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The computational cost of performing a configuration interaction (CI) calculation for treating electron-electron
correlation is directly proportional to the number of terms in the CI expansion. In this work, we present
a diagrammatic projection approach for a priori identification of noncontributing terms in a CI expansion.
This method known as the geminal-projected configuration interaction (GP-CI) method is based on using a
two-body R12 geminal operator for describing electron-electron correlation in a reference many-electron wave
function. The diagrammatic projection procedure was performed by first deriving the Hugenholtz diagrams
of the energy expression of the R12 reference wave function and then performing diagrammatic factorization
of effective particle-hole creation operators. The projection operation, which is a functional of the geminal
function, was defined and used for the construction of the geminal-projected particle-hole creation operators.
The form of the two-body R12 geminal operator was derived analytically by imposing an approximate Kato
cusp condition. A linear combination of the geminal-projected one-particle one-hole and two-particle two-hole
operators were used for the construction of the GP-CI wave function. The applicability and implementation
of the diagrammatic projection method was demonstrated by performing proof-of-concept calculations on an
isoelectronic series of 10 electron systems: CH4, NH3, H2O, HF, and Ne. The results from the calculations show
that compared to conventional CI calculations, the GP-CI method was able to substantially reduce the size of
the CI space (by a factor of 6–9) while maintaining an accuracy of 10−5 Hartrees for the ground-state energies.
These results demonstrate the ability of the diagrammatic projection procedure to identify noncontributing
states using an analytical form of the R12 geminal correlator operator. The geminal-projection method was
also applied to second-order Møller-Plesset perturbation theory (GP-MP2) giving similar results to the GP-CI
method in terms of reduction of the double excitation space and accuracy to the ground-state energy. This
work also extends the analytical derivation of the geminal-projected particle-hole creation operators that
were used for the construction of the CI wave function to coupled-cluster theory (GP-CCSD). This general
derivation can also be applied to other many-electron theories and multideterminant quantum Monte Carlo
calculations.
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I. INTRODUCTION

An accurate description of correlation energy is needed
in order to describe a chemical system. In recovering this
correlation energy, the method of configuration interaction
(CI) [1] is one of the most successful methods due to
the simplicity of its underlying mathematics and its varia-
tional properties. Also, it is well known that in the limit
of infinite basis, full configuration interaction (FCI) will
solve the Schrödinger equation exactly, which makes FCI
an important benchmark for any method that treats electron
correlation.

One of the challenges in performing CI calculations is the
rapid increase in the size of the CI space. However, post
calculation analysis of the converged CI vector reveals that
a large number of configurations in the CI expansion are
noncontributing in the sense that if these configurations were
removed, the CI energy of the system would remain essentially
the same. Therefore, to reduce the size of the CI space and
decrease the computation cost of the CI calculation, it is
important to identify the contributing configurations before
the start of the CI calculation and to select only important
configurations in the CI expansion. Extensive research has
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been done to effectively truncate the CI space to reduce
computational time. A method widely used to select only the
important configurations is based on many-body perturbation
theory [2–10]. In such studies, the configurations are chosen
based either on their energy [2,4,10] or their coefficients
in the first-order wave function [3,5]. From these criteria,
states will either be accepted or rejected based on a given
threshold [11–13]. Examples of these approaches include
the multi-reference double-excitation CI (MRD-CI) method
[4,14] and the CIPSI (configuration interaction perturbing
a multiconfigurational zeroth-order wave function selected
iteratively) method [3,5,7]. In related work, Roth et al.
introduced an iterative importance truncation (IT-CI) scheme
that aims at reducing the dimensions of the model space of
configuration interaction approaches by an a priori selection of
the physically most relevant basis states. Using an importance
measure derived from multiconfigurational perturbation theory
in combination with an importance threshold, they constructed
a model space optimized for the description of individual
eigenstates of a given Hamiltonian [8,9]. Another method to
reduce the cost of the CI calculation is with an integral-direct
CI approach. The Saebø-Almlöf algorithm is a direct integral
transformation method with low memory requirements [15].
Efficient integral screening was shown in the framework of
local-correlation methods [16–21] and also for truncation of
virtual orbitals [22–24].
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Determinants can also be selected based on Monte Carlo
methods [25–30]. Greer proposed a Monte Carlo CI method
(MCCI) [25–27] to estimate the correlation energies. In this
method, a configuration is generated by randomly branching
to new configurations in the expansion space. Then the con-
figuration is kept or discarded based on its weight in the wave
function. This process is repeated until a desired convergence
in the variational energy is achieved. Greer’s method is an
integral direct method in which the matrix elements HAB

are calculated directly during each iteration of the matrix
diagonalization step. Sambataro et al. presented a variational
subspace diagonalization method [31] that finds the relevant
configurations by means of iterative sequences of diagonaliza-
tions of spaces of reduced size. Each diagonalization provides
an energy-based importance measure that governs the selection
of the configurations to be included in the states. Similar to
Greer’s method, which uses Monte Carlo, Booth et al. and
Petruzeilo et al. presented a new stochastic method called full
configuration interaction quantum Monte Carlo (FCIQMC)
[28–30,32,33]. While Greer’s method [25–27] is a subspace
diagonalization method, the FCIQMC method takes a different
approach in that it represents the wave function in terms of a
set of discretized “walkers.” The walkers carry a positive or
negative sign, inhabit Slater determinant space, and evolve
according to a set of rules that includes spawning, death, and
annihilation processes. This method is capable of converging
onto the FCI energy and wave function of the problem without
any a priori information regarding the nodal structure of the
wave function. Bytautas et al. found that a good approximation
to the FCI expansion can be obtained based on seniority or
the number of unpaired electrons in a determinant [34]. For
example, if there are no unpaired electrons in a determinant,
the seniority will be zero; if there are two unpaired electrons
in a determinant, the seniority will be two, and so on. Another
interesting technique for reducing the CI space is known as
Löwdin partitioning [35–37]. Ten-no also presented a novel
quantum Monte Carlo method in configuration space, which
stochastically samples the contribution from a large secondary
space to the effective Hamiltonian in the energy-dependent
partitioning of Löwdin [38]. Earlier studies showed that the
slow convergence of the CI expansion with respect to the size
of the one-particle basis is related to poor treatment of the
electron-electron cusp condition [39]. As a consequence, a bet-
ter description of electron-electron correlation can be obtained
by including explicit electron-electron distance-dependent
terms in the form of the many-electron wave function.

There have been very important results from methods such
as quantum Monte Carlo [33,40–49], transcorrelated methods
[50], and R12 or F12 methods which show that the inclusion
of the r12 term in the form of the wave function results in
a faster convergence of the CI energies. In the variational
Monte Carlo (VMC) method, the Jastrow function is used for
including the explicit r12 terms in the wave function [40,41].
The Jastrow function can also be augmented by a linear
combination of determinants [51–65]. In the transcorrelated
method, a similarity transformation is performed on the
Hamiltonian using an explicitly correlated function [50,66,67].
Explicit dependence on the r12 term in the wave function
has been implemented in other methods such as MP2-R12,
[68–71] and coupled cluster [72–77], and geminal augmented

multiconfigurational self-consistent field (MCSCF) [78]. The
applicability of a geminal operator approach for treating
electron correlation [79–81] has also been demonstrated by
Rassolov et al. in a series of articles for various chemical
systems [82–88]. A congruent-transformed approach using an
explicitly correlated geminal operator has also been developed
by Elward et al. [89] and Bayne et al. [90].

The goal of this work is to use an explicitly correlated
reference function to project out noncontributing terms in a
CI expansion before the start of the CI calculation. Starting
with an ansatz for the explicitly correlated wave function
and using many-body diagrammatic techniques, we derive
effective particle-hole excitation operators that project out
low-amplitude excitations. The key difference between the
method presented here and other approaches described above
is that the present method does not use an energy-based
scheme or perturbation-theory-based criteria to eliminate
configurations from the CI expansion. The elimination of
configurations is solely based on particle-hole excitation
amplitudes derived from an underlying explicitly correlated
wave function. The derivation of the method and construction
of the explicitly correlated wave function are presented
in Secs. II A and II B. The method has been applied to
many-electron systems, and proof-of-concept calculations of
isoelectronic series of second-row molecules are presented in
Sec. III.

II. THEORY AND COMPUTATIONAL DETAILS

A. Diagrammatic factorization of particle-hole
excitation operators

The derivation relies on the existence of an explicitly
correlated wave function for the many-electron system. In this
work, we assumed the following general form for the R12
operator:

|�G〉 = G|�0〉, (1)

where G is assumed to be a two-body operator of the following
form:

G =
∑
i<j

g(i,j ) ≡
∑
i<j

g(rij ). (2)

In the above expression, the function g depends on the electron-
electron separation distance r12. The following derivation does
not depend on the specific functional form of g and its discus-
sion is postponed until Sec. II B. The ground-state energy is
obtained by performing minimization over function g.

EG = min
g

〈0|G†HG|0〉
〈0|G†G|0〉 . (3)

The energy expression can be expressed by performing
congruent transformation on the many-electron Hamiltonian.

G†HG =
⎡
⎣∑

i<j

g(i,j )

⎤
⎦
⎡
⎣∑

i

h1(i)+
∑
i<j

h2(i,j )

⎤
⎦
⎡
⎣∑

i<j

g(i,j )

⎤
⎦.

(4)

The transformed operator can be expressed as a sum of the
two-, three-, four-, five-, and six-body operators as shown in
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the following equation:

G†HG =
∑
i1<i2

w2(i1,i2) +
∑

i1<i2<i3

w3(i1,i2,i3)

+
∑

i1<i2<i3<i4

w4(i1,i2,i3,i4)

+
∑

i1<i2<i3<i4<i5

w5(i1,i2,i3,i4,i5)

+
∑

i1<i2<i3<i4<i5<i6

w6(i1,i2,i3,i4,i5,i6). (5)

The expectation value of the congruent-transformed
Hamiltonian with respect to the Fermi vacuum state is
given by

〈0|G†HG|0〉

= 1

2

N∑
i1i2

〈i1i2|w2(1,2)|i1i2〉A

+ 1

3!

N∑
i1i2i3

〈i1i2i3|w3(1,2,3)|i1i2i3〉A

+ 1

4!

N∑
i1i2i3i4

〈i1i2i3i4|w4(1,2,3,4)|i1i2i3i4〉A

+ 1

5!

N∑
i1i2i3i4i5

〈i1i2i3i4i5|w5(1,2,3,4,5)|i1i2i3i4i5〉A

+ 1

6!

N∑
i1i2i3i4i5i6

〈i1i2i3i4i5i6|w6(1,2,3,4,5,6)|i1i2i3i4i5i6〉A.

(6)

In the above expression, we follow the convention that indices
i, j, k, l correspond to occupied molecular orbitals, a, b, c, d

correspond to unoccupied molecular orbitals, and p, q, r, s

refer to general molecular orbitals. As expected, the energy
expression depends only on the occupied orbitals.

In the next step, the components of the energy expression
are expressed using diagrammatic notation. Generally, dia-
grammatic analysis in many-electron systems is performed
using antisymmetrized Goldstone diagrams. However, in this
work we used the much more compact Hugenholtz diagrams
to keep the number of diagrams tractable. The diagrammatic
representation of the energy terms is given by diagrams labeled
as D1, D2, D3, D4, and D5 in Fig. 1. The vertex of each diagram
represents the corresponding wk operator in Eq. (6). In the next
step, the vertex of each diagram is split into two vertices. This
is done by analyzing the action of operator g on the occupied
orbitals. Specifically, without loss of any generality, the action
of the g on the occupied space is given by

g(1,2)|i1i2〉 =
∞∑

p1p2

〈p1p2|g|i1i2〉|p1p2〉, (7)

where the orbitals p1 and p2 span both occupied and
unoccupied space and i1 and i2 span occupied space. It is
important to note that Eq. (7) is not the definition of the g

i1 i2 i1

i3

i2 i1

i3

i2

i4

i1

i3

i5

i2

i4

i1

i3

i5

i2

i4

i6

FIG. 1. Diagrams 1–5.

operator because it does not define its action on unoccupied
orbitals. The above expansion allows us to split the vertices of
each diagram shown in Fig. 1, and the resulting diagrams of
this transformation are shown in Fig. 2. Algebraically, this is
achieved by partitioning the one-particle space into occupied
(denoted by i, j, k, l indices) and unoccupied space (denoted
by a, b, c, d indices):

∑
p

=
N∑

i=1

+
∑

a=N+1

. (8)

A detailed description of the algebraic form of the various
matrix elements associated with the diagrams are presented in
the Appendix. Analysis of the resulting diagrams reveals that a
subset of diagrams can be simplified by factoring out common
particle-hole (p-h) excitation operators which are shown in
Fig. 3. Specifically, diagrams in Fig. 2 can be factorized as
2p-2h (Fig. 4) and 1p-1h operators (Fig. 5). It is important
to note that this factorization is performed for all orders of
many-particle operators (w2, . . . ,w6). From Fig. 3, the 2p-2h
excitation has the form

W2 = 1

4

∑
i1i2a1a2

gA
i1i2a1a2

{a†
1a

†
2i2i1}, (9)

where

gA
i1i2a1a2

= 〈i1i2|g(1,2)(1 − P12)|a1a2〉, (10)

and indices i and a represent occupied and unoccupied states,
respectively. Similarly, the 1p-1h excitation operator is defined
as

W1 =
∑
i1a1

gi1a1{a†
1i1}, (11)

where

gi1a1 =
N∑
k2

gA
i1k2a1k2

, (12)
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ω2 ω3 ω4 ω5 ω6

i1a1 i2 a2 i1a1 i2 a2 i1a1 i2 a2 i1a1 i2 a2 i1a1 i2 a2

i1a1 i2

j2

j2

i1a1 i2

j2

j2

i1a1 i2

j2

j2

i1a1 i2

j2

j2

i1a1 i2

j2

j2

i1

j1

j1

i2

j2

j2

i1

j1

j1

i2

j2

j2

i1

j1

j1

i2

j2

j2

i1

j1

j1

i2

j2

j2

i1

j1

j1

i2

j2

j2

FIG. 2. Diagrams 6–20. From left to right, the wk operator increases from a two-body operator (w2) to a six-body operator (w6). The first
row contains diagrams 6 (D6) through 10 (D10) going across. The second row, diagrams 11 (D11) through 15 (D15). The third row, diagrams
16 (D16) through 20 (D20).

and k2 represents the occupied states. We note that the strength
of the particle-hole excitation operator depends on the value
of the amplitude, which is functional of g. In this work we
are interested in using g to project out weak excitations.
We achieve this by defining the following 1p-1h and 2p-2h
operators:

T θ
1 [η] =

∑
ia

θiatia{a†i}, (13)

T θ
2 [η] =

∑
i<j,a<b

θijabtijab{a†b†ji}, (14)

where θia and θijab are compact notations for the following
Heaviside step functions:

θia[η,g] ≡ θ (|gia| − η), (15)

θijab[η,g] ≡ θ (|gA
ijab| − η). (16)

i1a1 i2 a2 i2a1

j2

i1

FIG. 3. Left: 2p-2h excitation operator. Right: 1p-1h operator.

In the above equations, we have introduced a control parameter
η that projects out particle-hole excitations whose amplitudes
are below a certain tolerance value. The one-body and two-
body t amplitudes in Eq. (13) and (14) are obtained by
applying the geminal-projected particle-hole operators for the
construction of the many-electron wave function,

�exact ≈ �[T θ ]�0, (17)

where � is a general many-body operator responsible for
including electron correlation, and the square bracket denotes
that it is a functional of the t amplitudes. In this work, we
present three different strategies using configuration inter-
action, many-body perturbation theory, and coupled-cluster
theory for determination of the t amplitudes; and the details of
the derivation are presented in Secs. II C 1, II C 2, and II C 3,
respectively.

B. Determination of correlation function

In this work, the R12-correlation operator is represented
using Gaussian-type geminal functions as shown in the
following equation:

g(r1,r2) =
Ng∑
k=1

bke
−r2

12/dk , (18)
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i1a1 i2 a2

i1a1 i2 a2 i1a1 i2 a2 i1a1 i2 a2

i1a1 i2 a2 i1a1 i2 a2

a1 a2

FIG. 4. Factorization of diagrams 6–10 in terms of 2p-2h operator.

where Ng are the number of terms in the expansion and bk

and dk are expansion parameters. Typically, the expansion
parameters are determined using a variational approach by
minimizing the energy or its variance. However, such a strategy
in not practical in this work because the computational effort
for the variational determination of the geminal parameters
would be higher than performing the GP-CI calculations.
Here, we present an analytical method for determination of
the geminal parameters which does not rely on a variational
approach.

To keep the analytical derivation tractable we use only
one geminal function (Ng = 1). The determination of the
geminal parameters (b1,d1) is based on imposing the the
Kato electron-electron cusp condition which is given by the
following equation: (

∂�

∂r12

)
r12=0

= 1

2
r12. (19)

Unfortunately, Gaussian-type geminal (GTG) functions do not
have the necessary analytical properties to satisfy the above
condition. The Kato cusp condition in principle, can be realized
by using a Slater-type geminal (STG) function,

φSTG(r12) = e− 1
2 r12 . (20)

However, calculation of molecular integrals is more expensive
using STG as compared to GTG, and using STG will increase
the computational cost and complexity of the overall calcula-
tions. Because the GTG function cannot satisfy the exact Kato
cusp condition, we imposed the requirements that the geminal

parameters must satisfy an approximate condition that is based
on the average electron-electron separation distance,

b1

d1
r2

12 �= 1

2
r12, (21)

b1

d1

〈
r2

12

〉 = 1

2
〈r12〉. (22)

The motivation for the above condition is based on the
previous observations [39,90,91] that the form of the explicitly
correlated wave function in the neighborhood of the electron-
electron coalescence point plays a significant role in the
accurate treatment of electron-electron correlation. Comparing
the left and right side of the above equation, we define the
geminal parameters as

b1 = 〈r12〉, (23)

d1 = 2
〈
r2

12

〉
. (24)

The computation of 〈r12〉 is more expensive than the computa-
tion of 〈r2

12〉 because the integral over r2
12 using Gaussian-type

orbitals (GTOs) can be expressed as sum of x2, y2, and z2

components. Therefore we approximate the average electron-
electron distance using the following expression:

〈r12〉 ≈
√〈

r2
12

〉
. (25)

i2a1

j2

i1

j2

a1 i2 i1a1

j2

a1 i2 i1

j2

a1 i2 i1

j2

a1 i2 i1

j2

a1 i2 i1

i1

FIG. 5. Factorization of diagrams 11–15 in terms of 1p-1h operator.
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Perform HF calculation

Calculate r0 from HF

wave function Eq. (28)

Calculate geminal

function from r0 Eq. (27)

Use g to construct

screened T operators

Eq. (13),(14),(15),(16)

Use in GP-CI Eq. (31) Use in GP-MP2 Eq. (50) Use in GP-CCSD Eq. (57)

FIG. 6. Flow chart showing the steps involved in GP-CI, GP-
MP2, and GP-CCSD theories.

Therefore, we approximate b1 as

b1 ≈
√〈

r2
12

〉
. (26)

Substituting in the values for d1 from Eq. (24) and b1 from
Eq. (26) into Eq. (18), we arrive at the final expression for the
geminal function (in atomic units)

g(r12) =
⎛
⎝

√〈
r2

12

〉
1 a.u.

⎞
⎠ exp

[
− r2

12

2
〈
r2

12

〉
]
. (27)

The square of the electron-electron separation distance is
obtained from the Hartree-Fock wave function using the
expression

〈
r2

12

〉 = 2

N (N − 1)
〈0|

∑
i<j

r2
ij |0〉. (28)

C. Construction of geminal-projected correlated wave functions

The geminal-projected particle-hole (GPPH) operators
(1p-1h and 2p-2h) can be used in various many-body theories
for treating electron-electron correlation. The t amplitudes (tia
and tijab) in the GPPH can be determined using different
existing strategies for treating electron-electron correlation.
In this work, we present three different proof-of-concept
strategies for calculating the t amplitudes using variational,

TABLE I. CISD ground-state energy (in Hartrees) of CH4

calculated using analytical geminal parameters and varying η.

η NGP-CI EGP-CI NCISD/NGP-CI EGP-CI − ECISD

10−1 39 − 40.194994 736.18 1.56 × 10−1

10−2 354 − 40.269236 81.10 8.19 × 10−2

10−3 4336 − 40.346046 6.62 5.06 × 10−3

10−4 8004 − 40.351015 3.59 8.71 × 10−5

10−5 8919 − 40.351072 3.22 3.04 × 10−5

CISD 28711 − 40.351102 1.00 0.00

TABLE II. CISD ground-state energy (in Hartrees) of NH3

calculated using analytical geminal parameters and varying η.

η NGP-CI EGP-CI NCISD/NGP-CI EGP-CI − ECISD

10−1 29 − 56.183815 780.72 1.81 × 10−1

10−2 265 − 56.296168 85.44 6.85 × 10−2

10−3 2214 − 56.360953 10.23 3.76 × 10−3

10−4 3221 − 56.364358 7.03 3.50 × 10−4

10−5 3599 − 56.364668 6.29 4.02 × 10−5

CISD 22641 − 56.364708 1.00 0

many-body perturbation theory (MBPT), and coupled-cluster
theory.

1. Configuration interaction

To determine the t amplitudes using the variational proce-
dure, we construct the GP-CI operator which is defined as

�GP−CI[η,g] = 1 + T θ
1 [η,g] + T θ

2 [η,g]. (29)

The GP-CI wave function is defined as

�GP−CI = �GP−CI|�0〉. (30)

The t amplitudes are obtained variationally by minimizing the
total energy

EGP−CI[η,g] = min
tia ,tijab

〈0|�†
GP−CIH�GP−CI|0〉

〈0|�†
GP−CI�GP−CI|0〉

. (31)

The implementation of the this approach is straightforward and
is identical to the conventional CI single and double excitations
(CISD) implementation. However, it is important to note that
unlike the conventional CISD method, the size of the GP-CI
matrix depends on the choice of g and η. The total number of
terms in the �GP−CI is given by,

NGP−CI[η,g] = 1 +
∑
ia

θia +
∑

i<j,a<b

θijab. (32)

In the limit of η → 0, the method should reduce to the
conventional CISD method,

lim
η→0

NGP−CI = NCISD, (33)

lim
η→0

�GP−CI = �CISD, (34)

lim
η→0

EGP−CI = ECISD. (35)

TABLE III. CISD ground-state energy (in Hartrees) of H2O
calculated using analytical geminal parameters and varying η.

η NGP-CI EGP-CI NCISD/NGP-CI EGP-CI − ECISD

10−1 25 − 76.010000 691.64 1.90 × 10−1

10−2 235 − 76.149998 73.58 5.03 × 10−2

10−3 1192 − 76.197151 14.51 3.12 × 10−3

10−4 1709 − 76.199857 10.12 4.15 × 10−4

10−5 1905 − 76.200269 9.08 3.31 × 10−6

CISD 17291 − 76.200272 1.00 0
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TABLE IV. CISD ground-state energy (in Hartrees) of HF
calculated using analytical geminal parameters and varying η.

η NGP-CI EGP-CI NCISD/NGP-CI EGP-CI − ECISD

10−1 27 − 100.002394 468.93 1.80 × 10−1

10−2 177 − 100.136821 71.53 4.56 × 10−2

10−3 937 − 100.179458 13.51 2.96 × 10−3

10−4 1602 − 100.182291 7.90 1.28 × 10−4

10−5 1919 − 100.182410 6.60 8.50 × 10−6

CISD 12661 − 100.182419 1.00 0

In the limit η → ∞, the method reduces to the Hartree-Fock
method,

lim
η→∞ NGP−CI = 1, (36)

lim
η→∞ �GP−CI = 1, (37)

lim
η→∞ EGP−CI = EHF. (38)

2. Many-body perturbation theory

The derivation of the time-independent perturbation theory
is well known and has been derived in the literature using
different theoretical formulations [92–94]. In this work, we
use the Rayleigh-Schrödinger perturbation theory (RSPT)
approach to illustrate the application of the GPPH operators
in perturbation theory. In the RSPT, the ground-state wave
function and energy are defined using the following expansion:

|�RSPT〉 = �0 + �(1) + �(2) + · · · , (39)

E = E(0) + E(1) + E(2) + · · · , (40)

where �0 and E(0) are the unperturbed wave function
and ground-state energy, respectively. The expressions for
the perturbed wave functions and energies are obtained
by first substituting the above expansion in the exact
Schrödinger equation and then performing a term-by-term

TABLE V. CISD ground-state energy (in Hartrees) of Ne calcu-
lated using analytical geminal parameters and varying η.

η NGP-CI EGP-CI NCISD/NGP-CI EGP-CI − ECISD

10−1 13 − 128.474407 673.15 1.50 × 10−1

10−2 97 − 128.592196 90.22 3.24 × 10−2

10−3 479 − 128.622321 18.27 2.28 × 10−3

10−4 1013 − 128.624309 8.64 2.89 × 10−4

10−5 1240 − 128.624596 7.06 1.53 × 10−6

CISD 8751 − 128.624598 1.00 0

analysis [92–94]

(E(0) − H0)�(n) = W�(n−1) −
n−1∑
i=0

E(n−i)�(i), (41)

where W is the perturbing potential W = H − H0. Using
Eq. (41), the nth-order correction to the exact ground-state
energy is given in terms of the perturbing potential W ,

E(n) = 〈�0|W |�(n−1)〉. (42)

The perturbed wave function is expressed in terms of the
resolvent operator R0 which is defined as

R0 = (E0 − H0)−1, (43)

where H0 and E0 are the unperturbed Hamiltonian and
unperturbed ground-state energy, respectively. Using Eqs. (41)
and (43), the nth-order perturbed wave function can be
expressed as

|�(n)〉 = R0W |�(n−1)〉 −
n−1∑
i=0

E(n−i)R0|�(i)〉. (44)

In conventional RSPT, the perturbed wave function is ex-
panded in the basis of the eigenfunctions of the H0 [92–94]

|�(n)〉RSPT =
⎡
⎣∑

ia

tiaa
†i +

∑
i<j,a<b

tijaba
†b†ji +

∑
i<j<k,a<b<c

tijkabca
†b†c†kji + . . .

⎤
⎦|�0〉, (45)

where the amplitudes (tia,tijab, . . . ) are obtained by substituting Eq. (45) in Eq. (44). In the geminal-projected RSPT (GP-RSPT)
method, we use the projected particle-hole operators defined in Eq. (14) to construct the perturbed wave function,

|�(n)〉GP−RSPT =
⎡
⎣∑

ia

tiaθiaa
†i +

∑
i<j,a<b

tijabθijaba
†b†ji +

∑
i<j<k,a<b<c

tijkabca
†b†c†kji + · · ·

⎤
⎦|�0〉. (46)

We note that because the GPPH operators span only 1p-1h and 2p-2h excitation space; 3p-3h and higher-order operators in the
above expression are identical to the RSPT equation

|�(n)〉GP−RSPT =
⎡
⎣T θ

1 + T θ
2 +

∑
i<j<k,a<b<c

tijkabca
†b†c†kji + · · ·

⎤
⎦|�0〉. (47)
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ηη

FIG. 7. Analysis of the percentage of CISD correlated energy
recovered by the GP-CI method as a function of the tolerance
parameter η.

In this work, we have used the the Møller-Plesset (MP)
partitioning of the many-electron Hamiltonian where the
zeroth-order Hamiltonian H0 is the Fock operator and the
perturbing potential is the difference between the electron-
electron Coulomb operator Vee and the Hartree-Fock potential

W = Vee − 〈�0|Vee|�0〉. (48)

The second-order Møller-Plesset energy is given by the
expression [92,93]

E
(2)
MP2 = 1

4

∑
ijab

|〈ij |r−1
12 |ab〉A|2

(εi + εj − εa − εb)
. (49)

Using Eq. (47), the analogous equation for the geminal-project
Møller-Plesset (GP-MP) perturbation theory is given by the
following expression:

E
(2)
GP−MP2[η,g] = 1

4

∑
ijab

θijab

|〈ij |r−1
12 |ab〉A|2

(εi + εj − εa − εb)
. (50)

The number of terms in the above expression depend on the
choice of η and g and is given by

NGP−MP2[η,g] = 1

4

∑
ijab

θijab. (51)

TABLE VI. MP2 ground-state energy (in Hartrees) of CH4

calculated using analytical geminal parameters and varying η.

η NGP-MP2 EGP-MP2 NMP2/NGP-MP2 EGP-MP2 − EMP2

10−1 1 − 40.194994 28351 1.42 × 10−1

10−2 268 − 40.229412 105.79 1.08 × 10−1

10−3 4248 − 40.312698 6.67 2.43 × 10−2

10−4 7916 − 40.334316 3.58 2.72 × 10−3

10−5 8831 − 40.336758 3.21 2.74 × 10−4

MP2 28351 − 40.337032 1.00 0.00

TABLE VII. MP2 ground-state energy (in Hartrees) of NH3

calculated using analytical geminal parameters and varying η.

η NGP-MP2 EGP-MP2 NMP2/NGP-MP2 EGP-MP2 − EMP2

10−1 1 −56.183815 22321 1.74 × 10−1

10−2 215 −56.291308 103.82 6.61 × 10−2

10−3 2156 −56.354307 10.35 3.07 × 10−3

10−4 3159 −56.357209 7.07 1.67 × 10−4

10−5 3523 −56.357356 6.34 2.06 × 10−5

MP2 22321 −56.357376 1.00 0

3. Coupled-cluster theory

The GPPH operators can also be used in coupled-cluster
theory. In this work, we present formulation for the geminal-
projected analogs of CCSD theory, which is defined by the
following expression:

|�〉GP−CCSD = eT θ
1 +T θ

2 |�0〉. (52)

The coupled-cluster equation in terms of the normal-ordered
Hamiltonian HN is given as

HNeT θ
1 +T θ

2 |�0〉 = 
EeT θ
1 +T θ

2 |�0〉, (53)

where 
E is the correlation energy and HN = H −
〈�0|H |�0〉. Performing similarity transformation gives us the
equations for correlation energy and t amplitudes:

〈�0|e−T θ
1 +T θ

2 HNeT θ
1 +T θ

2 |�0〉C = 
E, (54)

〈�a
i |e−T θ

1 +T θ
2 HNeT θ

1 +T θ
2 |�0〉C = 0, (55)

〈�ab
ij |e−T θ

1 +T θ
2 HNeT θ

1 +T θ
2 |�0〉C = 0, (56)

where the subscript C implies that only connected terms are
included in evaluating the expressions [93–95]. The equations
for the t amplitudes are obtained by performing the Baker-
Campbell-Hausdorff expansion of the similarity-transformed
Hamiltonian and are well-documented in the literature
[93–95]. The t-amplitude equations are solved iteratively, the
total correlation energy is calculated from them using the
expression [93–95]


EGP−CCSD[η,g] = 1

4

∑
ijab

tijabθijab〈ij |r−1
12 |ab〉A

+ 1

2

∑
ijab

tiatjbθiaθjb〈ij |r−1
12 |ab〉A. (57)

TABLE VIII. MP2 ground-state energy (in Hartrees) of H2 O
calculated using analytical geminal parameters and varying η.

η NGP-MP2 EGP-MP2 NMP2/NGP-MP2 EGP-MP2 − EMP2

10−1 1 −76.010000 17011 1.89 × 10−1

10−2 193 −76.148962 88.14 5.03 × 10−2

10−3 1140 −76.196804 14.92 2.43 × 10−3

10−4 1655 −76.198907 10.28 3.27 × 10−4

10−5 1851 −76.199232 9.19 2.08 × 10−6

MP2 17011 −76.199234 1.00 0
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TABLE IX. MP2 ground-state energy (in Hartrees) of HF
calculated using analytical geminal parameters and varying η.

η NGP-MP2 EGP-MP2 NMP2/NGP-MP2 EGP-MP2 − EMP2

10−1 1 −100.002394 12421 1.82 × 10−1

10−2 139 −100.136290 89.36 4.79 × 10−2

10−3 889 −100.179077 13.97 5.08 × 10−3

10−4 1550 −100.183800 8.01 3.57 × 10−4

10−5 1867 −100.184153 6.65 3.92 × 10−6

MP2 12421 −100.184157 1.00 0

This expression is similar to the conventional CCSD energy
expression; however, the number of terms in Eq. (57) depends
on η and g, which can be calculated using the procedure
described earlier for GP-CI method.

III. RESULTS AND DISCUSSION

The effectiveness of the GPPH method was analyzed by
performing proof-of-concept calculations on representative
many-electron systems. We implemented both GP-CI and
GP-MP2 methods and steps involved in the calculations are
summarized in Fig. 6. As seen in Fig. 6, the first four steps
involved construction of the GPPH operators, and the final
step involved construction of the CI and first-order wave
functions for GP-CI and GP-MP2 methods, respectively. The
GP-CI method was tested on a set of isoelectronic 10-electron
systems: CH4, NH3, H2O, HF, and Ne; and the calculated
ground-state energies were compared with CISD results. In all
cases, the calculations were performed using 6-31 G� basis
functions. We defined two important metrics for analyzing the
GP-CI results. The first is the difference between CISD and
GP-CI energies Ediff and the second is the ratio of the number
of variational parameters between the two methods [Eqs. (58)
and (59)]:

Ediff(η) = EGP−CI(η) − ECISD, (58)

R(η) = NCISD

NGP−CI(η)
. (59)

As presented in Eq. (32), the number of variational parameters
in the GP-CI method depends on the choice of the η and
for these calculations η was varied from 10−1 to 10−5. In
Tables I–V we observe a significant reduction in the size of

TABLE X. MP2 ground-state energy (in Hartrees) of Ne calcu-
lated using analytical geminal parameters and varying η.

η NGP-MP2 EGP-MP2 NMP2/NGP-MP2 EGP-MP2 − EMP2

10−1 1 −128.474407 8551 1.52 × 10−1

10−2 75 −128.523031 114.01 1.03 × 10−1

10−3 453 −128.547410 18.88 7.88 × 10−2

10−4 987 −128.616193 8.66 9.98 × 10−3

10−5 1214 −128.625523 7.04 6.53 × 10−4

MP2 8551 −128.626176 1.00 0

a i

FIG. 8. Diagram showing a particle and hole for the Slater
determinant �a

i .

the CI space, while not sacrificing accuracy in the calculated
ground-state energy. Using the GP-CI method on the systems
studied, the CI space was reduced by a factor of 6 while
still maintaining ground-state energies with accuracy of 10−6

Hartrees with respect to the CISD energy. For example,
in case of neon, the GP-CI method was able to give an
accuracy of 10−3 Hartrees as compared to CISD results while
using a configuration space that is 19 times smaller than the
CISD calculation. The accuracy of the GP-CI method can be
systematically increased by decreasing the η parameter and
for the neon atom, 10−6 Hartrees accuracy was achieved by
using a configuration space that was 7 times smaller than
the CISD calculation. The percentage of CISD correlation
energy recovered by the GP-CI method as a function of the
cutoff parameter η is presented in Fig. 7. In all cases, we
found that more than 90% of CISD correlation energy was
recovered when η is in the range of 10−2–10−3. The results
from GP-MP2 were also found to follow a similar trend
and are presented in Tables VI–X. The results from both
GP-CI and GP-MP2 calculations show the effectiveness of
geminal-projected particle-hole operators for construction of
many-electron correlated wave functions.

The method presented here is restricted to only the two-
body operator G. As a consequence of this choice, only 1p-1h
and 2p-2h particle-hole operators can be projected out. In
principle, this strategy can be systematically extended to 3p-3h
and higher-order operators by including three-body and higher
terms in the correlation function G. However, it is important to
note that the use of geminal-projected particle-hole operators
is intrinsically approximate because it projects out noncon-
tributing terms and therefore cannot be used for construction
of the exact many-electron wave function. However, the
strength of the geminal-projected particle-hole operators lies
in numerically efficient implementation of approximate many-
electron theories such as configuration interaction, many-body
perturbation theory, and coupled-cluster theory.

The method can also be combined with other theories
that include explicit treatment of electron-electron cusp in
the many-electron wave function. For example, the geminal-
projected particle-hole operators can be used in multideter-
minant quantum Monte Carlo and F12 methods including
MP2-F12 and CCSD-F12 methods. In addition to the electron-
electron cusp condition, a systematic improvement of the
electron-nuclear cusp condition can be achieved by using
Slater-type orbitals and electron-nuclear Jastrow functions.

ai bj

FIG. 9. Diagram showing particles and holes for the Slater
determinant �ab

ij .
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a

b

i

j

ai

ai

b|û|a i|û|j b|û|j i|û|a

FIG. 10. One-particle operators in diagrammatic representation.

IV. CONCLUSIONS

The derivation of the geminal-projected particle-hole ex-
citation operators was presented. The central idea underlying
this method is the use of an explicitly correlated reference
wave function to define a projecting operator that projects out
potential noncontributing configurations in the CI expansion.
In this work, the explicitly correlated reference function was
defined using a two-body Gaussian-type geminal function. The

c

a

d

b a

c

b

d

ab|w2|cd ab|w2|cd A

i

k l

j i

k

j

l

kl|w2|ij kl|w2|ij A

a

b j

i a

b

i

j

aj|w2|bi aj|w2|bi A

ia

jb

a

b

i

j

aj|w2|bi aj|w2|bi A

a

b

ic ca

b

i

ac|w2|bi ac|w2|bi A

FIG. 11. Two-body Goldstone diagrams (left); two-body
Hugenholtz diagrams (right). Part 1.

derivation of the projection operator was performed by first
expressing the total energy in terms of Hugenholtz diagrams
and then factorizing out particle-hole excitation operators that
are functionals of the R12-correlator operator. The efficiency
of the projection operation is controlled by a tunable external
parameter. The projected particle-hole operators were used for
the construction of the geminal-projected CI wave function
which was subsequently used to perform proof-of-concept
ground-state energy calculations on a set of molecules. The
results from these calculations demonstrate that the method
shows much promise since in all cases the geminal-projected
CI wave function was found to deliver CISD-level accuracy
using a CI space that is at least six times smaller than the
CISD space. The results from this work highlight the efficacy
of the geminal-projected particle-hole operators for reducing
the number of optimizable parameters in a correlated many-
electron wave function. The application of geminal-projected
particle-hole operators derived in this work is not restricted
to a CI wave function and was demonstrated to be applicable
to many-body perturbation theory and coupled-cluster theory

i

j

ka ai

j

k

ja|w2|ik ja|w2|ik A

a

b ic

a

b c i

ai|w2|bc ai|w2|bc A

i

j ka

i

j a k

jk|w2|ia jk|w2|ia A

ia jb ia b j

ab|w2|ij ab|w2|ij A

ia jb
ia b j

ij|w2|ab ij|w2|ab A

FIG. 12. Same as Fig. 11, but Part 2. .
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as well. We envision that geminal-projected particle-hole
excitation operators can also be used in multideterminant
quantum Monte Carlo methods.

ACKNOWLEDGMENTS

Acknowledgment is made to Syracuse University, NSF
REU Grant No. CHE-1263154, and the donors of the American
Chemical Society Petroleum Research Fund for support under
Grant No. 52659-DNI6 of this research.

APPENDIX

In this Appendix, we briefly summarize the Goldstone
and Hugenholtz diagrammatic representations which were
used in the derivation of the geminal-projected particle-hole
operators. The one-particle operators for both the Goldstone
and Hugenholtz representations have the same form, but the
two-particle operators have slightly different form for each
representation. We start by considering the singly excited
Slater determinant, �a

i = {a†i}�0, before we consider the one-
particle operators. Here we follow the convention of labeling
the occupied and unoccupied states by indices i,j,k,l and
a,b,c,d, respectively. The occupied indices are used to refer
to the hole states and the unoccupied indices are used to refer to
the particle states [93]. This Slater determinant is represented
diagrammatically with a particle line pointing upward and

a hole line pointing downward as seen in Fig. 8. Similarly,
the doubly excited Slater determinant �ab

ij = {a†b†ji}�0, the
diagrammatic representation has two particle lines, a and b,
and two hole lines, i and j , as seen in Fig. 9. Now we consider
diagrammatic notation for the one-particle operator û. The
form of the one-particle operator can be written as 〈p|û|q〉
where p and q can be particle or hole lines. There are four
possibilities for representing the one-particle operator. It can
be particle-particle, hole-hole, particle-hole, or hole-particle,
where we will use a and b as particle states and i and j as
hole states. These four cases are seen in Fig. 10. The bold dot
in the diagrams represents the operator û and it occurs at the
vertex of two lines. Each vertex needs one incoming line and
one outgoing line. In relation to the operator dot, the incoming
line is the ket state, while the outgoing line is the bra state. The
two-particle operators are consistent with this notation used
by the one-particle operators.

For the two-particle operators in the Goldstone repre-
sentation, there is no longer one vertex. The one vertex is
split into two half-vertices which are connected by a dashed
interaction line. The two half-vertices and the interaction line
constitute a single vertex. In the Hugenholtz representation,
the diagrams are compacted so that there is only one vertex
in each two-body diagram. The relationship between the
Goldstone and Hugenholtz diagrams and the corresponding
matrix elements are shown in Figs. 11 and 12.
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[8] R. Roth and P. Navrátil, Phys. Rev. Lett. 99, 092501 (2007).
[9] R. Roth, Phys. Rev. C 79, 064324 (2009).

[10] Z. Gershgorn and I. Shavitt, Int. J. Quantum Chem. 2, 751
(1968).

[11] J. Ivanic and K. Ruedenberg, Theor. Chem. Acc. 106, 339
(2001).

[12] J. Ivanic and K. Ruedenberg, Theor. Chem. Acc. 107, 220
(2002).

[13] A. L. Wulfov, Chem. Phys. Lett. 255, 300 (1996).
[14] P. J. Bruna, S. D. Peyerimhoff, and R. J. Buenker, Chem. Phys.

Lett. 72, 278 (1980).
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