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Higher-order recoil corrections for triplet states of the helium atom
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Nuclear recoil corrections of order «®m?/M are calculated for the lowest-lying triplet states of the helium
atom. It improves the theoretical prediction for the isotope shift of the 23S -2 *P transition energy and influences
the determination of the *He -*He nuclear charge radii difference. This calculation is a step forward on the way
towards the direct determination of the charge radius of the helium nucleus from spectroscopic measurements.
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I. INTRODUCTION

The direct determination of the nuclear charge radius from
the measured transition energies has been so far carried
out only for the hydrogenlike atoms [1]. In more complex
systems, the possibilities of such determination are limited
by our insufficient knowledge of the QED effects. The main
advantage of hydrogenlike atoms is that the relativistic electron
wave function can be determined analytically in the limit of
infinite nuclear mass. It is then possible to express all QED and
nuclear recoil corrections within the Furry picture of QED and
calculate them either analytically in terms of the Z« expansion
or numerically to all orders in Z«a (where Z is the nuclear
charge number and « is the fine structure constant).

Calculations of QED effects in few-electron systems are
much more difficult than in hydrogen. Presently the best
theoretical accuracy is achieved for the helium atom, whose
(low-lying) energy levels are calculated rigorously within
QED up to orders a®m and a’m?/M [2,3] (where m is the
electron mass and M is the nuclear mass). The theoretical
accuracy achieved in these calculations was not sufficient for
determination of the charge radius of the helium nucleus (i.e.,
o particle). Significant progress, however, can be achieved
by calculating the next-order QED and nuclear recoil effects,
namely a®m? /M and o’ m corrections. These calculations will
bring the theoretical accuracy of the helium n = 2 transition
energies on a 10-kHz level, which will allow us to determine
the «-particle charge radius with an accuracy of a few parts
of 1073, Such a project is challenging but looks feasible, at
least for the triplet states. Indeed, the most suitable transition
is 235 -23P, which has already been measured with sufficient
accuracy [4,5],

E235-2°P *He)centroid = 276 736 495 649.5(2.1) kHz h. (1)

The finite nuclear size contribution to this transition energy is
E¢; = 3427 kHz h. Taking into account that Ef is proportional
to the nuclear charge radius squared, R, the expected 10-kHz
theoretical accuracy will determine the nuclear charge radius
with 0.15% accuracy,
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After the project is accomplished, we shall be able to compare
the charge radius of the o particle with the result from

muonic helium, which is expected soon from the CREMA
collaboration [6]. Such a comparison would be of particular
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interest in view of the discrepancy for the proton charge
radius observed in the muonic hydrogen experiment [7,8].
Additional motivations for this project are the yet unexplained
4o discrepancy for the difference in *He and *He nuclear
charge radii [9] and plans to measure the charge radii difference
from isotope shifts in heliumlike ions [10]. In this work we
make the first step towards the absolute nuclear charge radius
determination and calculate the nuclear recoil correction to
order a®m?/M for the 23§ and 2 *P states of the helium atom.

This paper is organized as follows. Section II introduces
notations that will be used throughout the paper. Section III
describes our approach to the calculation of the energy
levels by an expansion in the fine-structure constant «.
Section IV reports the Foldy-Wouthuysen transformed non-
relativistic QED (NRQED) Lagrangian, which is the starting
point for our derivation. The derivation of the o®m?/M
correction is presented in Sec. V. Section VI is devoted to
the rearrangements of terms in such a way that all matrix ele-
ments become finite. Section VII presents the final formulas.
Section VIII describes the numerical evaluation of all matrix
elements. Results and discussion are presented in Sec. IX. The
principles of the dimensional regularization, details about the
elimination of singularities, the simplification of the formulas,
and the reduction to the hydrogenic limit are presented in
Appendixes.

II. NOTATIONS

We will use the following notations throughout the paper.
The operators, energies, and wave functions for a nucleus with
a finite mass M will be marked with indices “M”: Xy, Ey,
¢ - The operators, energies, and wave functions in the infinite
nuclear mass limit are without indices: X, E, ¢. The recoil
corrections to the operators and energies are denoted by 6,/ X
and S E,

Xy=X+"sux+o0(2 2 3)
M = MM M )

Ev=E+ syE+o0Z ’ )
M= oM )
‘We also introduce the shorthand notations

(X)m = (Pu|X|Pu) (&)
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and

_,

—I¢>
(6)

where 131 is the momentum of the nucleus in the center-of-mass
frame, and H, E, and ¢ are the nonrelativistic Hamiltonian,
energy, and the wave function in the infinite nuclear mass limit.

1

u{X) = (¢|— E_Hy 2

> WXW) + (9| X

III. NRQED APPROACH

According to QED theory, the expansion of energy levels
in powers of « has the form

En(a) = Ey + Ey) + E§) + Ei) + E§) + 0@®), ()

where Ey(a) = E (a,% and E}(‘Z) is a contribution of order

ma" and may include powers of Ina.. E 5&2) is, in turn, expanded
in powers of the electron-to-nucleus mass ratio m/M,

2
EQ —gm 4 SME("“FO(%)' ®

Each term of the expansion E}{}) can be expressed as an

expectation value of some effective operator. Namely, Elﬁ) =
Ey is the eigenenergy of the nonrelativistic Hamiltonian

H,S) = H), with the eigenstate ¢:

HMz;(& Z“>+ZZ— L

r
a>b b ab

Here P, is the momentum of the nucleus in the center-of-mass
system it is just P; =Y, Pa- M is the expectation value

of the Breit-Pauli Hamiltonian H }{4) [11],

Ey = (H))),,. (10)
p* n/o Zao T I
H®Y — _Pa 83(r, 225, x B,
M Za: 8m3 + 2m? (rar) + 4m20 ra31 p

X 3 o (oY "éb’}{b j
+Z{_W8 (rab)—wpa<ra—b+T Dy

Tab

i i
- 308 gy (31— 3
m 4m o, T
o - > s> o -
+ ——=5[2(G4 - Fab X Pb — Ob - Tab X Pa)
4m2r3 P

+ (Gp * Fab X Db — O * Tap X ﬁa)]}

Za Fal s iyl

_ L % P 4-al al al al Pj
ZmM Xa:[ o pa<ru1 ra

(11)

and Eg? is the leading QED correction (see, e.g., [12-14]),
which will not be needed in the present investigation. The next
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expansion term E;S) is the sum of two parts:

1
Ey) = <H(4)—H(4)> +(Hy),. (12
In this paper we derive the recoil part of this expression,
SuE®, for triplet states in helium and heliumlike ions. The
approach is similar to that in Refs. [2,15], with some modifi-
cations that simplify the derivation of the recoil correction.

IV. FOLDY-WOUTHUYSEN TRANSFORMATION

In order to derive the effective Hamiltonians H Z(V;’), and

in particular H @ ), we transform the QED Lagrangian to
the NRQED form by using the Foldy-Wouthuysen (FW)
transformation [16]. This transformation is the nonrelativistic
expansion of the Dirac Hamiltonian in an external electromag-
netic field,

H=a- -7+ Bm+eA°, (13)
where 7 = p — eA. The FW transformation S

Hpw = €S(H —id,)e™"S = H + 8H, (14)

leads to a new Hamiltonian, which decouples the upper and
lower components of the Dirac wave function up to a specified
order in the 1/m expansion. In order to simplify the derivation
of m?/Ma® corrections, we start from FW Hamiltonian from
Ref. [2],

2 e j.[4

Hpw = eA+ = — £ 5iigii _
Fw=¢ +2m 4m6 8m3+

e .. . .
_@W - E+o{E' n}) —

o B"77)

= {p.0E)

[p*,[p*.eA°l]

T E )+

32 4 128m*

1
. 4[p2v (eA) + VX(eA)p] + 7", (15)

where {x,y} and [x,y] stand for the anticommutator and
commutator, correspondingly,

. 1 L
o = —[o',07], (16)
2i
U=209'Al -3/ Al, (17)
E'=—-ViA"— A, (18)

and apply further transformations. The first one,

e -
S, = ———(n,E}, 19
| = — el E) (19)

eliminates B,E from Hpy:

> e
E}+—E2+ Al
bt 50 o 4[p 1p?.eA%]l.
(20)
The second one,
e ii . .
S2: WUJ{Alvn]}v (21)
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eliminates the transverse part E = —B,X,

52H,\,LU J{E! '}—LaifAiEj
8m? L7 4m?

+lom Lo (A" p/}, pPl. (22)

The resulting new FW Hamiltonian is

2 7.[4

Hpw = eA'+———c"/ B —
Fw=¢ +2m 4mU 8m3+

Tl

S5 o S ez .
_Z(V . E|| +UJ{E||,]7J}) + ﬁUJEHAJ

2
e -
el AL + B

[p*.[p*eA’

( 5
ot
P 128m*

+32 1 EHP}"'

P2V (eA") +

S (23)
~ 6dm* Toms
where E | = —V A°. Since we are interested here in the leading
O(m /M) term, the nucleus can be treated nonrelativistically,
so

1 - -
SuHrw = ﬁ(P, + ZeA) . (24)

V. THE HIGHER-ORDER BREIT-PAULI HAMILTONIAN

In this section we derive the effective operator H,(;). The
derivation is similar to that in Ref. [2], including the use
of the dimensional regularization. For the simplicity of the
presentation, all the derivations here will be performed in
d = 3, but in such a way that allows for a straightforward
(and unique) generalization to the d = 3 — 2¢ form. This
generalization will be needed only for a few divergent terms,
and details of the dimensional regularization are presented in
Appendix A.

Using the nomenclature described in Appendix A, we
denote by V the nonrelativistic interaction potential,

2 3) SECS

a>b b

Zo

by &, the static electric field at the position of particle a,

ral

ef, = aV:—Za——i—Zoz (26)
Tar b+a ab

by ja the vector potential at the position of particle a, which
is produced by all other particles,

; o oI NPl o« ok
Al = St ab"ab |\ Fb = _ki“ab
% Z|:2rab( t o2 m + 2m°b 3

b#a Tap ab
_ Za 81] + rtilr(il P_Ij (27)
2ra1 rjl M ’
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and by A 1 the vector potential at the position of nucleus, which
is produced by electrons,

i J
i _ o ij Tar’ar \ Pa
edi = :zra, (51 n T>;. 28)

Tar

Following Ref. [15], H}(V(;’) is expressed as a sum of various
contributions:

HY =Y HM. (29)

i=1,11

HM is the kinetic-energy correction:

M S
HY =) o, (30)

HZM is a correction due to the static electric interaction, namely,

=3 ¢ o, 3
Z_G 8m3 ¢ ' 32m*

{pa-eos/Eupi}

5, 3
+ g Pl V1] = g

{pg,vjv}) (31)

H3M is a correction to the Coulomb interaction between
electrons, which comes from the sixth term in Hpy, namely,

e > N .. . .
—o (V- Ey+ 0V (E[.p'). (32)

If the interaction of both electrons is modified by this term, it
can be obtained in the nonretardation approximation, so

ZZ/CF = e (K 4 2i07 K p)

a>b b

X eik';“b (k2 + 2iolflkkpf,)

=22 64;4

{—4nV283(ra;,) — 87ic pl 83 (rap)pl

a>b b
—87TlUb pb8 (rab)pb —{—40’“ k
8t 1/ . iyl .
[ 3 — 4783 (rap) + —<8” — 3—r“:;“b>:|o,ﬁjpf,}.
Tab ab
(33)

H}' is the relativistic correction due to transverse photon
exchange:

Hy' = Z‘#(’# -5l ”B”,Pi})
=2 g ClPb e A} + {0l ViAL)). G4
a
HSM comes from the remaining transverse photon exchange:

& ici 4 ie ij [ gi
N o L - L A 1 BEY
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HM comes from the double transverse photon exchange:
M e’ 24
HY' =D g et
a

HM is a retardation correction in the nonrelativistic single transverse photon exchange:

Z%¢?

A2 (36)

EM _ _,2 ﬂ s _ dul pa kzvk ikTy (Hy — EM)2 P_;i + LGUVI e*i];‘?b|¢M>
7 (27)32k* ugb Zb m  2m? P
1 . e
-7 E I Lk r,(H E)2<— . [ijvll;>e_lk'rb|¢ 7 2 ¢)|< ktvk) ik-7 ra(H E)2 M —lk r,|¢)
(37)

This is the most complicated term in the evaluation, and we have to split it into four parts with no-spin, single-spin, and
double-spin terms, and the nuclear part,

Eé\/I—E%—FE +E +E (38)
The part with double-spin operators is
kikk)(alikl) . .
M b ik-rq 2 —ik-rp
Bz = Z Z / (27‘[)32](4 42 (Pmle™"*(Hy — Em)e ") (39)

a a#b
One uses the commutation identity
= = = = 1 o
(" (Hy — Ey)’e™™ ")y + (@ < b) = ([ [(Hy — En)* e ")y = ——2m2([pﬁ,[p,%,e”"’ub]])M (40)

to express this correction in terms of the effective operator H2:

HM ZZ O,ljo. L—i—o’io‘j 1 rzibréb_a_ij (41)
Tc 164pa’ pb’ b3 abzrab 2 3 :

a>b b Tab

The part with no spin operator is

. kil - =
Ejp=2)) —¢ f (27t)32k4< 8 — ><¢M| {”"’H(HM—EM)%*"‘"—(HM—EM)Z} |¢M> (42)

a#b b

We subtracted here the term with £ = 0. We ought to perform this in Eq. (37), but for simplicity of writing we have not done it
until now. We use another commutator identity,

. - - 2 .
" (Hy — Ey)’e™™" — (Hy — Em)’ = (Hy — Ex)(e*"™® — 1)(Hy — Eum) + (Hy — EM)[ . R 1]

P 2 2 7=
+ | ek — ,& (Hu — En) + &, eikrar ,& , (43)
2m 2m 2m
and the integration formula
4 Kk - 1 .. .
f d3kk—f<5” - 7)(e”” — D= (' =387 (44)

to obtain the effective operator H2':

i _ ij,.2 2 ioJ ij .2

M _ o . Toptap — 38775, j ; Py Foplap — 38775, |

e ‘ZZ‘_W{["’G’V]W[V’pb]+[m,v1 T P
a>b b

, rl, — 382 riopd —38iy2, p2 ~
+p;|: ab’ a ab pai|[V pb]+pa|:pb |: ab’ ab ah7&j|:|pé}' (45)

Tab "2m 2m’ Tab 2m

The part with the single—spin operator is

e d’k P
E% ZZ yes T (¢)M|{elk.ra(HM _ EM)Ze—zk.rbO:lkk Gh p]kl ik-F, Ta(Hy — EM)Z —ik- rb}|¢ ). (46)
a#b b
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With the help of the commutator in Eq. (43) and the integral
4 ]; . .
/ PRI ke LT (47)
2r

one obtains

2 i 2 ) ; 5
p ; p LrD i . i Ip rtp

HM — ij ab ab a v, J b , ij ab’ a J _ j’V , J ub Jj a , ij ab’ b )
7 ZZ 4m? {|: %a Tab 2mi|[ Ppl+ 2m %a Tap 2m Pb [Pa ] ph S Tab ~ Pa 2m %a Fab 2m

a>b b
(48)
Finally, the nuclear part is
d’k AV , p1
M __ 2 i i 2 b Lj ol —ik-r,
E7d = —e / W(S J k_)ﬁ Z(¢|pa(H - E) <; + %Jb Vb>e b1|¢> + H.c.
Za . (r,i,r,f, —38r2,) pi 1y,
= —— 'VI|H-E, 22— 2T )b
i ab(d’l[ﬁa ][ S A ()
= (¢|Hyyl9). (49)

We have checked that the nonrecoil part agrees with that derived in Ref. [15] and that the spin-dependent recoil part agrees with
that in Ref. [17]. Here, we are interested in the spin-independent part, which in the center-of-mass system P; = — Y p, is
(from now on we use atomic units m = 1)

%

H'=2 16

A2 3
= Y[ ) - ]

1 2 oal2. . | AN
H' = 226—4{—4nv263(rah>+go;fobf[gpaétna%rah)ph Pas (61 —3%)192]},

a>b b Tab ab

1 lj lJ 7z §iJ i .
HY = §Z Z{pa,l’a( ”brab)l’ }— LA pZAn s (rap)} + —Z{pa,pa< -+ r":#)pé} ,

a b+#a b Ta al
ij _ij -
04 0y 174 1 1
HY =) <—— VLV [[ NANARE
oy 6 2r 16
1, (89 r §Ik rj rk ool Fup T, Zm (87 rirl N\ (8% ol
HM= [_ (_ ab ab>< ac >pk+ b ¢ Ta aC+__pz<_+ ab ab><_+ al al>pk:|
‘ ;;; 8 Llc ‘ 24 r;brt?c 4M™ Tab r;b Far ”31 ¢
7% m 8yl op §ik ) gk oG Rl For
+ L~ m +M)(_+ bl bl>pk+ b Ta i|
ZZ 8 M|: < al ral To1 T ’ 3 31 T
1 . riord — 38iiy2 ; . p2 riopd — 382 ;
H%:Zz—g{[lﬁwv] ab abr ab[V,p;}]—i-[pfl,V][?b,M}pz
asb b ab Fab
i ij.2 2 i ij.2 2
i| Taptar — 385 Pa Pb FapTap — 3815, Pa J
—7, =V, s ,
+p“[ Fan > Vel r) 3 Fab 2 |17
ij _ij
M ooy | o 5 1
wl = S5 g i)
a>b b
iZm riord 382
HY = ?MZV’V[H p it = 387731) — ”’)p,i] (50)
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Further Hamiltonians HY, ..., H}Y come from the high-energy contributions, so they are proportional to Dirac §’s, and we will
account for them in the next paragraph. These H form a general ma® effective Hamiltonian for an arbitrary atom and an
arbitrary state, neglecting the spin-dependent operators.

From now on we consider the specific case of the triplet states of the He atom, where the expectation value of §3(r,;) vanishes
and almost all matrix elements become finite. .

The Breit-Pauli Hamiltonian of Eq. (11) is split into four parts (with r15 = 7, 7oy = 4, and P = p; + p2),

HY =HY + HY + HY + HY, (51)
where
1 Zn 1 ./87 r rf ioZm[ (8 ripd s pipd .
HM=__ 4 4 —83 83 I | o _ = if 11 if = 272 P_]’
i =g (Pl +p2) + 80D+ 8 - oo — + Pi= 5o P )
(52)
Z ?1 3 ? - Zm 71 _’2 - 5'1 + 02
HY = |Z(= —= -— ——|=+= P , 53
5 [4<r§X ; ) 30 <P p2)+2M<r13+r23)X } 2 (53)
=|—|l=xp—-—= -— ——|=-=)x ,
A PR g 4r* R S 7A Pl 2
_ & G| -F0y - F 55)
Hy' 4 rs '
The corresponding second-order correction is
1
Au= Y. <HM H,M> : (56)
I=A,B.C.D (Ey — Hy) M
whereas the first-order contribution is given by
Bu = (Hy),, (57)
H consists of 11 parts, according to Eq. (29), with H}”, ... HM already defined and
HY = 7°— (4 In2 — —)[63(r1) +8%(r)1, (58)
35 448 (( )
HM = 77 — - = s 83 59
9 [36 77 :|[ (ro) +87(r2)l, (59)
139 5
HY = nzz[3—2 —2In(2) + @}[5301) + 83 (r)], (60)
Z[ 4358 10 3
HY==|-—— - —n’ *In(2 3) |16 8 ()] 61
1 71|: 1296~ 277 + 57 n(2) — §( )}[ (r1) +67(r2)] (61)

Here HJ' is the high-energy pure recoil correction taken
from hydrogenic results, HJ stands for the radiative recoil
correction, and H{'{)’ and H{‘]’ stand for the one-loop and
two-loop radiative corrections, correspondingly [18].

VI. ELIMINATION OF SINGULARITIES

The principal problem of the used approach is that both
the first-order and the second-order contributions are diver-
gent; the divergence cancels out only in the sum of these
contributions. To achieve the cancellation of the divergences,
we (i) regularize the divergent contributions by switching
to d = 3 — 2¢ dimensions, (ii)) move singularities from the
second-order contributions to the first-order ones, and (iii)
cancel algebraically the 1/¢ terms. Moreover, we notice that
the recoil corrections are of two types: (i) corrections due to
the perturbation of the wave function ¢, the energy of the

(

reference state E, and the nonrelativistic Hamiltonian H by
the nuclear kinetic energy p? /(2M); and (ii) corrections due
to the extra recoil operators in H S) and H I(V?). We will use this
fact in the following derivations.

A. Recoil correction from the second-order contribution

In this section we consider the recoil correction coming
from the second-order matrix elements, i.e., the first term in
Eq. (12), which is denoted by A,,. The recoil correction from
the second term in Eq. (12), denoted by B}, will be examined
in the next section.

The second-order contribution with H}! is divergent and
has to be regularized. Regularization is performed by rewriting
H}" in such a way that the singularities are moved from the
second-order matrix element into the first-order ones, where
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they cancel each other. To do this, we write H}! as

1 zZ Z 2 zZ Z
HY = HY —— Hy — En,— +——-—3— 4+ =)t =HY +{(Hy — En,Qu}. (62)
4 1) r M r1 ry
The operator Q, is the same as in Ref. [2] with the exception that it also includes a recoil part §,; Q. The regular part of operator
H can be evaluated to yield

M m
Hp = Hg + — 48y Hg, (63)
M
1 ZH Vi ZF-Vs 1 R
Hplp) ={—=(E-V)Y? == -Z —ViVZ - piVi(r)pl t1e), 64
RI®) { 2( ) PR i +4 Vs — Py (f’)pz}|¢) (64)
P2 [P2\\  3ZF Vo 3ZR-Vy o
SuHrlp) = (E—-V)| — — (= —— ————— — ZpiVY(r)P! = Zpy VY (r2) P’ 1 9), (65)
2 2 4 r; 4 rs
where
zZ 7z 1
V=-"-Z 4, (66)
rl r r
iyl
Vii(x) = ( 51+ %) 67)
X

Moreover, the kinetic energy of the nucleus is (132 /2) = 8y E. After regularization, the first term in Eq. (12) takes the form

1
Ay = HM—HM> Hy — E 2EW —2(HYW
M QR§C‘D< Ty | (Qu s = Ean) Qs + 23 { Qi (Hy Oum),,

=AY + AY, (68)

where A} stands for the first term (i.e., the second-order contribution) and A% incorporates the remaining first-order matrix
elements. Recoil corrections are obtained by perturbing the second-order matrix element by the kinetic energy of the nucleus
and keeping the first-order terms in the nuclear mass. So, §y/ A is

dpyA| = H—1 P (SE—I H,
MAl — Z <a(E—H)/|:7_ M i|(E—H)/ a>

1 1 p? 1
”< &y e Ny T >”<5M “E—Hy > ©
while the first-order terms are
AY = (Q(Hy — Ew)Q)m+2ES(Q)w — 2(Hp 0),, + %&(Q(H — E)sy Q) +2ED(8)0) — 2(Ha01 Q). (70)

Reduction of these terms will be left to the Appendix, and we present here the final result for the recoil part:

3 /72 72 1 1 [/ZFh  Zh\ 7 Z(Z—-2) [8r) ()
SuAy =6 ) -—=+-|5 -5 ) 5 +2E®
M2 M< 32( + 4) 4;'4-’_4<r]3 r23> r3+ o+ 4 i ) + 71

r
(2,2 2\1 3l]+rrf D T T (s ’r/ e V)2Q+ (2, 2)
4P rnoor rj)r P 2| P P2 p || or o P2

1,1 5 1p 50, . 1 z: 72 3 Z%,-F, 3EW
——prep2 — —[pA P2V SyEPE+({— = )| -=="—"= —3EE®
g PP S[Pl [pz ]] +om + 2 -t 16 3,2 +2 -

rs rrs
5 Z z 3 ,(Z2 Z 3 o Z  Z\1(,: rri\
(E V) Z) - o D) nl o+ )87+ = )P+ M EE - V)Q
| rz 8 T 4 rno orn)r r2
Z-6 ) E(Z Z\ E
+—3 (r1) +—8(z) —+2E+2Z +PS(=+2) -
4 r 2r
Ll z+zz 3(2,.2\, 15 ZZP’ 5u+r;'r,{ Z.Z 2\, an
4\r;1 4r\r;  ny 2r2 - 4 Ty r} rn r, r Pa

052508-7



PATKOS, YEROKHIN, AND PACHUCKI PHYSICAL REVIEW A 94, 052508 (2016)

B. Recoil correction from the first-order terms

In this section we examine the recoil correction coming from the first-order matrix elements, i.e., the second term in Eq. (12),
which is denoted as B)y,. Using Eq. (29), By can be written as

By =(Hy), = > (H"), (72)

For each of the operators HY = H; + 2 370m Hi, the recoil correction is the sum of two parts: (i) perturbation of the nonrelativistic
wave function, £ and H by the nuclear kinetic energy in the nonrecoil part; and (ii) the expectation value of the recoil part §,, H;
(if present). The derivation is straightforward but tedious, so we have moved the description of this calculation to the Appendix
and present only the final result for the recoil correction 8y, B,

5 5 7 ZZ+22 25(ZF,  Zh 7+1 ZV Zh\ ¥ 1+41+11 5 1
wB=om\z; A) s\ T A ) s T A\ T ) e 5| 72| 71y

3 3, » 3 Z -
+§(E—V) —gpl(E—V)pz—gnZ 2| E+

1)3 () + 2<E +ZZ 1)8%) — p18i(ry) — p§53(r1)}
r r

T 1 . 1 riri\ 1 Z%i rir! iy VANE 7t 1l
——V263 Zpi(E=V)= lj J 12 381j o1k 8]k__81k_
12 ")+ 2p1( )r( + >p2 8 r3r3 8 rl3p2 r

r r

ijrk ri’,.jrk i 1 . l 81'18]'1{ 5ik5jl 8ij6kl 6jl}’i}"k (Sik}"jl"l rirjrkrl i
-9 3 e _'_8p1 2 + 33 +3 rd 1P
M (5025 4+ ot ) + Hio+ Hi )+ (20w EE = V= 2B(E — V)P — 26y Epp? + — P2p2p?

4 P1r2P1 P2r2P2 10 11 2 OM 4 goM PiD> 16 PP

3 3(Zz-1) L[ rird j
- = SME+3E+ — D1 Do |TZ8r)+ (1 - 2)+ SMEp1 84 —I—— D

r
=) I" rf Z2 13 2271 ~?2 6

~Lppi (s 4 +—4 + =5 )+ GuH), (73)

4 r 16 r13r23

where

8 i IJ i) 7 8” )
S H®) = (2 S piE - = —”” e (2 )b = (4 ) e
r r 23 4 r rl

N 5u+ 22  p +22?1-?2+z ; 5i1'+rfrf afk+r{{<

Pt ) r3 P1 6 rir3 4 P r3 T r

N A E e AN PRl I | 1 87 rirl\ (8% kN
o\t 5 — 42 P + p 2P1+P2 2P2+P1 1+r—3 Pl I

ry i ry 5

3
r
3= - i i _ ij i _ ij j
Z r1 rz z3 r1 rz <_1 _2><r1r1 368 r1 ;’2r2 368 rz)r_
3 3
roon

1 s r3

z? ri e e kRN
+2 p’z‘_;<—5”‘—2+81k—2—5”—2—#)pé+(1<—>2)
8 r; r r r 7

373
+— + —= T 1 T - T[n’83(r1) +JT53(7'2)] + (SMHg + 3MH9>. (74)

At this point we have obtained all the terms contributing to the recoil correction.

C. Cancellation of singularities

The first-order terms 8§, A, and 8y, B could be further transformed using various identities, namely,

[ 2 1] Zr  Zr r 2 P ' pi 3ripd — §iip? (75)
1 2% Pl,r = r13 r23 }"3 s ,
L_1 (1o 1 E+z+21 m(o oo P\1 76)
AT T\ Pra T g h no o) M\M 2 )Y
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72 7 (g2 %] 22+ 22 m( P2\ 72 o
rf_p]rlzp] rnornor)rl p2r12 m\"" 2’

l_ Sl pipd ; @ , 1, 3 3 m p? @
Di 7+r—3 py =—2H), —(E-V) +§p1p2+Zﬂ[5*(r1)+8 (”)]_zﬁ (E-V) «SME—7 Sy H®|, (78)

V283(r) = 2p83(r)p. (79)

Using these identities, we remove all the remaining singularities and transform the results into a form suitable for numerical
calculation. The final result for recoil correction is presented in the next section.

VII. FINAL FORMULA

The final results are split into seven parts: (i) the second-order and third-order matrix elements containing Hpg; (ii) the
second-order and third-order matrix elements containing Hpg; (iii) the second-order and third-order matrix elements containing
Hc; (iv) the third-order matrix elements containing Hp; (v) the first-order matrix elements with the reference state and the
perturbed wave function; and (vi) the remaining first-order terms with the exception of (vii) pure recoil, the radiative recoil, and
the recoil corrections to one-loop and two-loop radiative corrections.

The final formula is then

Erecol = Ei + Eji + Ejji + By + Ey + Eyi + Eii, (80)

E,=(H ! P SuE : Hp)+2(H ! [H, (Hg)] 1 P + 26y H : H
AR E—HEHY 2 M ) (E—HY R RE-—HY! MYE—HY 2 MERE — 7Yy *)
(81)

E;, =(H ! P? Sy E ! H 2H ! H ! P? 2{H : Sy H 82
11—< B—(——M)m B>+<B(E_H) B >+<B M B>, (82)

(E—H)\ 2 (E—H) 2 (E — H)
Ei=(Ho—1 P2 SwE ) ——He )+ 2 He— Ho— P o He—t 5,8, 83
i = C(E_H)(7— M )(E—H) c)+ ‘E-mlE—m 2 + cE—mmte): (83)
Ey={Hp—1 ﬁst—l Hy)+ 2 oyt P 84
”_< D(E—H><7_ " )(E—H) D>+ < P(E-H) D(E—H>7>' ®

Here
P2 ..

SmE = <7> =—E+(p1-p2). (85)

For E, and E,; the results can be brought into a more suitable form by introducing set of operators Q; (see Tables I and II),

E, = E28 1Zl 27)6 328 18 E2+2E(4)8 9E8
v=-3% u{Q1) + 3 (1 -2Z)6u(Q3) + T3 m(Q4) — 2 u{Qs) + — m{Q7) — 3 u{Q0s)
7 E 2
+ g0 (Q0) + 2284 (Qu1) + EZ6u(Q12) = EZ8(Q13) = Z°81(Q1a) + 2781 (Q15) — -6 (Q1e)
728 0 Z5 ZS 228 225 228 138
—7 m(Q17) — 16 u(Q1s) + 3 m{Q19) — 3 m(Q20) + T m{021) + T m{020) + 3 m{023)
ZS ! ) ZS E5 ZS 18 18 86
+ 3 m{Q2) — % m{Q2s) — 7 m{(Q2%) — 3 m{Q27) — ) m(Qas) + 1 m(Q2) + 3 m{Q30) (86)
and
2 _ 2 “) 4)
E;— <—%E3 _3EE® _ 2E25ME _ 3E + 8M8E +4Z 20, — Z(SZ8 3) 05 + 3E°+2ESyE —Z6E + 26y E 0,

9 2F +8yE _, ) , 5., , 3
_gaMEQ8+TZ On+Q@GE+SyENZ Q12— Z2Q13) —3Z Q14+§Z*Q15—Z Q16+§ZQ17

2 3.2 3 1 _3 3 92, _3
+Z Q21+ZZ Q22+22Q24 85MEQ27 4ZQ28+SZQ31+24Z (0FY) 2E2Q34

L B0 = 32200 — 2200+ 270w+ - 0+ - 0n0— 2 0n + Lo 0n+ L0n— L0
35 4 36 37 38 16 39 16 40 4 41 2 42 2 43 2 44

2 2

7 ZZ 3 ZZ Z2 ZZ

z Z Z 20— 2 2 0s0). 7
+ 2Q45~|— 1 Qa6 + > Qs + 7 Qus 1 Qa0 + 1 Q50> 87
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TABLE I. Expectation values of operators Q; and the corresponding recoil corrections fori = 1, ...,30.
2°s 2°p
(Qi) Sm(Qi) (Qi) Sm(Qi)

Q) =418 (ry) 16.592071 —49.748 907 15.819309 —48.358 598
Q) = 4183 (r) 0 0 0 0
Q3 =4783(r)/r 4.648724 —18.821266 4.349766 —14.576 147
Q4 = 47 83(r)) p? 2.095714 —10.638077 4.792 830 —17.366 064
Q5 =47r53(r)/r1 0 0 0 0
Qs =4m p83(r)p 0.028 099 —0.163 026 0.077524 —0.100949
o, =1/r 0.268 198 —0.272 645 0.266 641 —0.082 865
Qg =1/r? 0.088 906 —0.182363 0.094 057 —0.052275
Qo =1/r° 0.038 861 —0.121355 0.047927 —0.036 603
Qi =1/r* 0.026 567 —-0.113712 0.043 348 —0.042 669
O =1/r] 4.170 446 —8.338455 4.014 865 —8.127584
Qun=1/(rr) 0.560730 —1.147101 0.550342 —0.709019
Qi =1/(rr) 0.322 696 —0.657458 0.317639 —0.381158
Q= 1/(rirar) 0.186 586 —0.576 097 0.198 346 —0.295115
Q15 =1/(rir) 1.242704 —3.791743 1.196 631 —2.687288
Q16 =1/(r{r) 1.164 599 —3.545 640 1.109 463 —2.554378
Q17 = 1/(r1r?) 0.112360 —0.346 820 0.121112 —0.166 459
Qs = (71 - P/(r3r?) 0.011331 —0.055997 0.030284 —0.030290
Qo = (71 - P)/(rir?) 0.054 635 —0.211280 0.075373 —0.104 553
Qx = r{r'zf(rirf —38Ur)/(rir3r) 0.027082 —0.256 024 0.090381 —0.166239
0 = p3/r} 0.751913 —3.075881 1.410228 —3.635740
O0» = pi/ri b 16.720479 —66.901 955 15.925 672 —64.131339
Q2 = P1/7r* P 0.243754 —1.008 306 0.279229 —0.572398
Qa2 = Pl (r'rd +87r2)/(r17%) pé 0.002 750 —0.068 255 —0.097 364 —0.056 872
Qs = PE(3rird — 8Ur2)/r> P 0.062 031 —0.336 586 —0.060473 0.119687
Qa6 = piri Jri@¢/*riJr — 8%ri jr — 8rk /7 — r"rjrk/r3)p£ —0.009 102 0.035209 0.071 600 —0.134238
Q= pip3 0.488 198 —1.988 286 1.198492 —-3.171122
O = pi/n p; 1.597727 —8.106 766 3.883405 —13.814978
Qo = P1 X P2 /T P1 X P2 0.070535 —0.358 089 0.399 306 —1.076373
Q30 = pX pl (=87lrirkjr3 — §ikrirl 13 4+ 3ririrkel /1) pi pé —0.034780 0.177968 —0.187305 0.490555
Finally,

Eyi = (0m Hs + S Ho) + Sy (Hio + Hi). (88)

VIII. NUMERICAL CALCULATIONS
OF MATRIX ELEMENTS

The helium wave function for triplet states is expanded in
a basis set of exponential functions in the form of [19]

N
¢(3S) — Z i [e—mrl—ﬁfrz—%'r —(r < m)], (89)
i=1

N
$CP) = Y uilFie " PR — (1 < 1)),

i=1

(90)

where «;, B;, and y; are generated quasirandomly with
conditions:

Al <a; <Ay, Bitvyi>e,
Bl<,3i<B27 Oli+j/i>8,
Ci<yi<C, ai+pi>e oD

(

In order to obtain a highly accurate representation of the wave
function, following Korobov [19], we use a double set of the
nonlinear parameters of the form (89). The parameters A;, B;,
C;, and ¢ are determined by the energy minimization, with the
condition that ¢ > 0, which follows from the normalizability
of the wave function. The linear coefficients v; in Eq. (89) form
a vector v, which is a solution of the generalized eigenvalue
problem

Hv = ENv, 92)

where H is the matrix of the Hamiltonian in this basis, N is
the normalization (overlap) matrix, and E the eigenvalue, the
energy of the state corresponding to v. For the solution of the
eigenvalue problem with A = 100,300,600,900,1200,1500
we use a Cholesky decomposition in octuple precision. As a
result we obtain the following nonrelativistic energies in au:

EQ23%S) = —2.175229378236 791 306, (93)

EQ3P)= —2.133164 190779283 199. (94)
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TABLE II. Expectation values of operators Q; fori = 31, ...
recoil corrections 8, E and 8,, E®.
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,50, the expectation value of the Breit Hamiltonian £® and the first-order

2°s 2°p
Q31 = 4783(r) pr - P 0.040294 —0.457224
Oxn = (71 - 7)/(r3r)) —0.005797 —0.032383
Qs =P b 0.007 442 —0.064572
Qu=P/nP 4.974707 4730359
Qs =P/rP 1.232372 1.127 146
Q=P /r} P 17.504 835 16.972775
Qx =P [(rir) P 2.489592 2.291176
Q3 =P /(nr) P 1.454 007 1350214
Q=P /r P 0.438 804 0.413 144
Qu = pip; P? 10.324 509 24.527699
Qa1 = P2 pi (riri 4+ 681r?)/r3 p) 0.151 748 0.067 201
Qu = p (rir] +89r2)/rt P 33.461709 31.489 835
Qu3 = pi (rir] +8r))/(r}ry) PI 2.486269 2217310
Qu = pj P (rir} 4 zsff'r2)/rl pk Pi 1.100915 2.527505
Qus = ph(r'r! + 5’/r2)(r1 rk 4+ 87%r2) /(r3r) P* 0.540877 0.467 623
Qus = Pi(rir] + 87r2)(rirk +afkr22)/(r1 r3) pk 0.006 782 —0.201826
Qur = (71 - 7))/ (r3rd) —0.008 117 —0.028621
Qug = riri(rir] = 380r2)/(rir? —0.036861 —0.057 404
Qup = r{rf(réréf —38Ur2)/(riryr?) —0.089 086 —0.126780
Qso = piri/rd (8757 )y — 5’kr§/r2 — 8Urk/ry — rir) }’z/rz)p2 0.005 856 —0.092 036
E® —2.164477972 —1.967358377
SuE 2.182671509 2.068 591 766
SyE® 0.089 185018 0.230 100 830

The calculation of matrix elements of the nonrelativistic
Hamiltonian is based on the single master integral

e~ an—pr—yr 1
rirar (@+B)B + y)(y+a)

95

The integrals with any additional powers of r; in the numer-

ator can be obtained by differentiation with respect to the

corresponding parameter «, §, or y. The matrix elements

of relativistic corrections involve inverse powers of ry, 7,

r. These can be obtained by integration with respect to

a corresponding parameter, which leads to the following
formulas:

3 3 e~ - Bra—yr
d’ry | d’r
1672 f ! f 2t

In <ﬂ+y>
(ﬁ+04)(04+ﬂ) a+y

d d3 e~ an —Bry—yr
1672 / n f T2 riryr?
1
[ﬂ L m <a + ﬁ)
2,3 2 B+

. a+y . oa+y

All matrix elements involved in the «®m?/M correction
(see Tables I and II) can be expressed in terms of rational,
logarithmic, and dilogarithmic functions, as above. The high

1672

(96)

quality of the wave function allowed us to obtain accurate
values of the matrix elements of Q; and §y Q; operators.
The corresponding numerical results are presented in Tables I
and II.

For the second-order matrix elements, the inversion of the
operator E — H is performed in the basis of even or odd
parity with / =0, 1, 2, and 3. In the case when the operator
acting on the reference state does not change its symmetry
(Hy,; for 23p, also Hp and Hp), it is necessary to subtract
the reference state from the implicit sum over states. This is
obtained by the orthogonalization with respect to the eigenstate
with the closest-to-zero eigenvalue of H — E. This eigenvalue
is not exactly equal to O because we use a basis set with

TABLE III. Individual o® m?/M recoil corrections to the ioniza-
tion energies of the 235 and 2 °P states.

Term 23§ 23p

E; 1.190 05 0.85352(10)
o 0.044 46 0.03233(5)
Eii 0.02511 1.197 09(10)
Ei, 0.01848 0.013 00(6)
E, —58.048 06 —52.97721

E 56.945 69 52.33933
Subtotal 0.17572 1.458 05(16)
Eyii —11.86715 —1.89119
Sum —11.69145 —0.433 13(16)

Sy E© (kHz)

—29.91

—1.11
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TABLE IV. Breakdown of theoretical contributions to the 235 -2 3P centroid transition frequency for “*He, in MHz. The uncertainty due to
approximate ¢’ contribution is assumed to be 1 MHz, i.e., four times less than in our previous work [3]. FNS is a finite nuclear size and NPOL

the nuclear polarizability corrections.

(m/M)° (m/M)! (m/ MY Sum
a? —276775637.536 102903.459 —4.781 —276672738.857
at —690066.189 —6.769 —0.003 —69072.961
o’ 5234.163 —0.186 - 5233.978
ab 87.067 —0.029 - 87.039
a’ —8.0(1.0) - - —-8.0(1.0)
FNS 3.427 - - 3.427
NPOL —0.002 - - —0.002

Present theory
Previous theory [3]
Exp. [4] + theory *Py- 3P, [5]

—276736495.41(1.00)
—276736495.37 (4.00)
—276736495.649 (2)

different parameters, which are obtained by minimization of
that particular term.

IX. RESULTS AND DISCUSSION

In this paper, we derived the complete recoil contribution
of order a®m?/M to the energy levels of the triplet states
of helium. The final result is given by Egs. (81)-(88). It
is a combination of various contributions of two types:
(i) perturbations of the nonrelativistic wave function, energy,
and Hamiltonian in the nonrecoil matrix elements by the
nuclear kinetic energy operator; and (ii) expectation values
of extra recoil operators. In Tables I and II the matrix elements
of individual operators entering Eqs. (86)—(88) are presented.

Results of our numerical calculation of E;, ..., ,E,; for
the 235, and 23P, states of the helium atom are presented
in Table III. For the 23S, state, the total a®m?/M recoil
correction is dominated by the Dirac §-like term coming from
the one-loop radiative correction [see Eq. (60)], the result for
the ionization energy being —29.91 kHz. Contrary to that,
for the 23P state, the contributions from Ej, ..., E.; are of
similar size but opposite sign. So, the total correction to the
ionization energy is only —1.11 kHz in this case. Contributions
of individual recoil terms to the 235 -2 *P transition energy of
helium are presented in Table IV.

The obtained results can be used to improve the theoretical
prediction of the *He-*He isotope shift of the 235-23P

TABLE V. Breakdown of theoretical contributions to the
SHe -*He isotope shift of the 235 -23P centroid transition energy,
for the point nucleus, in kHz. EMIX is an additional correction in
*He due to the second-order hyperfine singlet-triplet mixing [9].

(/M) (n/MY (/M) Sum
a? 33673018.7 —3640.6 0.4 33669378.5
at —-22149 -24 - —-2217.3
o’ —60.7 - - —60.7
ab -94 - - -94
o’ 0009 - - 0.0(0.9)
NPOL —1.1 - - —1.1
EMIX - 546 - 54.6

Present theory 33667 149.3(0.9)

transition. In this case the total m?/Ma® recoil correction
calculated in this work is —9.4 kHz. Individual contributions
for the point nucleus are summarized in Table V. In order to
estimate the uncertainty due to omitted higher-order m? /Mo
terms, we considered two typical contributions. One of them
is the hydrogenic recoil m?/Ma’* contribution (as evaluated
in Ref. [20]) scaled by the expectation value of §(r;) operator,
whereas the second is the hydrogenic ma’t contribution
with the 8(r;) operator perturbed by p; - p,. Since both
contributions happen to be small and of opposite sign, we took
the largest one and multiplied it by a conservative coefficient
of 2.

The updated theoretical result for the *He -*He isotope shift
allows us to improve the accuracy of determination of the
nuclear charge radii difference §R*> = R>(*He) — R*(*He),
derived from the 23S —2°3P transition [9], namely SR> =
1.069(3) fm? [21] and § R? = 1.061(3) fm? [22]. This reduces
slightly the discrepancy with the result from the 2'S —23§
transition [9], sR? = 1.028(11) fm? [23], but does not remove
it entirely. In order to clarify this further, one needs to calculate
the complete a%m?/M recoil correction also for singlet states
of helium.
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APPENDIX A: DIMENSIONAL REGULARIZATION

Since the triplet state wave function vanishes at rj, = 0, the
electron-electron operators do not lead to any singularities,
and thus can be calculated directly in d = 3. There are,
however, several terms arising from the electron-nucleus recoil
operators, which need to be treated within the dimensional
regularization in order to isolate the singular part of the
operator. We essentially repeat the approach from [2], so only
a brief introduction to dimensional regularization is presented
here. The dimension of space is assumed to be d = 3 — 2e.
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The surface area of the d-dimensional unit sphere is

257 /2
= —, Al
1= T@n) (A1)

and the d-dimensional Laplacian is
V2 = 174,471, (A2)

The photon propagator, and thus Coulomb interaction, pre-
serves its form in the momentum representation, while in the
coordinate representation it is

Vo) d'k Am -
" —
Q) k2
c
=7 2P(1/2 — el = rl_lze. (A3)

The elimination of singularities will be performed in atomic
units. In accordance with [2] this is achieved by transformation

PHYSICAL REVIEW A 94, 052508 (2016)

with some coefficient C and y to be obtained from the two-
electron Schrodinger equation around r = 0,

2

From cancellation of small r singularities on the left side of
the above equation, one obtains

V2
|:—— — ZV(r)i|¢(O)(l —Cr’y= E¢p0)(1 —Cr”). (A8)

y =1+ 2e, (A9)

C = 1

= —1Zn P (=1/2 — o).

(A10)

Therefore, the two-electron wave function around r; =0
behaves as

d(r1,m) ~ ¢(r; = 0)(1 — CrlH'ZE),

Apart from the Coulomb potential V() in the coordinate space,
we need also other functions, which appear in the calculations
of relativistic operators, namely,

(Al1)

dlk A .
- —1/(142¢)= V. = ’k", Al2
r — (ma) r (A4) »(r) 2y 1 ( )
and ullin factors m(1=26)/(142€) 5, 2/(142€) and Vi(r) = dk 4w i; (A13)
m(17100/0+26,6/(1426) from H and H®. The nonrelativistic =] Qryd k6
Hamiltonian of hydrogenlike systems is They can be obtained from the differential equations
=2
C
H=0_z7 -1 (A5) —V2Vy(r) = V(r), (Al4)
2 pl-2e
and that of heliumlike systems is —V2V3(r) = Va(r), (A15)
7B C C C with the result
H= B3 + T T 2 t e (A9 142
r r 12 Vo(r) = Cor' ™2, (A16)
The solution of the stationary Schrodinger equation H¢p = E¢ o 342¢
is denoted by ¢; we will never need its explicit (and unknown) Vs(r) = Gar ’ (A17)
formin d dimensions. Instead, we will use only the generalized where
cusp condition to eliminate various singularities from matrix
elements with relativistic operators. Namely, we expect that C, = %né_l/ N(=1/2 —e), (A18)
for small r = ry,
C3 = 5nPI(=3/2 — o). (A19)
¢(r) =~ ¢(0)(1 — Cr”), (A7)
|
Using V;, we calculate various integrals involving the photon propagator in the Coulomb gauge, namely,
A% 4w (.. KK\ - . . ! 3 1 -
R ki M ) jiker g i _ —1/2 —14+2| = i _ _ 2 - o i
i (8’ 2 )e =8V, +0'0' Vs =7 /r €|:16<311"( 1/2 —e)r +8F(1/2 e)rr’i|
| . -
= |:—(r’rf — 38’]r2)i| =W/, (A20)
8r .
and
A% A [ KK\ 2 o . 1 .. o
o iy _ - ikr __ i i _ —1/2 =342 | _ ¢i _ 2 _ i
o 12 <8’ 2 )e =8"V+0'0V, =a"""r E|:28/[’(1/2 ar-+Tr(3/2—er rf]
| o
=|—0"r*+rirH| . (A21)
2r3 .
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€

(1)

where

— Z3Ci7)/.ddr¢2(r)r—3+66 — Z3C?¢2(O)f ddrr—3+6e+z3/d3r¢2(r)r—3
1
r3
ZZ
(7

1
> = 1in3)/d3r¢2(r)[—3®(r —a)+ 4783 (r)(y +1n a)i|
a— r
is the regularized form of 1/ r3. The matrix element ([Z2/r*].) is

j| > — Z2C12/ddr¢2(r)[v(r71+26)]2 — ZZC12(_1 +2€)2¢2(0) /’" ddrr74+46(1 _ Cr1+26)2 + Z2
ZZ

Similarly,

> + 7238 (r)) (—% + 8).

()
oy
811+_
72
and

ool

2
)= [£] o

773

2w ] v]7])=
2[5

. ; 1
W | pd) =
> v)r)
The last singular term appearing in these calculations is

- (e,
8

Now we are ready to remove the singularities from matrix elements of various operators. By convention we pull out a common
factor [(4m )" (1 + e)]2 from all matrix elements. Then, for example, the matrix element ([Z3/7r3]e), withr =7y, is

(1/r*) in the above is again a regularized form of 1/r*, where 1/a and Ina + y are dropped, analogous to the (1/r3) term.

/ dro*ryr™
a
However, we do not need its explicit form because we can always rewrite it in terms of (Z3/r3) using expectation value identities.
(=
2r
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3
<—3> + Z3 (w8 (r)) (1 + 2),
r €

(A22)

(A23)

(A24)

(A25)
(A26)
2 o L\ 1 [z? 32° 4
p—=@r" =3r'rpl )+ | — | )|+ —— (7)) (A27)
r4 \Lr* . 4
ool Z? d—1]2? L[ Z? AN
s [T\ AL T A e
€ € €
where we used the identity
o'o'l =d(d—1).
z? z?
[Fl = D1
they eventually cancel out.

All the singular terms can now be expressed in terms ([Z 3 / r3]e) and ([Z? / r*1¢) and using the expectation value identity

s
r

1

(A28)
(A29)
- zZ 1 ph\Zz? z?
ri r 2 ) r ri J.
APPENDIX B: DERIVATION OF 6, A,
Let us present here again the terms contributing to AJ':
m
A = (Q(Hy = Ew)Q)u +2E3,{Q0y = 2(H))' Q) + 3 H2AQ(H — E)by Q) +2E“(8y Q) — 2Haby Q)
=AY + Al + AY 4+ AN+ AYL + AYL
reduced by using expectation value identities,
AY =

+5 )+
%)

o

1 1 1 -
(Q(Hy — Ex)Q)u = ([Q,[Hy — Evi, QO = (V. 0)* + (V20 u + Z%([Q,[PZ,Q]D
1 r 72 7

5(‘ _>

-

3
)

(B1)
: >M M< : ( :
’ }"3 + 32

ZZ
+ 5 ) +
=)

The first three terms contain both recoil and nonrecoil parts, while the latter three are recoil only terms. Individual terms can be
AN A4
S \32

1 Z%, -7
rf‘ 16
052508-14
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E 1
A}, =2EY(Q)u + 25ME<4><3 + <4—>> (B3)
r
A = —Z(Hﬁ)Qm =X+ Xo + X3+ Xy, (B4)
where
z S ripl zZ Z 2\ . S ripl : o1
Xy =2068yHYQ) = -Zp da)(Z 2 2,2 <N Pl pi—
! O 0) za: 4 ra+r3 r1+r2 R LCR ra+r2 Pa| Pa-
5 Z i 5"/’+r;rg z z 2 f'+122+235() ®5)
= - - — T — — = —— + —mo(r,
—\ 4 ra o r2 )\ noor Pay rd 2
Here we used the identity (A25) from Appendix A to rewrite the singular term in the second equality in Eq. (B5) as
z? rird\ .1 172 73
8 + LN VIVI— ) = (== + =78 (ra)). (B6)
8r, r2 Ta 4 r 2

Further (using (83(x) /x) = 0, which is valid in dimensional regularization),

Z(Z - [3301) n 53(r2)}> ’
M

1 (B7)

X5 = _<[zn83(r1) + Zn83(rz)]Q> = <

M

X, — ;1 Bij_l_rirj jQ B 1 I. Z+Z 2 1 Slj_}_rr/ +1 1 1 (Sij+rirj (BS)
2=\Py 2 )P v 4P rnoor)r r 2 Pi- PZ, 2r 2 )y

X1 = {{[(pT + p3) —2r1P3]Q),, = 3((PT + P3) Q(PT + P3) + 3[PT + P3.[ Q.1 + P3]] — 2P QP35 — [Pi.[P3.C]]),,
X4+ X1+ Xic + Xip, (B9)

rn ri

where

m p?
Xia=(E-VYQu+ 2M<(E - V>Q<8ME — —)>

2
m - O D
=((E-V)YQ)u+ M<28ME(E -V)0—-P(E-V)QP — E[P’[P’(E - V)Q]]>, (B10)
o 1<[v+ ﬁ2[2+ 2QH> _< 1<ZZ+22>+3(271 z?z> 7 1>
=Ty [V R el | P WA W A NPC R SR P
+m<1<zz+zz)+122* *> B1D)
M\8 rf r; 4 rfrg ’
1 . (Z Z 1,1
Xie=(-p2(Z+Z)p2—=p?-p2) | B12
1Cc <8p1(r1 + r2>p2 4P1rl72 Ny ( )

o],
8 r "

The remaining terms are

A = Z{Q.[H — E5u 011 = 4 (V1 0)(V18u Q) + (V20)(V231 0))
_n (Z2 Z_Z) §<Zr] Zr > i (B14)
B M< 8 ' r3>’
A = E<3E<“>< > 3EE<4>>, (B15)
M r
M m
Ayy=— M(HA(SMQ) Fi+ F, + F, (B16)
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where
37%r (83 53
POy £ (rl) (rz) B17)
M\ 4
F—m3i Z+Z U+rr/ (B18)
2_]W 4171 r ry P ’
1m 2 1
Fi= 2 Al(p1 + p2)" = 2pip3]80) = 4M((p1+p2)5Q(p1+pz) 5Lt + 2. [Pl + p2.80]] - 2p76 0p)
= Fia + Fi + Fic, (B19)
and where
m 2 Z
Fia=— (E V) — ) (B20)
M 7‘1 1’2
po_m/3 22+22 3(zZr  ZR\ T B21)
T Mm\8 rtoory 8\ r} r3 =
m[3 zZ Z
Fic = ——(=pi =+ = )p3). B22
1c M<8p1<r1 +r2>P2> ( )
Taking now only the recoil part of terms A, . A%c we obtain the results
5 5 1 22+22 N 1 1(A R\ T N 1 22+z2 1 Z% - 1 B23)
M2 = M\ 3 rs) At 8\ ) 3\ 16 73 [
@ @(E _ [1
SpAgy =2E8(Q) + 25 E E-l— E , (B24)
Z(Z = [ 83(r 83(r 1 ./Z Z 2\1/.. riyl ;
sMAZC=aM< z-2 [ 7, (2)]——pi<—+———>— 6”+—2>pé
r r 4 rn r, rjr r
_I_l i J 1 8lj+ ! +(E V)ZQ 1 ZZ+ZZ
217017 ]2 g\rr 2
3/Zr, Zr\ T 1 1 .,z Z\ , 1,1 , 17 ,[ ,1
+8< r} r§’> r3 2t 8p1<r1 +r2>p2 g T g P Py
N Z N i[9 rirg Z+Z 2\ 322+22
4 = Ta rl rnoon @8\t 4
A
—[ms (r1) + 783(r)] + 28 E(E — V)Q — P(E — V)QP
1Z r1
——[P [P(E - V)Q]]+47 :
rir
soa | 3 ZZJrZ2 L3 Zr,  Zi\ T B25)
mAu =\"1¢ rf 3 r13 r; 3
3 1
SpAs = §E<4><—> —3EEWY, (B26)
r
3227 [83(r))  83(rn) 3 ./Z Z\Ll/ .. riri ;
SyAorr =(— —pt = iy By RN - J
i < 4 |: L) * r ]+4p1<71+r2>7< " r )pz
3 zZ Z 37> 72\ 3(z¢ ZR\ F 3 ,(Z Z
SE-VAE+ 2 )+ (S + S ) -2 (E-22) S 22+ 2 )R, B27
+4( )<r1+r2>+8<r;‘+r§) 8<r13 rg’) r3 8 '(r1+r2>p2> ( )

Sm Az and using the identity

Summing all of the recoil parts 8y Ay, . . .,
1 (7> Z7* Z%F) 1 2Z-3 ; -3 3
-+t )t—5 - |E+ nZ8°@r)— | E+ wZ§(rp), (B28)
}"1 }"2 r r

[f’,[f’,(E—V)Q]]=§ T+
1 2

we get the final result (71).
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APPENDIX C: DERIVATION OF 4§, B
In the following we perform only derivation of terms B, ..., B} defined as
BY :(Hl.M>M, ChH

and the evaluation of the remaining terms is trivial since they contain only Dirac §-like contributions. The expectation value of
the kinetic term

HY = L(p} + pl) (C2)

is

PR B 1 mP[ , 1 P2

By =1—6((P1+P2) =3pip3(pi+ P3))y = IV Ty |ptrVi|t3|E- V+M 3ME_7
3 E—V+2(syE P = 1[(V VY2 +(VoV)?] + 1(E V) 3 2(E = V)p?
81’1172 M M ) M— 4 1 2 B 8P1 P>

L2V + 2R - v (snE AT ST
T R VAV e R U

1 22+Z2 VAR ©3)
2\rt rirs |

The recoil correction &, B; is then

suBy = ou| 2o+ o _ L(Z0 2 7+1+(E v+ 2|2 ] = 2 e = vy
MELEOM I Ty T2\ T3 274 R e P
+<33 E(E— V) — 2 B(E V)2ﬁ+1(zz+zz) 1 2%,
M 4 4 r1 r2 2 r13r23
Z—1 5 3., ., P2
3(E+ TZ8r) + (1 < 2) — 2 pp2(swE — = )). (C4)
r 8 2
Here we used
N 5 z: 7z VALRE: 3
[P,[P,(E—-V)]]=-2 7 + r—4 —4 +2(E V)[47tZ3 (r) +47Z68°(r)]. (CS5)
1 2 r1 2
The operator HJ is
(Vv 5 3
H)' = —[p2[p2.V]] - ={p2.V2V]. C6
2 Z 8 +128[pu [pa ]] 64{pa a } ( )

a

For the sake of simplicity we split its expectation value into three parts,

5 3
BY = < (ViV)? + (Vv + e (1 [pE VI + [P 103 VD) = 55 (VY + p%V%V)> = By, + By, + By..  (CD)
M

Term B = %((Vl V)? + (V,V)?) 3 needs no further reduction. The remaining terms could be simplified to

BY = ([} + 23 [p VI + [0} + 22 (o3 VT - 2002 [3 V),

128
5 1_52 2 2 2 2
_ mr- 1%
64<[V+ T [P +P2’V]i| +[pi.[r2, ]]>M (C8)
By = 32((131 +P)ViV+ (pi + p3)V3V — paViV — piViV),
—3ZZEV SuE 132 83 83 283 283 C
——gn +— ME — — ) |[67(r1) + 87 (r2)] — pi6°(r2) — p38°(r1)) . (C9)
M
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Taking now only the recoil parts of individual terms we get

1
8uBa = gsM«Vlvf +(V2V)?), (C10)
5 1 5 >

Su By = —56M<<VIV)2 +(V2V)? + E[p%,[pi,v]]> + o (V.[P2 VD), (C11)

Z —1 Z —1

SuBae = —gnst<2<E +— )5%) + 2<E + = )6%) — p18(r) — p§83(r1)>
3 P? 3 3

— 4_1 SmE — 7 T Z[5°(r1) + 6°(r)]). (C12)

The term &, B, is then the sum of these three terms and takes the form

5B es| L(Z L BN L (Zh R P L ST LT
Mby = 0m 32 ri‘ r§ 16 }”13 }”23 73 l6r+ 64 P1» Pz,r

Z—1 Z—1
—%nZ[Z(E + )83(r1) + 2<E + r—)53(r2) — pi8(r) — p§83(r1)]>

rn 1

5 (72> Z7* 5 27%, - 3 -z . 3
N\t )t =33 — omE — E + —p1-p2 |mZ8°(r) + (1 < 2)). (C13)
I ry 16 rirs 4 123

The operator H}? is
e —4x V2383 (r) + ipi %8ij47r83(r) + i(3r"rf' — 8172 |pl (C14)
P o4 3713 rs 2
Here we used the identity valid for triplets,

ool =25, -6, =2, (C15)

to evaluate the spin product in H}/. Since there is no singular term, we can use d = 3 representation and the scalar product in the
evaluation of the spin part. This will be assumed also in all the other terms where the spin product appears. In the case where the
term containing the spin product is singular and one has to use its d-dimensional form to evaluate such term, it will be explicitly
stated. The expectation value of HJ is

1 1 i 2 ii 1 i.j ij j
BY = <—Envz83(r) bl |:§5 J4m 8 (r) + r—5(3r rl— Sfrz)}pé>

M
[ i Jy ) 13 2¢3
= <—Eplr—5(81r —3r rf)pz — mﬂv 1) (r) M, (C16)
where we used the expectation value identity
(P18 ()p2) = —5(V?8 (). (C17)
Further, with the help of identity
i Lo iy 1o o1 T o253
plr_5(8 Tre —3r rj)p2 = —Z|:p1,|:p2,; — EV 87(r), (C18)
we get the resulting recoil correction 8 B3
1 1 b4
SuBs = dul—| pi.|p3.— || — = V8 (). C19
mBs M<192|:171 |:Pz ri|i| o (r) (C19)

We split the correction due to operator H}Y = Hy + 370m Hy into two parts: the recoil correction to operator Hy, which we

denote as B!, and the expectation value of the recoil part 8, Ha, which we denote as BJ!. The nonrecoil part of the operator H,;”
is (omitting the part with 83(r), which does not contribute for triplet states)

3 A0

1 A AN
Hy =~ (pi + p3)pi (8'-’+ > )pé~ (C20)
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The expectation value of this is

M 1 il Ij rj j m ﬁZ il i r[rj ;
B4a = E (E — V)Pl; + — p2 2M (SME — 7 pl; §Y + r_z P
= ~{piE -1 ’f+”] o PV T 2 (s = E2Y i (5 4 22V o
= 2 P1 r p2 o }"2 P1s Pz,r y M M 3 plr r2 p2 )
Recoil correction &, By, is then

S0y Bay = Sl £ pi (B — V) ‘f+”j R Py Y P2y i1 5+ 7 i (C22)
mBaa = dm\ 5 p) p Py — 53 S\ oM 5 )P 2 )P

The recoil part of HM is
Z 8 A (8 AN
SuHy = |:p%pl (— + Ol )Pf + p§p'2<— + 2—5)}7/}. (C23)
4 r rl ) ry

The expectation value of this operator can then be reduced to

V4 8t s J (81 rl 8V rir
S Bap = <2(E V)[m( + L)P’ +p2< + Z)P’] [pﬁpi<— o )P’ +p1pz< + 232>P’]>
rl rn r2 r rl r r
z 8’/ 1’ 8t r2r2 1(z2> Z7° 3 o3
= PIE - V) — P/ + pY(E - V)| — == P/ - = — + =)= Z[7&(r) + 183(r)]
2 ry rl r r 2 ry l’2
4 s i ; 7 i 2 kpj
~ 7 pips| — + =55 )i P/ + pipi( — + 22 ) piP7 ). (C24)
ry rl r r2
When commuting E — V we used Eq. (A25) of Appendix A, in particular,
i 8t réré 122 33
[pa,[P E — V]] rg = 3,0 Z3n83(ry)). (C25)
The operator H is
1/Zr Zh P 1 1 177 177
HMZ__ = T T3]3 A~ A ) ) 2’ 27_ ) C26
v=i( %) mrmer (][] 5]]) =
where the spin product was again resolved using identity (C15). The expectation value is
1/Zr ZF P 1 1 1] 1]
BY =(—— (=2 ) =+ — — (| V.| p? 2 - 2 p3.- . C27
v (55 - F) F s w45 ])D), 27
The recoil correction is then
S Be — 8 1 Z?l Zr P 4 1 L, 5,1 (28)
MBS =M T 3 )P et PPy )

The operator H} contains the recoil part 8y He, so we again split the calculation into two parts: the recoil correction due to
Hg, denoted as 8 Bg,, and the expectation value of 8, Hg, which we denote as 8, Bgp. The nonrecoil part of the operator H6M is

Ul (g o Lol (g o 1
H6:§plr2 +3_ p1+8p2 > +3_ P2 F, (C29)

where we used the identity from Eq. (A29). The recoil correction due to this operator is simply

11,1 riri Lil(g ’rfj1
SuBea = du( 2 pi - +3— p1+8p2 +3 5 )pi+ g ) (C30)

The recoil part of operator HY contains a singular term with spin product, which we have to evaluate using dimensional
regularization. In particular, we use Eq. (A28) to get

ool 72 1z 72,
< T > = <Zr_ + S (ra)> (C31)
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Using this and (C15), the expectation value of §,; Hs can be evaluated to

5o p Z[ (8 . rird\ [ 87k Lnn rirk L 8t N riri (87% N rirk pk
MZ6b =\ P r r3 r r13 Pi r r3 ) r3

1 (2> Z2* 2Z°% %\ 2. . \
+- —4+—4+§T +?[7T3’(7'1)+7T8 ()]

4 ry ry rir;

Z20 1 rir ; 1 rird 8 rir
+3 |:p1 2(5'1+31—;)p{+p3—2<5’1+3 222) 2+2p1< + 1;)(
r r r r 1 r
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22 pD. (C32)

Finally, we calculate correction due to the operator HY = H) + H) + H). We split it correspondingly into three parts,

BY = B + B + B The operator H:! reads

1 . . . Jj
H%:—g{[p’],V]<%—35” )[ pg]+[p1,v][’;2,” — 35y ]p

riri i Tp2[rir
— — 38y, v, p! ==, — 38U,
+p1[ 2][ pz]+p1[2 [ - H }

The recoil correction due to this operator is

1Zr Z iy . 1/zr Z r 1
aMBm—5M<——i#<1—3awr>+z(4_£) o

8 r1 ry r ri r2

8 r r

1 Py 8i18jk Sikajl (Sij(skl Sjll‘[}’k Sikrfrl ,.[rjrkrl i
+§p1p2|:_ r + r - r - 3 - 3 +3 75 ]p1p2>

The operator H2 is
1 o[ 21
Hy, = ﬁ[l’z,[lﬂw;ﬂ’

where we used (C15) for the spin part. The corresponding recoil correction is simply

531 Bre = 5M<214[ [P?’im

Finally, the operator H is

H7d _ 22 Zi H_E. rbrb — 381 rb i rbrb — 381 rb n p_,%,rér,f — 38’7r,§
8M T 8M e rg r 2
The expectation value of this can then be written as
dmuBrg = Wi+ Wa,
where
zZ? rifzrl rl \rirl =382 773
A e e R = X
8 ey Ta \ Th T p 4
VAR AR AR VA RN S VA z? roor
=(-—+—= — w8 + 78 )] + = <—1 =2
<4r13 4}’23 4r13r22 4r12r§ 4 [zd"(r) (r2)] 8 hgb 3 rg

Here we used the identity (A26) to rewrite the singular term as

rird =389} (L Z\ (i Z VAN VA
—ze 2 (i Z V(i 2 )) = (-2 - a8 ().
8rb rp rp 4 rs 4
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be

be

(C33)
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Further,

72 . rbrh — 384 r[7 r}’; 2 rl’;r}f — 33’71’}% j
W2=<ll—6( 3|: Pb"’ZE va—rb Dp

b

72 ko ik )
Z 2 811( h +81k _giilb b ;; b p;ﬁ
b ry Ty rp ry

Z2
G 4 ) 4 el + 2 E Pl 4 (6717 = 3rfrb)ph). (C4l)
&y 8r, 4
where for the reduction of the singular term we used the identity (A27) from Appendix A, in particular,
Z2 i, i) = 38027 12> 372° AN,
16< |:ph’—rb D)= gr—:+—4 d (r;,)+?pba(8/ —3rbrb)pb (C42)

APPENDIX D: HYDROGEN LIMIT

In this section we perform the reduction of our general formulas to the hydrogenic limit for the S states, in order to demonstrate
that the method reproduces the known results in agreement with the Dirac equation and with the hydrogenic recoil corrections.
First we treat the infinite nucleus mass limit and then the recoil correction.

1. Infinite nucleus mass limit

We obtain the hydrogenic limit by sending r, — oo and consequently p, — 0 and r — oo. The effective operator H®
reduces in the hydrogenic limit to (writing r; = r)

3
6 _— 2 2
H 16 + ( V) + [p [P VI - 2 veV. (D1)

The first-order contribution to energy B = (H®) is then

< 1z 5 2>
(E = V)p*(E — ItgatglE- v.[p? V]]——(E Vv

= 1[V[ 2 V]]+1(E V) + 1z sz 3E, 783(r)
—\st §r 32t 160
7 Z* 5 3E22+IZ3 3E, 250\, D)
—— = = —— - — r
32 2 2 72 273 16
The operator H™® reduces in the hydrogenic case to
4
Z
HO = -2 4 2L 5, (D3)
8 2
which we again regularize as
HY = Hg + (H - E, 0}, (D4)
with Q = —Z/(4r) = V /4 and
, ZF- v
Hy =——(E vy -2 . (D5)
4 r3
The second-order contribution to energy is then
1
A =(Hr ———=Hp )+ (Q(H — E)Q) + 2(H“)(Q) - 2(QH"™)
(E—-HY
— (He He) + = (IV.LH — EVI) + EE + (V)
(E— H)/ 32 16
=(H +EE<4>+ gtz 1z (D6)
“\"ME-HYy H)/ 2 272 4p
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where we have used (V) = 2E. The sum of first- and second-order contributions is

PHYSICAL REVIEW A 94, 052508 (2016)

E® =(H ! Hpg)+ Lz + Lz —2E3+ EEW +EZ2 — 3E4nZ83(r)
TN E-—HY T\ T a3 r2 16
1 1.7>. 3EZ? s @ JE 3
“\FrE—ay M) P \§P 2 Py TR EET S g aio), er

where we have used the identity

VAR A Z\ Z?
r_4:pr_2p_2 E+7 pon (D8)
The expectation values of operators appearing in the final result are for S states
ZZ
E=——, D9
e (D9)
3z+ z*
EGD_ 22 _Z D10
8nt  2n%’ (D10)
VARV A
ol Al a (D11)
.z .\ 2z°  8z° DI12)
PaP 35 3n3°
1 3 23 3 11
Hp————Hp)= 72— + — - — — , D13
< ®E-Hy R> ( 86 245 8t 24n3> (D13)
4 4
(4n 28 (r)) = — (D14)
n
Substituting these values into energy we get the result
5 3 3 1
E© — 76( _ S — D15
16n° + 4n5  8n*  8n3 (D15)
in agreement with the result from the Dirac equation obtained by expanding
_1
(Za)? i
Ep=11+ (D16)
{ [n—14++1—=(Za)*]?

in the order o®.
2. Recoil correction for hydrogenic limit

Here the perturbation of the nonrelativistic Hamiltonian reduces to p? /2M = p?/2M. This correction is then easily accounted
for by making reduced mass rescaling r — ﬁ and expanding the reduced mass as (u/m)" ~ 1 — n ;. The total recoil correction

will then be the sum of the correction due to reduced mass and the correction due to extra recoil operators in H,(;) and H,(J) . First
we examine the reduced mass correction.

Rescaling the first-order operator H® and expanding up to the first order in nuclear mass, we obtain the recoil correction
(utilizing results from the infinite nucleus mass limit)

duB1 = —-5B + <—p—6 + 1(VV)2> =—-5B + <—lZ—2 + 5—E3 - S—EZ—Z - 12_3> (D17)
16 8 8 r 2 2 r2 23
The second-order contribution due to reduced mass is
duAr = =34+ <%4ﬁfl“)> = —5A+ <(E —~ V)ZﬁH(4)> + <(E — V)(H — E)MH<4>>
=—5A+ <(E — V)2;HR> + <—2EE<4> —3E°+ 2EZ—2 + 3z + lZ—2>. (D18)
(E—-HY r2 43 44

Summing now both terms 8, A and 8, B, we get the total recoil correction due to the reduced mass rescaling E;,

Ei =8y A +8yB = —5E© + <(E — V)Z;HR> + <—E—3 —2EE® 4 EZ + lﬁz—2ﬁ>, (D19)
(E—-HY 2 4r2 8 r2

where we have again used the identity (DS).
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The next contribution comes from the extra recoil operators. The recoil correction to the Breit Hamiltonian H® is

Z (8 J
SuHY = —Zpi( = + — r'r P/, (D20)
2 r r3

and the corresponding second-order correction to energy is

50 As — —7[ o Sij+rirj j 1 O — _ 7, Sij+rirj j 1 H
=T T ) ETwy T TP\ T )P E— ey TR

EZ (87 riri\ . Z* (89 il o 1z2* 73
P\t )p -l st p’+——+—7r8 (r)). (D21)

The correction due to the extra first-order recoil operators is

© 1z 7 z S i\ o Z2 (8T _rir\
SyBy = (8 H™) = Zr—4+—n8 r)+ pp _|_r_ P+ =p - — 43— ) p/

72 rird — 3802 i
+l?r_3 H_E’—r P’ ) =0mBa + Sy Bop + Sy Boc + Sy Bog + Sy Br..  (D22)

The third and the fifth terms are

LA A Z S yipiN oz T 1 8 i
Sm B = (E p'(—+— /)= P(E L8] Nl pr+—|p P\ —+—
r r r 4 r r T

Z s ikl oo 1Z%
={7P E+ —+— p’—z——ZmS ), (D23)
r V- r
and
72yl rirl —38ir? 2 iyl = 38027
SuBo = (i Ay, phm— 20 |2 T 720
8 r3 r 2 r
1z 172 z? i, N
=375+ goq — L8 (r)+?p 4(8 = 3r'r)p’). (D24)
The first-order contribution 84, B, is the sum of all terms &, Bo,, . . . ,8y B and is
SuB IZ2+IZ3 32 8(r) + E+Z 8ij+rirj f+1*zz* (D25)
={—=—+- - — r -\ —+— -p—Dp)
M2 8r4t 43 2n p r r r3 p 4prp

The correction Ej; due to extra recoil operators is then the sum of 8y, B, and §;As,
E S1 Ay + 81 B 5 8’/+rirj i 1 He) 4+ z? 8’/+r'rj _ 2 8()~|—3 1. EZ?
i = — — D —— —_— —_— T r PP — —F——~=)
whs+8uBy = =2\ p'\ -+ 3 PrE—Hy "k 77 v g2l ~ 42
(D26)

Finally, the total recoil correction for the S-state hydrogenic limit is the sum of the reduced mass scaling correction Ej and
the correction due to extra operators Ej; and is

| r iyi i 1
© _F o4 F. — —V)?
SMEY = Ei+ E; = <(E VY v (E—HY R> < ( > (E—HY R>
2
2

VAR A 8l riri . 3 o3
p+—17p Py pl = Z°n8(r)). (D27)

E3 1
_ 5E(6) 2EE(4) =
2 t\zP 4

2

In addition to the operators already used, the expectation values are

<22p1(&+ﬂ>pj>=_g+£z6 (D28)
r? ré 3n5  3m3’
<(E - V)z;HR> = Zﬁ<L _ 2 + 2 + i) (D29)
(E—-HY 2n%  4nS5 20t 203 )
Z<pi(ﬁ+ﬂ)pj;HR>=Z6<£—3—7+i+£>. (D30)
r r3 (E—-HY n®  6n> n*  3n
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Using these expectation values, the final result is

PHYSICAL REVIEW A 94, 052508 (2016)

3ME<6>226(L__+1+L>, (D31)
2n° n>  8n*  8nd
in agreement with the result from the Dirac equation

SuEp = ! _2E12) (D32)

expanded in the order «®. In particular, it vanishes for the hydrogenic ground state.
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