excitation thresholds of the 6p1/2 and 6p3/2

states. These primary tune-out wavelengths of the 5s1/2,F = 1
state are shorter than the corresponding tune-out wavelengths
of the 5s state of Rb, and those of the 5s1/2,F = 2 state are
longer than the close tune-out wavelengths of the 5s state of
Rb. The tune-out wavelengths near 780, 421.67, and 420.3 nm
occur in the hyperfine splittings of the 5p3/2,6p1/2, and 6p3/2

states, respectively, which are also very hard to detect.
The tune-out wavelengths also depend on the magnetic

sublevels if tensor polarizabilities are considered. The tune-out

TABLE XIII. Tune-out wavelengths λzero (in nm) of the 5s1/2,F =
2 and 5s1/2,F = 3 states of 85Rb. �λ (in nm) is the shift of the primary
tune-out wavelengths compared to the tune-out wavelengths of the 5s

state. Tune-out wavelengths are given to six digits after the decimal
point.

F = 2 F = 3

λzero �λ(10−3) λzero �λ(10−3)

794.975393 794.981538
790.023515 −0.41 790.029918 +2.27
780.237979 780.244089
780.237860 780.243899
423.023277 −1.00 423.025001 +0.72
421.671676 421.673454
421.074607 −1.04 421.076392 +0.74
420.297985 420.299769
420.297974 420.299750

wavelengths associated with the different magnetic sublevels
of the 5s1/2,F states of 87Rb are listed in Table XII. Compared
with the tune-out wavelengths for the different magnetic
sublevels of the same hyperfine ground state, the shifts in
tune-out wavelengths due to tensor polarizabilities are less
than 10−4 nm. Here, we focus on the fact that the difference
of the first primary tune-out wavelengths for MF = ±1 and
MF = 0 of the 5s1/2,F = 1 state is 9.1 × 10−5 nm. The first
primary tune-out wavelength of the MF = 0 sublevel of the
5s1/2,F = 1 state is 790.0181259 nm. It is a little shorter
than the very recent experimental value of 790.01858(23)
nm [8], and the difference is about 0.00045 nm, which is
nearly 2 times larger than the experimental error bars. The first
primary tune-out wavelengths for the MF = 0,MF = ±1, and
MF = ±2 sublevels of the 5s1/2,F = 2 state are 790.0326845,
790.0326434, and 790.0325203 nm, respectively. The differ-
ences in these tune-out wavelengths for any of the different
magnetic sublevels do not exceed 1.7 × 10−4 nm.

2. 85Rb

Table XIII gives the tune-out wavelengths of the 5s1/2,F =
2 and 5s1/2,F = 3 states of 85Rb. Table XIV gives the tune-out
wavelengths for the different magnetic sublevels. All analyses

TABLE XII. Tune-out wavelengths λzero (in nm) of the different magnetic sublevels of the 5s1/2,F = 1 and 5s1/2,F = 2 states of 87Rb.
Tune-out wavelengths are given to seven digits after the decimal point.

F = 1 F = 2

MF = −1,1 MF = 0 MF = −2,2 MF = −1,1 MF = 0

794.9705853 794.9707284 794.9846000 794.9844029 794.9843373
790.0182169 790.0181259 790.0325203 790.0326434 790.0326845
780.2331259 780.2330860 780.2468572 780.2468488 780.2468458
780.2328185 780.2328473 780.2463937 780.2464233 780.2464334
423.0217422 423.0217345 423.0258015 423.0258118 423.0258153
421.6702358 421.6702489 421.6742534 421.6742354 421.6742294
421.0731328 421.0731283 421.0771545 421.0771603 421.0771623
420.2965477 420.2965439 420.3005609 420.3005601 420.3005598
420.2965184 420.2965212 420.3005169 420.3005197 420.3005206
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TABLE XIV. Tune-out wavelengths λzero (in nm) of the different magnetic sublevels of the 5s1/2,F = 2 and 5s1/2,F = 3 states of 85Rb.
Tune-out wavelengths are given to seven digits after the decimal point.

F = 2 F = 3

MF = −2,2 MF = −1,1 MF = 0 MF = −3,3 MF = −2,2 MF = −1,1 MF = 0

794.9753668 794.9754056 794.9754185 794.9815835 794.9815382 794.9815110 794.9815020
790.0235316 790.0236506 790.0234980 790.0298900 790.0299180 790.0299347 790.0299403
780.2379826 780.2379764 780.2379743 780.2440913 780.2440888 780.2440870 780.2440865
780.2378566 780.2378612 780.2378629 780.2438904 780.2438990 780.2439042 780.2439060
423.0232785 423.0232769 423.0232764 423.0250000 423.0250014 423.0250024 423.0250028
421.6716741 421.6716777 421.6716789 421.6734579 421.6734538 421.6734513 421.6734505
421.0746085 421.0746070 421.0746065 421.0763902 421.0763917 421.0763927 421.0763930
420.2979853 420.2979847 420.2979845 420.2997688 420.2997685 420.2997683 420.2997683
420.2979732 420.2979737 420.2979738 420.2997495 420.2997503 420.2997508 420.2997510

and properties of 85Rb should be interpreted with the contents
of the previous section in mind. The differences between
the tune-out wavelengths of the hyperfine states of 85Rb are
smaller than those of 87Rb. This is understandable since
85Rb has smaller hyperfine-structure constants than 87Rb.
Similarly, the differences between the tune-out wavelengths
of the hyperfine magnetic sublevels of 85Rb are also smaller
than those of 87Rb.

D. Some comments on accuracy

The uncertainties of the dipole reduced matrix elements of
the 5s-5pJ transitions are mainly caused by the correlation
effects of frozen-core model. These uncertainties are smaller
than 0.5%; thus, we set 0.5% as the uncertainties of the
dipole reduced matrix elements. The uncertainties of the
dipole reduced matrix elements for the transitions of more
highly excited states are derived from the first-order parametric
functions of their energies. By considering the uncertainties
of dipole reduced matrix elements, the uncertainties of three
tune-out wavelengths of the ground state of Rb are obtained.

Compared with the present calculations and available
experimental results [8,9], the absolute precision of tune-out
wavelengths should be about 0.0005 nm. The method used
to determine the tune-out wavelengths of hyperfine states
was unorthodox, being essentially a second-order calculation
using energy and matrix element shifts applied prior to the
evaluation of the oscillator strength sum rules. There are three
main factors that influence the accuracy of the present tune-out
wavelengths. Table XV shows the estimated errors of the first
primary tune-out wavelengths of the 5s1/2,F = 1,2 states of
87Rb and 5s1/2,F = 2,3 states of 85Rb.

The first factor is the uncertainties of 5s-5pJ matrix
elements. An uncertainty analysis has been done for the
tune-out wavelengths. First, the matrix elements of 5s-5p1/2

and 5s-5p3/2 transitions are changed by 0.05% according to the
errors between the present RCICP calculations and Ref. [9].
The matrix elements are adjusted accordingly, and tune-out
wavelengths are recomputed. In this case, the ratio of line
strengths 5s-5pJ is not changed. The shifts in the first primary
tune-out wavelengths near 790.0 nm of 87,85Rb are about 5 fm.
This is too small to explain the differences between the present
calculations and experimental results [8,9]. The shifts in the
other primary tune-out wavelengths near 423.0 nm which lie in

the 5s-5p3/2 and 5s-6p1/2 transitions of 87,85Rb are 2034 fm.
The shifts in the primary tune-out wavelengths near 421.0 nm
which lie in the 5s-6p1/2 and 5s-6p3/2 transitions of 87,85Rb
are about 257 fm. The shifts in the tune-out wavelengths which
lie in the npJ hyperfine splittings are smaller than 10−11 nm.
Then, the ratio of line strengths 5s-5pJ is changed by 0.00003.
The shifts in the first primary tune-out wavelengths of 87,85Rb
near 790.0 nm are 13 fm. These shifts are still much smaller
than the differences between the present calculations and latest
experiments [8,9]. The shifts in the other primary tune-out
wavelengths of 87,85Rb near 423.0 nm are about 6 fm. The
shifts in the primary tune-out wavelengths of 87,85Rb near
421.0 nm are about 0.7 fm.

We also have checked the sensitivity of the tune-out
wavelengths to the small changes in the energy-adjusted matrix
elements. The tune-out wavelengths are recalculated without
the modifications of matrix elements due to the energy adjust-
ment. The tune-out wavelengths are insensitive to these small
changes; they are totally different from the hyperfine stark
shifts, which are critically reliant on the use of energy-adjusted
matrix elements. For example, the energy-adjusted reduced
matrix elements make the 0.5-fm shifts to the first primary
tune-out wavelengths of the F = 1,2 ground states of 87Rb.
The shifts in the first primary tune-out wavelengths of the F =
2,3 ground states of 85Rb are about 0.2 fm. These shifts are two
or three orders smaller than latest experimental error bars [8,9].

The second factor is the uncertainties in the contributions
to the polarizabilities from the highly excited, continuum, and

TABLE XV. The estimated errors (in fm) of the first primary tune-
out wavelengths of the 5s1/2,F = 1,2 states of 87Rb and 5s1/2,F =
2,3 states of 85Rb. δλ1 is the error that is caused by the 0.05%
uncertainties of 5s-5p1/2 and 5s-5p3/2 matrix elements. δλ2 is the
error that is caused by the 0.00003 uncertainty of the ratio of 5s-5pJ

line strengths. δλ3 is the error that is caused by 5% uncertainties of the
matrix elements from the high-excited, continuum, and core-excited
states.

∑
δλi is the sum of δλ1,δλ2, and δλ3.

F λzero(nm) δλ1 δλ2 δλ3
∑

δλi

87Rb 1 790.0181865 5 13 175 193
2 790.0326024 5 13 175 193

85Rb 2 790.0235148 5 13 200 218
3 790.0299179 5 13 200 218
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core-excited states. The contribution from excited states above
the 5p state is 11.14 a.u. in the present RCICP calculations
of tune-out wavelengths, which is a 4.1% difference from
the value given by Leonard et al. [9]. So we changed the
matrix elements of highly excited states by 5%, and the tune-
out wavelengths were recomputed. The first primary tune-out
wavelengths will shift 175 fm for 87Rb and 200 fm for 85Rb.
These shifts are close to the difference between the present
calculation and the latest experiment [9].

The third factor is the uncertainties in transition energies of
hyperfine states. In the present calculations, the experimental
resonance transition energies [47] for the hyperfine transitions
are used, in which the uncertainties are smaller than 10−7 nm.
The effect of hyperfine structure for the level higher than 6p is
negligible. So this factor can be ignored in the present analysis.

V. CONCLUSIONS

The static and dynamic polarizabilities of the ground state
of Rb were calculated by using the RCICP method. Combining
the most exact 5s-5pJ matrix elements [9], the three longest
tune-out wavelengths of the 5s1/2 state were determined. After
considering the hyperfine splittings of energy levels, the static
and dynamic polarizabilities and the tune-out wavelengths
of the hyperfine ground states of 87,85Rb were further deter-
mined. The present hyperfine stark shifts are in good agree-
ment with the available theoretical and experimental results.
Considering the contributions of tensor polarizabilities, the
tune-out wavelengths for the different magnetic sublevels MF

of the hyperfine states F were obtained. It was found that
the differences of the tune-out wavelengths for the different
magnetic sublevels do not exceed 10−4 nm.

The first primary tune-out wavelengths of the
5s1/2,F = 1,2 states of 87Rb are 790.018187(193) and
790.032602(193) nm, respectively. The first primary tune-out
wavelengths of the 5s1/2,F = 2,3 states of 85Rb are
790.023515(218) and 790.029918(218) nm, respectively.
The present results were compared with recent experiments
[8,9]. The differences between the present calculations and
recent experiments are still larger than the experimental error
bars [8,9]. But the present RCICP first primary tune-out
wavelength of the 5s1/2,F = 2 state of 87Rb is longer than
that observed in the recent experiment [9]. Meanwhile,
the present RCICP first primary tune-out wavelength of
the 5s1/2,F = 1,MF = 0 state of 87Rb is shorter than that
observed in the latest experiment [8]. It seems that the
main uncertainty of the polarizabilities from the highly
excited, continuum, and core-excited states cannot explain
this difference completely because the uncertainty of the
remaining polarizabilities can lead only to wavelengths that
are consistently longer or consistently shorter than but not to
some that are longer and some that are shorter than the first
primary tune-out wavelengths in recent experiments [8,9].
Hence, further study will be essential.
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