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Measurement and extinction of vector light shifts using interferometry of spinor condensates
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We use differential Ramsey interferometry of ultracold atoms to characterize the vector light shift (VLS)
from a far-off-resonance optical dipole trap at λ = 1064 nm. The VLS manifests as a “fictitious” magnetic
field, which we perceive as a change in the Larmor frequency of two spinor condensates exposed to different
intensities of elliptically polarized light. We use our measurement scheme to diagnose the light-induced magnetic
field and suppress it to 2.1(8) × 10−4 of its maximum value by making the trapping light linearly polarized
with a quarter-wave plate in each beam. Our sensitive measurement of the VLS-induced field demonstrates
high-precision, in vacuo interferometric polarimetry of dipole-trapping light and can be adapted to measure
vector shifts from other lasers, advancing the application of optically trapped atoms to precision metrology.
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I. INTRODUCTION

Light shifts, also known as ac Stark shifts, are the alteration
of atomic energy levels due to oscillatory electric fields.
Initially a spectroscopic curiosity [1], with the advent of
tunable lasers, light shifts found applications ranging from
Sisyphys cooling [2] to optical memories [3], quantum
information processing [4–6], and molecular physics [7]. Light
shifts and precision measurements share a tense relationship:
light shifts make possible dipole traps and optical lattices
and are concomitant to dispersive optical probes, all critical
components in the modern metrology toolbox, but frequently
also perturb the measurement, often creating undesired spatial
and temporal variation. Optical lattice clocks rely on the scalar
light shift to hold and isolate atoms, but unless the light shift is
made identical for both excited and ground states of the clock
transition [8], the timekeeping varies with the lattice intensity.
Similarly, atomic magnetometers suffer both vector and tensor
light shifts [9], with the vector light shift (VLS) creating a
fictitious magnetic field parallel to the probe-laser wave vector.
As a result, much effort is currently focused on the control, and
elimination, of light shifts, not only in precision measurement
but also in quantum information experiments [10]. The scalar
light shift of a ground state vanishes at the “magic-zero
wavelength” [11]; lasers tuned there exert no dipole force on
the atomic center of mass, but retain the vector component of
the electric dipole interaction needed for synthetic gauge fields
[12], spin-orbit coupling [13], and localized spin rotations
[14]. Here we consider the inverse: measuring, and ultimately
eliminating, the vector light shift in the presence of the
strong scalar light shift of an optical dipole trap (ODT).
Using differential Ramsey interferometry [15], we measure
the difference in total magnetic field experienced by two
proximal spinor Bose-Einstein condensates (BECs) subject to
controlled differences in intensity, making an interferometric
measurement of the vector light shift experienced by the atoms.

The dipole trap unlocks the spin degree of freedom for
trapped atoms, providing a spin-state-independent trapping
potential for studying the myriad dynamics and measurement
prospects of ultracold and condensed spinor gases [16]. The
long coherence times of ultracold atoms and small, flexible
trapping volumes available in optical traps allow for the

realization of precise, microscale magnetometers [9]. The
spin independence of the dipole trap for magnetometry is
paramount, all trapped states ideally experience exactly the
same trapping potential, and systematics in the measurement
from trapping potential shifts are eliminated.

In the simplest case of an ODT formed from a paraxial,
single-frequency, focused far-off-resonant laser beam, Zeeman
state-independent trapping is ensured if the trapping light is
purely linearly polarized. Any ellipticity in the polarization of
the trapping light results in a magnetic spin-state-dependent
VLS in addition to the scalar light shift that forms the confining
potential [17–19]. The VLS is therefore regarded as a effective,
or “fictitious,” magnetic field [20,21] that vexes the inference
of magnetic fields using optically trapped atoms.

Ensuring a truly spin-independent trapping potential is of
great utility to many experiments, such as those seeking to
measure a permanent electric dipole moment of the electron
[22,23]. The VLS from optical pump and probe beams is
also a concern for optical magnetometry, where pump-probe
intensity fluctuations give rise to noise of the effective VLS
magnetic field [24]. Precisely accounting for the VLS has
important consequences for improving measurements of fun-
damental atomic properties, including “magic” wavelengths
[11]. Experiments where single atoms are confined in optical
tweezers also contend with the VLS as a source of experimental
difficulty [25,26].

For optically trapped atomic samples, the focused trapping
beams make any VLS spatially inhomogeneous and create an
effective field gradient. In experiments with localized atoms,
such as traps, released traps, and beams, gradients lead to
separation of the Zeeman components, known as the optical
Stern-Gerlach effect [27]; this is frequently undesirable. Even
in vapor cell experiments where Stern-Gerlach forces are less
likely to be a concern, gradients lead to dephasing of transverse
magnetization and so to decay of free-induction signals or,
equivalently, loss of contrast in magnetic interferometry.
Experiments that seek to explore collective spin evolution
over long-time scales are particularly sensitive to gradients;
recent examples include magnon propagation [14] and exotic
many-body states such as fragmented condensates [28]. These
“differential light shifts” [29,30] are a distinct phenomenon.
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In Ref. [15], we presented a magnetic gradiometer that
measures the difference in Larmor frequency between a pair
of BECs using differential Ramsey interferometry. In those
experiments, the trapping light was extinguished to prevent
the VLS from contaminating magnetic gradient measurements,
limiting the maximum interrogation time and hence precision.
For this work, we use differential Ramsey interferometry of
trapped atoms to measure and extinguish the VLS induced by
a crossed-beam optical dipole trap. Section II of this paper
introduces the relevant theory that describes the VLS for our
system; Sec. III describes our technique of differential Ramsey
interferometry, which we use to measure the VLS. Section IV
gives an overview of the experimental apparatus and technique.
Section V describes experiments where we measure the VLS
difference between two BECs at different positions within
each dipole beam, which allows us to estimate the effective
VLS gradient. In Sec. VI, we measure the difference in the
overall VLS between two trapped BECs as a function of beam
polarization and differential trap beam intensity, which allows
for interrogation times of up to 15 ms. In Sec. VII, we show
that the detrimental effect of a large trap-induced VLS on an
evolving spinor condensate can be entirely removed.

II. VECTOR LIGHT SHIFTS IN OPTICAL DIPOLE TRAPS

In this section, the atomic vector polarizability is described
using the formalism in Refs. [31,32]. The decomposition of
the electric dipole operator into scalar, vector, and tensor
components allows one to identify a “fictitious” magnetic field
arising from the induced dipole moment of the atom. In many
experiments, it is the vector sum of the background magnetic
field and the fictitious field B0 + Bvls whose direction defines
the spin quantization axis, and whose magnitude determines
the atomic Zeeman splitting, which we detect small variations
of in this work. In dynamic polarizability calculations of
the ac Stark shift, the orientation of these vectors is often
obscured by incorporating ad hoc geometric factors. We
instead premise our analysis on the total effective magnetic
field experienced by irradiated atoms, a more natural way to
quantify the error in geometric approximations of the vector
sum. These approximations are readily distinguished from
other trigonometric functions in expressions for the light shift
and differences thereof.

An atom interacting with an electric field E =
1
2E0(ε̂e−iωt + ε̂∗eiωt ) with angular frequency ω experiences
an effective, or fictitious, magnetic field,

Bvls = |E0|2
4

αv
nJF

2μBgF F
(iε̂∗ × ε̂), (1)

where gF is the Landé g factor, μB is the Bohr magneton,
ε̂ is the polarization vector, and αv

nJF is the reduced vector
polarizability, which depends on the atomic species, quantum
state nJF , and optical frequency ω [32].

A large body of theoretical work exists that is devoted
to ab initio calculation of atomic polarizabilities for alkali-
metal atoms, including scalar and tensor polarizabilities at
the important dipole-trapping wavelength λ = 1064 nm [33].
While Ref. [33] reports all tensor components (i.e., scalar,
vector, and rank-2 tensor) of the polarizability at 770 nm, here
we report the vector polarizability of 87Rb at λ = 1064 nm. In

the limit of large detunings compared to the hyperfine splittings
[34], the vector polarizability is given by
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nJF = (−1)J+I+F
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1

ωn′J ′nJ − ω − i�n′J ′nJ /2

− 1

ωn′J ′nJ + ω + i�n′J ′nJ /2

)
, (3)

where ωn′J ′nJ = ωn′J ′ − ωnJ is the resonant frequency of the
|nJ 〉 → |n′J ′〉 fine-structure transition, �n′J ′nJ is its natural
linewidth, {J F . . . } denotes the Wigner 6j symbol, and
(n′J ′‖d‖nJ ) are the reduced dipole matrix elements [35]. For
our purposes, it is sufficient to consider the contributions from
only the D1 (J ′ = 1

2 ) and D2 (J ′ = 3
2 ) lines, the dipole matrix

elements of which are tabulated in Ref. [36]. We calculate the
vector polarizability to be αv

nJF = 2.366 × 10−40 C m2/V for
the 87Rb F = 1 hyperfine level of the 5 2S1/2 ground state at
λ = 1064 nm. Polarizability units sadly remain multifarious;
αv

nJF = 2.126 × 10−24 cm3 in cgs units and αv
nJF = 14.35 a3

0
in atomic units, with a0 the Bohr radius. Uncertainty in the
theoretical calculation is dominated by neglect of the blue
and ultraviolet lines, and is well below the experimental
uncertainty of our result below.

The light polarization can be expressed in terms of the right-
and left-handed circular polarization unit vectors ε̂R and ε̂L as

ε̂ = sin

(
θ + π

4

)
ε̂L + e2iφ cos

(
θ + π

4

)
ε̂R. (4)

The angle θ characterizes the degree of circular polarization;
C = |ε̂∗

L · ε̂|2 − |ε̂∗
R · ε̂|2 = sin 2θ is the circularity, equal to the

normalized Stokes parameter S3/S0 (θ = C = 0 for linearly
polarized light). φ is the orientation of the polarization axis
(modulo π ). A quarter-wave plate can be used to adjust the
circularity, e.g., horizontally polarized light (ε̂ = x̂) that has
passed through a quarter-wave plate oriented at an angle θ

counterclockwise from vertical has the same circularity as the
state in Eq. (4). For plane waves, the cross product in Eq. (1)
is thus iε̂∗ × ε̂ = −C k̂ = − sin 2θ k̂, where k̂ is the unit wave
vector of the plane wave. Thus the VLS effective field Bvls

induced by a beam is always along the propagation direction
of the beam.

The vector polarizability induces a change in the energy
of the Zeeman states |F,mF 〉 by an amount referred to as the
vector light shift,

	Evls = μBgF mF (|B0 + Bvls| − |B0|)

= μBgF mF Bvls

[
cos ν + sin2 ν

2

Bvls

B0
+ O

(
Bvls

B0

)2]

≈ −I0

(
αv

nJF

4cε0

)
sin 2θ cos ν

mF

F
, (5)

where ν is the angle between B0 and Bvls, B denotes field
magnitudes, and I0 = (c ε0/2)|E0|2 is the optical intensity.
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In the final line of Eq. (5), only the first term of the series
expansion in Bvls/B0 is retained, as per convention when
expressing the vector light shift [37], valid when Bvls 	 B0

or sin2 ν 	 1. Consequently, the Zeeman shift due to Bvls

is maximized when the magnetic bias field is parallel or
antiparallel with the beam wave vector, i.e., cos ν = ±1 in
Eq. (5). Conversely, a magnetic bias much stronger than Bvls

perpendicular to the beam propagation is one approach to
minimizing the VLS, but this option is not always available to
the experimenter.

Spatially inhomogeneous laser intensity results in a spa-
tially inhomogeneous VLS. For a trapped cloud at the intensity
maximum of a Gaussian beam, the intensity and hence VLS
is locally quadratic, and so for a cloud much smaller than
the beam waist, is approximately homogeneous. Gravitational
sag of the dipole potential results in displacement of the
trap minimum from the intensity maximum, and thus trapped
atoms experience a gradient of the VLS along the direction
of gravity. Due to the tight focusing of trapping beams, this
gradient can be of the order of 10 mG cm −1 for common
trap intensities, even when reasonable care has been taken
to make residual elliptical polarization quite small; Fig. 1
shows this effect. Experiments requiring coherent evolution
over long-time scales, where even small dephasing effects from

FIG. 1. Top: The scalar light shift from a focused laser beam
(orange) creates a spin-independent trapping potential, proportional
to the (inverted) intensity profile. Gravity acts to tilt and shallow
the potential (blue), with a trap minimum offset from the inten-
sity maximum. Bottom: A BEC (circle) trapped in this potential
experiences a greater intensity variation than at the beam center,
accentuating the gradient of the vector light shift. For the beam power
(550 mW) and waist (67 μm) shown here—similar to those used in
our experiment—gravity shifts the trap minimum by 10 μm, where
the effective field magnitude is Bvls = 0.3 mG for a polarization
circularity of C = 0.07. The effective field gradient at the trap
minimum is ∂Bvls/∂z = 24 mG/cm due to the tightly focused beam.

magnetic gradients are problematic, demand gradients at least
an order of magnitude smaller than this, requiring elimination
of the inhomogeneous VLS.

III. DIFFERENTIAL RAMSEY INTERFEROMETRY

We perform simultaneous Ramsey interferometry on a pair
of condensates to detect the magnetic field difference at their
respective positions. We have previously used this technique
in the absence of dipole-trapping light to measure the gradient
tensor of ambient magnetic fields [15]. In that work, we
circumvented the effects of vector light shifts by releasing the
atoms from the ODT prior to interrogating the internal states,
yet this free-fall operation restricted the sensitivity and spatial
resolution of the technique. Minimizing the vector light shift
from the dipole-trapping light allows magnetic gradiometry
to be performed on trapped condensates, offering significant
enhancement in the potential sensitivity of these devices.
Viewed as a comagnetometer, these improvements enhance
the magnetic field resolution per spatiotemporal bandwidth
δB2T V ; here we extend the interrogation time from T = 3
to 15 ms (limited by inhomogeneous dephasing due to the
residual ambient field gradient) and retain a lower sensor
volume V (and thus a higher density) than that of a freely
falling, expanding condensate [15].

We confine two proximate ultracold atom clouds in separate
dipole traps, composed of two beams A and B intersecting
a third, orthogonal beam C [Fig. 2(c)]. Beams A and B

[Fig. 2(a)] are produced by a single acousto-optic modulator
(AOM) driven by two rf frequencies providing independent
frequency and optical power control. The positions of the
condensates can be shifted axially along beam C by changing
the frequencies of the rf tones, and the intensity of each
beam is controlled by adjusting the rf drive amplitudes.
The configuration can be applied to dipole-trapping light
propagating along either the x ′ or z′ axes. Zero-order quarter-
wave and half-wave plates (QWP, HWP) are placed in the path
of both x ′ and z′ beams to control their polarization.

We initiate the Ramsey interferometry sequence with a
radio-frequency π/2 pulse that drives transitions between the
three-level system formed by the Zeeman sublevels |F =
1,mF = −1,0,+1〉 of the 87Rb 5 2S1/2 ground state. The two
condensates constitute independent spin-1 interferometers,
which are separated by 10–100 μm and thus experience the
same rf Rabi frequency �rf generated by a coil antenna several
cm away. After an interrogation time T , a second π/2 pulse
converts the phase acquired during the interval into relative
populations of the Zeeman states in each interferometer. The
phase difference between the two interferometers 	φ is a
measure of the magnetic field difference at each condensate,

	B ≡ |B(rA)| − |B(rB)| = 	φ

γT
, (6)

where γ is the gyromagnetic ratio. Magnetic field fluctuations
scramble the phase of each interferometer for interrogation
times T > 1 ms in our experiments. Simultaneous interferom-
etry provides profound rejection of common-mode magnetic
field fluctuations allowing relative phase measurements at
much longer times [15]. The interrogation time is limited by
the Zeeman coherence time of each condensate, which is set
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FIG. 2. (a) Schematic of the experimental apparatus and (b),(c) different configurations to measure vector light shifts. The position and
amplitude of each dipole-trapping beam is controlled by an AOM; introducing a second rf frequency to an AOM allows independent control
of two dipole beams propagating along the same direction. Splitting either the x ′- or z′-oriented dipole beams into two beams A and B allows
us to position two BECs along the axial extent of a third, orthogonal beam C. We measure the difference in VLS-induced fields at the location
of each condensate using two distinct methods: (b) Delayed drop method. By turning beams A and B off at different times, each BEC falls
a different distance prior to the interrogation, sampling a different intensity of beam C alone. (c) In-trap interferometry. Higher precision is
achieved by keeping the BECs in trap. We vary the relative intensity of beams A and B (which share a common polarization), and measure the
intensity dependence of the VLS-induced field. For each method, we vary the magnitude of the VLS-induced field and its gradient by rotating
a QWP in each beam path.

by magnetic inhomogeneity within each trap. Reducing the
VLS and thus its gradient in each trap prolongs the useful
interrogation time T , which in the limit of vanishing VLS
is ultimately set by background magnetic field gradients that
must be reduced independently. Here these are of the order
of 10–20 mG/cm and we use a trapped interrogation time
T = 15 ms.

IV. APPARATUS

We produce 87Rb BECs of 105 atoms in the |F =
1,mF = −1〉 state by loading a hybrid optical dipole-magnetic
quadrupole trap [38] and transferring the atoms into the two
separate optical dipole traps formed by three beams. The
dipole-trapping light originates from a 20 W, single-frequency,
1064 nm fiber laser [39]. We are able to create approximately
equal atom number BECs in each dipole potential well by
loading the hybrid trap with an AOM splitting one of the
beams by ∼100 μm and evaporating to BEC by reducing the
intensity in all three beams equally over 5 s. The two dipole
beams propagate along axes z′ and x ′ with 1/e2 waists 67 μm
and ∼100 μm, respectively, and may be split independently,
as shown in Fig. 2(a). Larger separations that clearly resolve
the two condensates are obtained by smoothly increasing the
AOM drive-frequency difference after condensing into each
trap, thus transporting the two BECs to the desired separation.

A magnetic bias field is then applied and the experiment
staging is paused until the start of next cycle of the 50 Hz

ac power line for improved repeatability. We then perform the
Ramsey interferometry sequence. Ramsey fringes are obtained
by varying the phase ϕ of the second π/2 pulse with each
iteration of the experiment. Depending on the configuration in
which the BECs are positioned in the traps (outlined in Secs. V
and VI), the BECs are exposed to different intensities of
elliptically polarized dipole-trapping light and thus accumulate
a relative phase in the Ramsey sequence proportional to the
differential vector light shift. The dipole-trapping light is
then completely extinguished and the atoms are absorption
imaged after 23 ms time of flight with a resonant probe
laser. A 50 G cm Stern-Gerlach field gradient is applied for
3 ms during time of flight to spatially separate the Zeeman
components of both BECs. We compute the spin projection
Fz = ∑

mF
mF NmF

/
∑

mF
NmF

for each interferometer A,B

for each applied pulse phase ϕ. We are able to extract the
relative phase 	φ in the presence of strong common-mode
phase noise using an elliptical reduction of (Fz,A,Fz,B ) data
[15,40–42]. Figure 3 schematically shows the Ramsey pulse
sequence, Stern-Gerlach absorption images, and relative phase
extraction using the elliptical data reduction.

V. VECTOR LIGHT SHIFT CHARACTERIZATION

We first probe the VLS across a single dipole beam as a
function of its polarization. One dipole-trapping beam is split
into two beams, A and B, which we use to prepare two BECs
at different axial positions of the crossing beam (beam C),
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FIG. 3. Differential Ramsey interferometry and elliptical data
reduction. (a) Representative Stern-Gerlach absorption images after
time of flight for each stage of the Ramsey pulse sequence. (b)
We measure the spin projection of each condensate Fz; varying the
second π/2-pulse phase for each iteration of the experiment traces
out phase domain Ramsey fringes. (c) Shot-to-shot field fluctuations
scramble the phase of each interferometer, but plotting the output of
one interferometer against the other yields an ellipse, from which we
can extract the relative phase 	φ.

as shown in Fig. 2(b). We then extinguish one of the split
beams (beam A): since the crossing beam alone is insufficient
to support the BEC against gravity, BECA falls. After a short
(up to 5 ms) delay, we extinguish the second split beam (beam
B), so that the two clouds are now also vertically separated
along the radial axis of beam C by the distance fallen by
BECA, typically 35–45 μm. The two clouds now sample the
transverse intensity profile of beam C, and when beam C has
some ellipticity, the two BECs thus sample the differential
VLS across this radial extent of the beam. Immediately after
extinguishing beam B, we begin the Ramsey sequence, while
beam C is still on. During the Ramsey interrogation time, the
two clouds continue to fall through the beam but, for short
enough times (∼250 μs), this motion can be neglected. We
refer to this scheme as the “delayed-drop” technique.

The measured relative phase depends on the difference
in VLS-induced field strengths experienced by each BEC—
which is proportional to the absolute VLS of beam C—
in addition to any difference in the background magnetic
field. Neglecting the axial dependence of intensity and any
background magnetic field differences, the intensity difference
that the BECs sample by virtue of falling distances yA and yB

results in a magnetic field difference that takes the form

	B = |B0 + Bvls(rA)| − |B0 + Bvls(rB)|

= (Bvls,A − Bvls,B)︸ ︷︷ ︸
≡	Bvls

[
cos ν + O

(
Bvls,A + Bvls,B

B0

)]
,

(7)

where Bvls,i = |Bvls(r i)| and ν is the angle between the
VLS field Bvls and the background field B0. The VLS field
difference 	Bvls = 	Bvls,max sin 2θ , with θ the polarization
imperfection of beam C. This configuration can be imple-
mented on either dipole beam, allowing for independent
measurement of the VLS from each beam. It is also a spatially
resolved measurement that can determine the VLS gradient as
the vertical distance between the BECs is easily measured.

The glass vacuum cell and other optical components (such
as the dichroic mirrors used to steer the dipole beams)
exhibit birefringence, so a linearly polarized beam before these
components will become elliptically polarized to some extent
at the atoms [43]. To cancel the VLS, the QWP is rotated
to an angle that prepares an elliptically polarized state that
when subjected to the phase retardance of post-QWP optics, is
linearly polarized in the vacuum cell. It is possible to convert
an arbitrary elliptically polarized state into a linear state using
a QWP set to the appropriate angle. To make a fully left-
or right-circularly polarized state or an arbitrarily oriented
linear state requires an additional HWP. For the experiments
described herein, we use a HWP of fixed orientation and rotate
the QWP.

We consider the passage of an elliptically polarized beam of
light through a QWP with fast axis at angle θ and a birefringent
composite phase retarder (representing the glass vacuum cell)
which imparts a relative phase between linear polarization
components of φk , with a fast axis at θk . For linearly polarized
(vertical) input light and small birefringent phase shifts φk ,
the circularity seen by the atoms can be shown using Jones
calculus to be

C = −iε̂∗ × ε̂ · k̂

= cos φk sin 2θ + sin φk cos 2θ sin 2(θ − θk). (8)

In the limit of small birefringence (φk 	 1), Eq. (8) is well
approximated by C = sin 2θ , the circularity of the state in
Eq. (4), which we assume herein. We note that precisely nulling
the circularity for arbitrary birefringence φk amounts to finding
the root of Eq. (8) in θ ; operationally this is achieved by
rotating a quarter-wave plate until the VLS is nulled, as in
Sec. VI.

Figure 4 shows the extent of the undesired effective field
gradient induced by dipole-trapping beams, and makes plain
the precision with which the dipole-trap polarization must be
controlled to achieve the order 1 mG cm or lower gradients
demanded by the coming generation of precision magnetom-
etry and magnonics experiments [44]. The relative phase 	φ

is measured for different beam polarizations by performing
differential Ramsey interferometry across a 360◦ range of
QWP rotation angles. The contribution to the relative phase
from the background magnetic field gradient 	φbg is measured
by extinguishing all dipole light during the Ramsey sequence,
and subtracted from 	φ before using Eq. (6) to impute the
magnetic field difference 	B in Eq. (7). Repeating this for
three linearly independent bias magnetic field directions allows
us to independently determine the direction and magnitude of
Bvls for each beam [cos ν and thus 	Bvls in Eq. (7)]. We
determine the effective VLS gradient 	Bvls/	y plotted in
Fig. 4 as a function of QWP angle using the measured vertical
displacement 	y of each BEC in free fall. The QWP angle(s) at
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FIG. 4. Magnetic field difference (right axis) and gradient (left
axis) induced by the vector light shift from the z′-oriented dipole beam
(circles) and x ′ beam (squares), for variable polarization circularity.
The VLS magnetic field difference |	Bvls| < 1 mG at two locations
of each dipole beam (separated by 	y = 41.7 μm) is probed using
differential interferometry. Rotating a quarter-wave plate placed in
the path of each beam changes the vector light shift and thus the
light-induced field gradient 	Bvls/	y. Biasing the measurement with
three linearly independent background magnetic fields allows us to
determine the direction of Bvls for each beam [cos ϕ in Eq. (7)].
Solid (z′-beam) and dashed (x ′-beam) lines are a phenomenological
fit from which we determine the peak gradient induced by each beam
[Eq. (7)].

which 	Bvls (and thus the VLS gradient) vanish are referred to
here as the nulling angles. The maximum VLS gradient shown
in Fig. 4 occurs when the beams are almost perfectly circularly
polarized, and is 	Bvls,max/	y = 234(5) and 157(5) mG/cm
for the z′ and x ′ beams, respectively.

VI. TRAPPED-ATOM INTERFEROMETRY

Increasing the interrogation time improves the magnetic
sensitivity of differential Ramsey interferometry linearly with
T . In this section, we use the longer interrogation time afforded
by trapped condensates for a more precise measurement and
thus deeper nulling of the VLS than with atoms in free fall.
Such nulling is imperative for interrogation times beyond 1 s,
and should make possible magnetic sensitivities that exceed
other microscopic precision magnetometers [15].

The measurement described in Sec. V was limited to inter-
rogation times T � 5 ms as the residual dipole force provided
by a single beam was insufficient to overcome gravity. The
available measurement time has been shown not to be limited
by Zeeman coherence, but by atom loss from the condensate
[45]. Unlike collisional effects in thermal atomic vapors,
spin-changing collisions at ultracold temperatures conserve
the total spin projection of the pair onto the quantization
axis. Rather than irreversible loss of interferometric contrast,
ultracold collisions drive reversible dynamics of the transverse
spin length on time scales even longer than the interrogation
times used here. The dominant dephasing mechanism is
inhomogeneous broadening, resulting from each condensate

sampling a spatially varying Zeeman shift (from ambient
magnetic gradients) across its extent.

A. Trapped-atom interferometry: Method

To perform in-trap differential interferometry, we keep
the two BECs in their respective dipole traps and create an
intensity difference between beams A and B, with both beams
sharing a common polarization defined by a single QWP
[Fig. 2(c)]. In addition to the ∼4 MHz frequency difference
between beams A and B, used to control the position of each
condensate, the intersecting dipole beams (A and C, or B and
C) have a nominal relative detuning of 200 MHz, which is
necessary to negate any standing-wave effects resulting from
their superposition. Depending on the polarization orientation
of the intersecting beams, there is either an intensity (lin ⊥
lin) or polarization (lin || lin) modulation [46] which moves
at 2π × 200 MHz/|kx ′ − kz′ | = 152 m s−1 [47]. The atoms
experience a time average of this rapidly moving lattice; in
the case of scalar light shifts, this results in the total effective
intensity being the sum of the two intensities. In the case of
vector light shifts, it is perhaps less obvious that the sum of
polarizations from each beam, inserted into Eq. (1) and time
averaged, results in a vector sum of the fictitious fields of the
independent beams, e.g., Bvls = Bvls,A + Bvls,C for BECA.
Aligning the magnetic bias field parallel to the split beam
(B0 ‖ ẑ′ in Fig. 2) ensures maximum sensitivity to the VLS
field difference between beams A and B, while minimizing
any contribution to the differential signal from beam C.

As per Eqs. (5) and (7), the VLS field difference depends
linearly on the intensity difference sampled by each BEC, and
the common polarization circularity:

	Bvls = 2π

γ
αV 	I sin 2θ. (9)

The gradient of (	I,	Bvls) data yields the vector light shift per
unit intensity, which in the vicinity of vanishing polarization
circularity (|θ | 	 1) is given by

∂Bvls

∂I
= ±4π

γ
αV (θλ/4 − θN). (10)

We have taken θ = θλ/4 − θN, with θλ/4 the rotation angle of a
quarter-wave plate used to control the circularity, offset by the
“nulling angle” θN at which (a) θ = C = 0 and (b) the vector
light shift is independent of intensity and is thus vanishing.
Minimizing the vector light shift therefore amounts to reducing
the gradient ∂Bvls/∂I , i.e., by finding the nulling angle θN.

B. Controlling relative intensity

We vary the VLS field difference by changing the intensity
of one of the parallel dipole beams, A or B. For the same
optical power in beams A and B, the two traps they form
are not identical; the beams have slightly different waists
due to aberrations, they intersect beam C at different axial
and radial positions, etc. We define the intensity experienced
by each condensate as IA(rA) and IB(rB). Despite small
differences in the intensity profile of each beam and the relative
location of the BECs in each beam (e.g., the vertical position
of each BEC with respect to its respective beam center),
the relevant independent variable is the intensity difference,
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	I ≡ IA(rA) − IB(rB). Operationally, this intensity differ-
ence is controlled by changing the rf power in one or both
of the tones delivered to the AOM used to generate beams A

and B. Denoting these rf powers by PA and PB , and assuming
that the intensity experienced by each BEC is linear in these
powers, we have

IA(rA) = pAPA, (11a)

IB(rB) = pBPB. (11b)

Supposing we vary the differential intensity by adjusting
PA �→ PA + 	PA, we have IA �→ IA + 	IA, and

	I = pA(PA + 	P ) − pBPB . (12)

The intensity experienced by each BEC is equal when 	I = 0,
requiring a change in rf power modulating beam A by an
amount

	P0 = pB

pA

PB − PA. (13)

The differential power 	P0 is determined experimentally by
adjusting 	P until the VLS-induced relative phase of the
two condensates is independent of the polarization, i.e., the
horizontal coordinate where lines of best fit to (	φ, 	P )
data intersect for varying beam polarizations. We present such
graphs using an offset rf power difference 	P ′ ≡ 	P − 	P0,
such that 	P ′ = 0 ⇔ 	I = 0. The differential intensity can
be conveniently expressed in terms of this offset rf power
difference,

	I = pA(PA + 	P ′ + 	P0) − pAPB

= pA	P ′, (14)

from which one can also equate a normalized optical intensity
difference with a normalized rf power difference,

	I

IA

= 	P ′

PA

. (15)

For the experiments described here, the normalized power
difference required to balance the intensities is ∼33%.

Finally, expressing 	I in absolute units of intensity requires
knowledge of pA, which can be determined from [PA,IA(rA)]
data. In practice, this calibration is performed by measuring
optical power as a function of rf power, and inferring intensity
from the measured beam profile. The intensity sampled by
both condensates when 	I = 0 is IA(rA) = IB(rB) = 8.39 ×
103 W cm−2. This is independently verified by comparing the
predicted intensity profile at the location of the condensate
with measurements of the trapping frequencies of the dipole
potential.

C. In-trap interferometry results

Background magnetic field gradients limited the maximum
permissible interrogation time to T � 2π/(2rTFγB ′) = 25 ms
for a Thomas-Fermi radius rTF = 13 μm and an ambient
gradient of B ′ = 22 mG/cm, which we did not cancel for this
experiment. The quadratic Zeeman shift further modulates the
transverse spin length and thus the interferometric contrast at
angular frequency 2qZ , with qZ = 2π × 71.89 Hz G −2 for

FIG. 5. In-trap measurement and cancellation of VLS field
difference. Top: The variation of the VLS field difference 	Bvls with
intensity difference, for six quarter-wave plate angles over a 10 arcmin
range. The single error bar is representative of typical uncertainty
reported from ellipse fits, u(	φ) ≈ 0.011 π . The gradient of each
line is an intensity normalized VLS field, as shown vs wave-plate
angle in the lower plot. Vertical error bars represent the uncertainty
in each fitted gradient ∂Bvls/∂I ; horizontal error bars represent the
resolution of the QWP rotation stage. The slope of this line can be used
to impute the vector polarizability [Eq. (10)] and a suppression ratio
of 2.1(8) × 104 [Eqs. (16) and (17)] corresponding to the minimum
achieved intensity normalized VLS field.

87Rb. We chose T = 15 ms to coincide with a local maximum
in this contrast, which was as high as 80%.

Figure 5 (top) shows the differential VLS field—created
by beams A and B—as a function of the normalized relative
intensity at each condensate location, for six QWP angles θλ/4

in the vicinity of the nulling angle θN. Plotting the gradient
of these data versus the QWP angle [Fig. 5 (bottom)] allows
us to impute the parameters of Eq. (10) from a line of best
fit, namely, the vector polarizability αV and the nulling angle
θN. From the slope of the line in the lower panel of Fig. 5,
we impute the reduced vector polarizability of 87Rb (F = 1)
at λ = 1064 nm to be αv

nJF = 2.33(13) × 10−40 C m2/V, in
remarkable agreement with the theoretical value calculated in
Sec. II. In experimentally motivated units, this corresponds to
a reduced vector light shift per unit intensity αv

nJF /(4cε0F ) =
h × 0.331(18) Hz W−1 cm2 [cf. Eq. (5)].
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The minimum intensity normalized VLS field we achieved
was −1.99(75) nG W−1 cm2 for a QWP angle of θλ/4 =
337.125(4)◦. To estimate the suppression of the VLS-induced
field, relative to its maximum value, we note that the maximum
intensity normalized VLS (for |C| = 1) is half of the maximum
gradient with respect to θ (for θ = 0) owing to the form of
Eq. (9), i.e., (

∂Bvls

∂I

)
max

= 1

2

∣∣∣∣ ∂

∂θ

∂Bvls

∂I

∣∣∣∣
θ=0

. (16)

The gradient with respect to θ is the slope of the fit in Fig. 5
(bottom), appropriately scaled for θ in radians. Using this
slope, the VLS suppression we achieved is described by the
ratio

(∂Bvls/∂I )min, achieved

(∂Bvls/∂I )max
= 2.1(8) × 10−4. (17)

Alternatively, the suppression can be quantified by esti-
mating how close the QWP could be controlled to the
imputed nulling angle [θN = 337.115(3)◦], i.e., 2|θλ/4 −
θN|min, achieved = 3.3(1) × 10−4. In either case, the suppression
ratio is independent of any systematics associated with the
intensity calibration.

While small, the residual temperature dependence of the
retardance of the zero-order wave plates is likely to be the
dominant source of statistical uncertainty. The laboratory tem-
perature is controlled to better than 0.25 K accuracy and rms
fluctuations over a typical experimental sequence are usually
below 0.1 K. The nulling experiment required a considerable
number of BEC shots and ran over several hours, much longer
than the characteristic times of temperature control in the
laboratory. We thus consider that the ordinate error bars fully
account for temperature “drift” in the laboratory.

Two main systematics limit our ability to comprehensively
null the VLS: the resolution of the QWP rotation stage
(0.1 mrad) and the presence of increased statistical noise in the
measured gradients around the nulling angle. The former may
be circumvented by using higher-resolution rotation stages,
which would additionally allow for longer interrogation times
that amplify the slope of Fig. 5. Longer interrogation times
are possible provided loss of interferometric contrast due to
background field gradients is suppressed.

The origin of increased variation of ∂Bvls/∂I in the vicinity
of the nulling angle is not immediately apparent. The relative
polarization difference between the two dipole beams A and
B is assumed to be small, as both beams begin with a
well-defined linear polarization and travel similar optical paths
through the same components. However, we cannot discount
the possibility that a relative polarization imperfection exists,
due to spatially varying birefringence of the glass vacuum cell
or other components, such as the QWP itself. Any polarization
difference between the two beams would result in a relative
VLS that is impossible to cancel.

We also performed measurements to quantify the contribu-
tion to the measured VLS field difference from the crossing
beam, which should be minimal due to the bias field alignment
along z′. Rotating the angle of the QWP in the path of beam
C by 10◦, we observed no significant excursion outside of
measured uncertainties (cf. the entire range of data plotted in
Fig. 5 is 10 arcmin).

Accurately quantifying the atomic vector polarizability
relies on a sound measure of the intensity at the atoms, a
problem that vexes other measurements of atomic polarizabil-
ities from ac Stark measurements [48]. The local intensity
of a dipole-trapping beam sampled by the trapped cloud
is determined by the position of the trap minimum, which
is gravitationally shifted from the point of peak intensity.
The addition of the crossing beam further complicates the
problem, rendering any intensity characterization without
a direct atomic metric of limited applicability. A precise,
spatially resolved measurement of absolute optical intensity
with an atomic measurement is a significant experimental
achievement in itself. This uncertainty in the absolute intensity
sampled by the two condensates results in a systematic error in
our estimate for αV at 1064 nm. These issues in no way detract
from the utility of our technique for nulling the VLS-induced
field from the trapping beams.

VII. COHERENT SPIN MIXING

To demonstrate the utility of VLS control, we consider
the spin-mixing dynamics of a spinor BEC in the presence
of a trap-induced VLS. Coherent spin mixing is one of the
most interesting facets of spinor BECs [16,49,50], vividly
demonstrating the unique nature of spinor quantum fluids and
with emerging application to quantum enhanced sensing [51].
Coherent spin-mixing collisions transfer population between
the Zeeman states at low magnetic field: a colliding pair of
atoms in the mF = 0 state can create an mF = ±1 pair, and
vice versa:

|mF = +1〉 + |mF = −1〉 � |mF = 0〉 + |mF = 0〉. (18)

The energy difference between the two pairs is dictated by
the quadratic Zeeman shift and the spin-dependent collisional
interaction energy, and is of the order of 10 Hz for the
F = 1 levels of 87Rb and of the order of 100 Hz for 23Na
at typical bias fields of the order of 0.1–1 G. This energy is
typically smaller than the chemical potential, and consequently
the spin-changing two-body interaction manifests as coherent
oscillations in the Zeeman populations, while the atom density
retains a single spatial mode. While an overall linear Zeeman
shift plays no role in these dynamics, even a weak magnetic
field gradient of the order of 1 mG/cm is sufficient to
create a linear Zeeman-shift gradient across the condensate
exceeding the collisional and quadratic Zeeman energy scales,
invalidating the single-mode approximation [52].

Spin mixing is initiated by putting the condensate into
a superposition different from the mean-field spinor ground
state. A single π/2 pulse is applied to a condensate in the
mF = −1 state. Denoting the relative population fractions
in each Zeeman sublevel by ρmF

= NmF
/N , the initial pop-

ulations immediately after the rf pulse are (ρ−1,ρ0,ρ+1) =
(0.25,0.5,0.25). Spin-mixing collisions conserve the overall
magnetization, m = ρ+1 − ρ−1 = 〈Fz〉, leading to oscillation
of the population in each Zeeman sublevel.

In the presence of a gradient magnetic field, mechanical
forces separate the magnetically sensitive mF = ±1 compo-
nents, leading to dephasing, and in the case of a Ramsey
experiment, loss of interferometric contrast. This is reflected
in the spin population dynamics as a damping of the amplitude
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FIG. 6. Spin-mixing dynamics of a spinor BEC with the VLS approximately nulled (top) and when set to 132(6) mG cm−1 (bottom):
fractional population evolution (left) and centroid displacement, relative to the ρ0 centroid position (right). The VLS induces an effective
magnetic field gradient along the gravitational direction (y), driving strong component separation (shown in the inset Stern-Gerlach absorption
image, taken 15 ms after the π/2 pulse). Separation reduces spatial overlap of the three Zeeman sublevels and suppresses spin mixing from the
mF = ±1 states into the mF = 0 state.

of the oscillations: component separation results in less
spatial overlap of the Zeeman components. The reduction
in oscillation amplitude is indicative of a weakening of the
spin interaction strength. When attributable to gradients, it
is undesirable in experiments observing long-term spinor
evolution [53,54], where weak equilibration mechanisms may
have similar effects.

A bias field of 372 mG parallel to the x ′-oriented dipole
beam was applied, resulting in maximum sensitivity to the
VLS from that dipole beam. The magnitude of the quadratic
Zeeman shift is q = 2π × 10 Hz, and the spinor interaction
energy is given by c = c2〈n〉, with c2 = −2.4 × 10−53 J m3 for
87Rb and 〈n〉 the average number density: in our experiments,
c ≈ −2π × 3.2 Hz. The background magnetic field gradient
in this experiment was ∂B/∂z′ < 6 mG cm −1.

Figure 6 shows the population dynamics of a spinor con-
densate in the optical dipole trap, with the VLS approximately
nulled (top) and when set to maximum (bottom). Population
oscillations are barely discernible in the lower panel taken
at full VLS, and the images show substantial component
separation along the gravitational direction (as expected from
the sagging dipole potential), indicated by the centroid motion
shown to the right in Fig. 6. The reduced spatial overlap
of the mF = ±1 components prevents spin mixing into the
mF = 0 state, and the ρ0 population is gradually exhausted

as the production of mF = ±1 pairs is favored [55]. With the
VLS nulled to below 5 mG cm−1, more than three periods of
population oscillations were clearly visible, and component
separation was suppressed by an order of magnitude. An
underlying gradual increase in ρ0 population was highly
reproducible, and we suspect this relaxation behavior was a
result of the background magnetic field gradient (as opposed
to the fictitious gradient induced by the VLS of the trap beam).
This behavior resembles the longer-time-scale relaxation
observed previously [54]. Further study of the dynamics of
spinor BECs in well-characterized gradients is an interesting
prospect, where optical potentials of specially tailored VLS
are used to engineer specific Zeeman phases on a spinor
BEC, and to observe other gradient-induced effects, such as
nonconservation of magnetization [52].

VIII. CONCLUSIONS

We have demonstrated high-precision interferometric mea-
surement of the vector light shift from a crossed-beam optical
dipole trap. Using this measurement, we determined the VLS
as a function of intensity, and hence optimized polariza-
tion until the VLS was eliminated. We measured the VLS
contribution from each beam separately, so that the residual
VLS was readily nulled by separate adjustments of wave plates
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in each beam. Removing the VLS removed the VLS-induced
effective magnetic field gradient across our spinor condensate.
Nulling these gradients allowed us to observe slow spin-mixing
dynamics in the spinor BEC, previously obscured by Stern-
Gerlach component separation in the VLS-induced gradient.
While our measurements specifically considered the case of
eradicating residual spurious shifts from an optical dipole
trap, our techniques may have interesting application in the
characterization of VLS shifts from other optical fields, for
the purposes of tailoring microscale Zeeman-shift potentials
far more intricate than those attainable with magnetic fields.
Our results will be of interest to experiments investigating the
fundamental physics and metrological applications of trapped
spinor gases.
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APPENDIX: THERMALLY INDUCED BIREFRINGENCE
IN CELL WINDOWS AND TRAP OPTICS

Changes in birefringence over the duration of an experi-
mental shot or a contiguous sequence of shots are not nulled
by our method. The primary cause of drifting birefringence is
varying temperatures of elements designed to be birefringent
(such as wave plates) or with long optical paths (such as optical
fibers). The solutions are well known: control of laboratory
temperature, use of zero-order wave plates, appropriately
placed efficient (crystal) polarizers to “clean up” polarization
linearity (at the expense of small intensity drift), use and
carefully alignment of polarization-maintaining fibers, etc.

Once these obvious sources of birefringence are controlled,
the question arises as to whether the vacuum cell windows
themselves contribute birefringence. Vacuum cells are typi-
cally made of isotropic materials such as fused silica which
have low, but not zero, birefringence due to residual stress
remaining in the material from the manufacturing process;
this is static and is nulled in our process. However, stresses on
the cell caused by heating due to dipole beam absorption are
neither static nor easily avoided. Conventional wisdom is that
such thermally induced birefringence is negligible in highly
transparent isotropic materials such as fused silica.

We provide an educated estimate here confirming that
dipole-beam-induced thermal stress birefringence is small,
and is comparable to the sensitivity limit we have reported
here only if the cell is exposed to especially intense and
prolonged trap beam irradiation. Estimating the space- and
time-varying birefringence of the cell window requires first
finding the optical power absorbed in the material, then the
resultant temperature rise, the thermal stress this causes in
a fixed material, and, finally, the consequent stress-induced
birefringence. We use fused silica as an example as it is a
common cell material with generally well-specified optical,
thermal, elastic, and photoelastic properties [56]. For high-
power interferometer applications of fused-silica elements,
the depolarizing effects of thermal birefringence were found
to be much less significant than thermal lensing effects [57].

However, in atomic magnetometry applications, the emphasis
is on VLS-inducing birefringence much more than wave-front
distortion.

The least well-specified property for fused silica is the
volume attenuation coefficient, which is sufficiently small
that measurement is challenging for reasonable thicknesses
of glass and in the presence of Fresnel loss [58]. These
measurements reported μ = 0.0018(4) m−1, and ultrapure
substrates prepared for the Laser Interferometer Gravitational-
Wave Observatory (LIGO) have reportedly achieved μ ≈ 10−4

m−1 [59]. Notwithstanding these measurements, we adopt
the Schott specification of at least 99.9% transmission for
10-mm-thick fused silica for wavelengths longer than 250 nm,
giving an absorption coefficient of μ < 0.1 m−1, and providing
a conservative upper bound for absorption across the full
range of wavelengths in use for optical trapping. Assuming
a constant dipole-trap power of PODT = 10 W and a cell
thickness of d = 5 mm, the absorbed power is, at most,
P ≈ μdPODT = 5 mW.

Absorbed power is deposited across the Gaussian beam
profile; for our nominal trap waist of 80 μm with cell windows
surfaces 25 and 30 mm from the trap, the cell is less than 2
Rayleigh ranges from the waist and the beam radius ranges
from 130 to 160 μm through the cell. Few dipole traps will
have beam radii at the cell much smaller than this: much tighter
waists will have larger beam diameters at the cell, and large-
volume ODTs with larger waists will include the cell within a
Rayleigh range; the exceptions are traps located very close to
the inner window surface.

The temperature rise is found by solving the heat equation
for an infinite medium with a constant power deposition per
unit length across a Gaussian profile through it. A closed-form
solution is available [60], but it is sufficient for our estimate to
consider the temperature rise on axis, given by

	T (t) = T0 ln

(
1 + 2Dt

w2

)
, (A1)

where T0 = Pabs/4πkd ≈ 60 mK is the characteristic temper-
ature with k = 1.31 W m−1 K−1 the thermal conductivity, w is
the mean beam radius through the cell, and D is the thermal
diffusivity.

At short times after the beam is turned on, the window
temperature inside the volume of the beam rises linearly, with
heat contained in the beam volume. The thermal diffusivity
of fused silica is D = 7.5 × 10−7 m2/s [56], and so the
time for heat to diffuse beyond beam radius w = 145 μm
is τ = w2/D ≈ 30 ms. Once the diffusion length becomes
comparable to the cell thickness, the model of an infinitely
thick medium becomes inappropriate; this occurs for times
approaching d2/D ≈ 30 s. Thus, for times between 100
ms and 10 s, relevant to most dipole-trap experiments, the
axial temperature rise should be reasonably well modeled
by Eq. (A1), increasing only logarithmically with time to
around 6.6T0. For our assumed constant power dissipation
per unit length of Pabs/d = 1 W m, the axial temperature rise
is 	Tmax = 400 mK after 10 s.

The temperature rise varies only radially, inducing a plane-
stress tensor distribution σij (r). It can be shown that the stresses
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are maximal on axis, taking the principal values

σrr (0) = σθθ (0) = 1
2αCTEE	Tmax, (A2)

where E = 72 GPa is the Young modulus, and αCTE = 5 ×
10−7 K−1 is the coefficient of thermal expansion, of fused
silica. For our estimated values, the radial and tangential
principal stresses on the axis are 7.2 kPa.

It is then straightforward, at least in an isotropic medium
such as fused silica, to infer optical path difference due to
stress birefringence OPD = Kd	σ , where 	σ = σrr − σθθ

is the difference in stresses between the first and second
principal axes [61, Sec. 5.5], and K = 3.4 × 10−12 Pa−1 is
the relative stress-optic coefficient of fused silica. On the
axis, σrr = σθθ , and so the birefringence vanishes, as it must
due to the rotational symmetry. Nevertheless, we can place
an upper bound on the stress birefringent path difference
off-axis of Kσrrd ≈ 1.2 × 10−10 m or a retardance of θ =
2π × 1.2 × 10−10 m/λ = 7 × 10−4 rad.

A full thermoelastic analysis of a Gaussian-beam-heated
medium [62,63] shows that the birefringent retardance in the
t � d2/D limit is

θ (r) = 4πd

λ
QT0

[
1 + exp(−2r2/w2) − 1

2r2/w2

]
, (A3)

with Q = n3
0αCTE(1 + ν)(p11 − p12)/4(1 − ν) = −8.0×10−8

K−1 termed the effective optoelastic coefficient [62], n0 =
1.45 the cold refractive index, ν = 0.17 Poisson’s ratio,
and p11 = 0.121, p12 = 0.270 [57] the only nonvanishing
components of the photoelastic tensor for isotropic fused
silica. Thus, despite the overall temperature of the window
continuing to increase, the retardance approaches a constant
value far off-axis of θmax = 4πdQT0/λ ≈ 1.4 × 10−4 rad, and
8 × 10−5 rad when r = w, i.e., one 1/e2 radius of the beam
off-axis, less than one order smaller than our upper-bound
estimate.

For a perfectly linearly polarized beam incident on the cell
window, this radial retardance pattern induces a azimuthally
varying polarization [62,64] of peak circularity C = sin 2θ ≈
3 × 10−4, which is just below the limit of detectability with the

differential Ramsey interferometer. In practice, the circularity
measured by the atoms will be even smaller for several reasons:
some experiments will measure only the net circularity of
the beam which may be much smaller again; the above
parameters are highly conservative and assume a very intense
dipole-trap laser heating the glass for a relatively long period;
most significantly, fused silica may be orders of magnitude
more transparent than the specification we have adopted here.
Optical dipole traps typically vary intensity on time scales that
are slow compared to elastic time scales (microseconds), but
comparable to thermal time scales (millisecond to seconds);
a more careful model demands a full spatiotemporal thermal
analysis [65] feeding the quasistationary photoelastic analysis
[63,66].

At all other optical elements transmitted by the dipole-trap
beam, the beam radius is an order of magnitude larger, and
the thermal diffusion time is thus two orders longer: surface
heat loss will ensure that the temperature rise is much lower
than in the cell windows. On first consideration, the final wave
plates before the cell may also be suspect for thermal stress
birefringence, as these elements are strongly birefringent.
However, the (many) photoelastic tensor components of α

quartz [67] are of the same order as fused silica, and the much
shorter optical path, part cancellation of the stress birefrin-
gence by lamination of material with crossed axes (“zero-order
waveplates”), and much shallower temperature gradients make
stress birefringence in the wave plates genuinely negligible.
Longitudinal thermal expansion in zero-order wave plates
decreases retardance by the order of 10−4 rad/K, and so can be
neglected for expected temperature rises much less than 1 K.

In conclusion, the great transparency and very low thermal
coefficient of expansion of fused silica more than compensate
for its somewhat higher stress-optic coefficient compared
to most glasses, and render fused silica only very weakly
birefringent under the thermal stress of intense laser illumi-
nation. However, other configurations, notably dipole traps
used to hold single atoms close to cell surfaces, may have
intensities that are orders of magnitude higher and thermal
stress birefringence must be considered carefully in such cases.
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M. D. Lukin, Phys. Rev. Lett. 110, 133001 (2013).
[27] C. Y. Park, J. Y. Kim, J. M. Song, and D. Cho, Phys. Rev. A 65,

033410 (2002).
[28] T.-L. Ho and S. K. Yip, Phys. Rev. Lett. 84, 4031 (2000).
[29] R. Chicireanu, K. D. Nelson, S. Olmschenk, N. Lundblad, A.

Derevianko, and J. V. Porto, Phys. Rev. Lett. 106, 063002 (2011).
[30] H. Kim, H. S. Han, and D. Cho, Phys. Rev. Lett. 111, 243004

(2013).
[31] P. Rosenbusch, S. Ghezali, V. A. Dzuba, V. V. Flambaum, K.

Beloy, and A. Derevianko, Phys. Rev. A 79, 013404 (2009).
[32] F. L. Kien, P. Schneeweiss, and A. Rauschenbeutel, Eur. Phys.

J. D 67, 1 (2013).
[33] B. Arora and B. K. Sahoo, Phys. Rev. A 86, 033416 (2012).
[34] A treatment accounting for the hyperfine splitting (see

Eqs. (B.36) and (B.37) of [32]) differs from Eqs. (2) and (3) by
200 ppm at λ = 1064 nm. As this is less than other contributions
to the vector polarizability (including transitions to higher
principal quantum numbers and core electron corrections) and
the precision reported here, a fine-structure treatment suffices.

[35] Our use of the reduced elements (n′J ′||d||nJ ) is related to
the other elements used in the literature by (n′J ′||d||nJ ) =
(−1)J

′−J
√

2J + 1nJ ||d||n′J ′ [36], but some authors do not
follow this convention [32, 33].

[36] D. A. Steck, Rubidium 87 D Line Data rev. 2.1.5,
http://steck.us/alkalidata/.

[37] A. Derevianko, Phys. Rev. A 81, 051606 (2010).
[38] Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V.

Porto, Phys. Rev. A 79, 063631 (2009).
[39] Keopsys CYFL-20W-MEGA.
[40] G. T. Foster, J. B. Fixler, J. M. McGuirk, and M. A. Kasevich,

Opt. Lett. 27, 951 (2002).
[41] A. Fitzgibbon, M. Pilu, and R. B. Fisher, IEEE Trans. Pattern

Anal. Machine Intell. 21, 476 (1999).
[42] Z. L. Szpak, W. Chojnacki, and A. v. d. Hengel, in Computer

Vision - ECCV 2012, Lecture Notes in Computer Science Vol.
no. 7576, edited by A. Fitzgibbon, S. Lazebnik, P. Perona, Y.
Sato, and C. Schmid (Springer, Berlin, 2012), pp. 87–100.

[43] A. Steffen, W. Alt, M. Genske, D. Meschede, C. Robens, and A.
Alberti, Rev. Sci. Instrum. 84, 126103 (2013).

[44] D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D.
Trypogeorgos, and I. B. Spielman, Nat. Commun. 7, 10897
(2016).

[45] J. M. Higbie, L. E. Sadler, S. Inouye, A. P. Chikkatur, S. R.
Leslie, K. L. Moore, V. Savalli, and D. M. Stamper-Kurn, Phys.
Rev. Lett. 95, 050401 (2005).

[46] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, in Advances
In Atomic, Molecular, and Optical Physics, Vol. 42, edited by
Benjamin Bederson and Herbert Walther (Academic, San Diego,
2000), pp. 95–170.

[47] C. Pethick and H. Smith, Bose–Einstein Condensation in Dilute
Gases, 2nd ed. (Cambridge University Press, Cambridge, 2008).

[48] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43,
202001 (2010).

[49] M.-S. Chang, Q. Qin, W. Zhang, L. You, and M. S. Chapman,
Nat. Phys. 1, 111 (2005).

[50] Y. Kawaguchi and M. Ueda, Phys. Rep. Spinor Bose-Einstein
Condens. 520, 253 (2012).

[51] D. Linnemann, H. Strobel, W. Muessel, J. Schulz, R. J. Lewis-
Swan, K. V. Kheruntsyan, and M. K. Oberthaler, Phys. Rev.
Lett. 117, 013001 (2016).

[52] J. Zhang, B. Yang, and Y. Zhang, Phys. Rev. A 83, 053634
(2011).

[53] Y. Liu, E. Gomez, S. E. Maxwell, L. D. Turner, E. Tiesinga, and
P. D. Lett, Phys. Rev. Lett. 102, 225301 (2009).

[54] J. Guzman, G.-B. Jo, A. N. Wenz, K. W. Murch, C. K. Thomas,
and D. M. Stamper-Kurn, Phys. Rev. A 84, 063625 (2011).

[55] D. M. Stamper-Kurn and W. Ketterle, in Coherent Atomic Matter
Waves, Les Houches, Vol. 72, edited by R. Kaiser, C. Westbrook,
and F. David (Springer, Berlin, 2001), pp. 139–217.

[56] SCHOTT Lithotec AG, Lithosil - Synthetic Fused Silica
Datasheet (Jena, Germany, 2006).
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