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Continuous-time quantum walks on directed bipartite graphs
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This paper investigates continuous-time quantum walks on directed bipartite graphs based on a graph’s
adjacency matrix. We prove that on bipartite graphs, probability transport between the two node partitions can be
completely suppressed by tuning a model parameter α. We provide analytic solutions to the quantum walks for
the star and circulant graph classes that are valid for an arbitrary value of the number of nodes N , time t , and the
model parameter α. We discuss quantitative and qualitative aspects of quantum walks based on directed graphs
and their undirected counterparts. Numerical simulations of quantum walks on circulant graphs show complex
interference phenomena and how complete suppression of transport is achieved near α = π/2. By proving two
mirror symmetries around α = 0 and π/2 we show that these quantum walks have a period of π in α. We show
that undirected edges lose their effect on the quantum walk at α = π/2 and present non-bipartite graphs that
exhibit suppression of transport. Finally, we analytically compute the Hamiltonians of quantum walks on the
directed ring graph.
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I. INTRODUCTION

Quantum computing promises to deliver faster computation
based on the principles of quantum mechanics. Shor’s [1] and
Grover’s algorithms [2] are the most prominent applications
of quantum computation, in which a significant speedup over
classical computers is demonstrated. The former efficiently
factors integers while the latter finds an item in an unsorted
database of qubits.

Quantum information transport across quantum networks
is now becoming feasible [3,4], and conditions for perfect or
pretty good state transfer between nodes on a quantum network
are being studied using quantum walks [5,6]. Quantum walks
are also used to study the transport of energy excitations. For
instance, excitations in light-harvesting complexes are trans-
ported very efficiently to photosynthetic chemical reaction
centers [7,8], promising interesting technological applications
such as optimized solar cells.

Quantum walks are used extensively as algorithmic tools
for quantum computation. They have been defined using
two different formulations, discrete time [9] and continu-
ous time [10,11], with essentially the same computational
power [12] and the latter being a limit case of the former [13].
In fact, universal computation is possible using quantum walks
on graphs [14,15].

Farhi and Gutmann [10] investigated the dynamics of
continuous-time quantum walks on undirected graphs by
introducing quantum systems whose Hamiltonians are based
on the adjacency matrix of a graph. Zimborás et al. [16] have
started investigations to extend quantum walks on graphs to
directed graphs by introducing complex phases. They show
that Hamiltonians with a single phase already exhibit a rich
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phenomenology. In particular, their discovery of complete
suppression of transport on the bipartite directed ring graph
calls for detailed investigations on this phenomenon in the
context of directed quantum walks.

In this paper, we investigate continuous-time quantum
walks in XY spin models based on directed bipartite structures.
This structure is present in many systems with a translational
symmetry such as one-, two-, and three-dimensional lattices,
and thus applies to materials as diverse as crystal structures,
graphene, and carbon nanotubes. Their networked structure
can be represented as a directed bipartite circulant graph.
In particular, we study quantum walks as a function of the
complex phase and compare walks on directed graphs with
walks on their undirected counterparts. We focus on the star
and circulant graphs, two extreme types of bipartite graphs that
differ most notably in their partition size ratios. We simulate
quantum walks on circulant graphs using four model graphs,
intended to limit the computational complexity of the problem.

II. FORMALISM

A. Hermitian Hamiltonians of directed graphs

In a classical random walk, a walker moves along the edges
of a connected graph �(V,E) of N nodes, with a hopping
probability assigned to each edge e ∈ E between nodes i ∈ V

and j ∈ V . For directed graphs, edges in E are ordered pairs
of nodes. An edge between nodes i and j is called bidirected
if both (i,j ) and (j,i) are in E. Walks on undirected graphs
can be modeled as walks on the corresponding directed graph
with bidirectional edges.

In a quantum walk, a state vector |ψ,t〉 undergoes a time
evolution given by the solution of the Schrödinger equation
(using � = 1):

|ψ,t〉 = e−iH t |ψ,t = 0〉. (1)
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In the case of an undirected (or bidirected) graph, as studied
by Farhi and Gutmann [10], the Hamiltonian H is set equal to
the symmetric adjacency matrix A of the graph. For directed
graphs the adjacency matrix will not in general be Hermitian
and thus the time evolution will not be unitary. Therefore this
approach does not produce valid Hamiltonians for quantum
walks. To incorporate edge directions into a quantum mechan-
ical Hamiltonian the antisymmetric part of the corresponding
adjacency matrix A needs to be included. Since a Hermitian
Hamiltonian is not necessarily symmetric, the edge directions
can be encoded using N (N − 1)/2 possible phases [16]. In
this paper the investigations are restricted to a single phase
denoted by α. Any single-phase Hermitian linear combination
of A and AT is proportional to the Hermitian adjacency matrix

AH = eiαA + e−iαAT

= (A + AT ) cos α + i
(
A − AT

)
sin α.

(2)

The angle α rotates the symmetric and antisymmetric
components of the graph. Since AH(α = 0) = A + AT =
Asym, AH can be regarded as a generalization of the
Hamiltonians studied by Farhi and Gutmann [10].

B. Quantum spin systems

Many physical systems can be described as two-level
systems in which the relevant physical properties can be
described using a two-dimensional Hilbert space. Examples
are two-level atoms, polarized photons, and spin-1/2 particles.
Composite systems formed by two-level systems are usually
termed spin systems. In the following we present a spin system
that realizes the type of quantum walks on directed graphs
studied in this article. A Hamiltonian expressed in terms of
spin operators might facilitate the experimental realization
of the quantum walk but trapped ions, nuclear magnetic
resonance, or other approaches can also efficiently run a
quantum walk. Therefore, our approach applies to any system
whose Hamiltonian can be represented as a matrix in the given
form, even if it does not arise from a spin system. In fact, any
universal quantum computer is able to simulate Hamiltonians
with local interactions [17].

Models of interacting spin systems can be set up such that
they realize Hamiltonians of directed graphs. Consider the XY

spin model

H = 2
N∑

m,n = 1
m �= n

Jmn

[
Sx

mSx
n + Sy

mSy
n

]
, (3)

where Sx
m,S

y
m,Sz

m are the spin operator components for particle
m. J is the exchange interaction between spins. By construc-
tion, this Hamiltonian commutes with the total spin and the
sum of all third spin components, implying the conservation
of the total spin and total z component of the spin. The state
space decomposes into a sum of subspaces (H eigenspaces)
labeled by the quantum numbers of the total spin s and the
sum of z-spin components sz. According to the Schrödinger
equation the time evolution of the states is given by

|s,sz,t〉 = U (t)|s,sz,t = 0〉 = e−iH t |s,sz,t = 0〉, (4)

implying that the quantum numbers s and sz are conserved
under time evolution. For example, a single-excitation state
evolves into a superposition of states with exactly one spin
up and all other spins down. This state evolution is termed a
continuous-time quantum walk.

In the following, we restrict our attention to single-
excitation states |i〉 for i = 1 . . . N . In this subspace the
Hamiltonian is given by the symmetric matrix

Hij = 〈i|H |j〉 = Jij + Jji . (5)

Continuous-time quantum walks on graphs are defined by
giving a relation J (AH) between the exchange interaction Jij

and the Hermitian adjacency matrix of a graph. For directed
graphs, J (AH) with AH as given in Eq. (2) provides such a
relation that is Hermitian and has a nontrivial dependency on
the directed nature of the graph. Our Hamiltonian therefore
reads

H = J (AH) + J T (AH). (6)

The matrix function J (AH) = ∑
n jnA

n
H is a general

matrix polynomial or power series [18] with coefficients
jn. The case J (AH) = j1AH leads to H = j1(AH + AT

H) =
2j1(A + AT ) cos α showing that the Hamiltonian only depends
on the symmetric part A + AT in Eq. (2), i.e., on the undirected
graph structure. The α dependence consists of a (graph-
independent) factor of cos α and can be absorbed into the
time scale in the exponent of Eq. (1). In order to find nontrivial
differences between walks on directed and undirected graphs
nonlinear functions J (AH) need to be considered. In this
article analyses are done for a general function J (AH), but
in Secs. III B and III D we give results for test cases such as
J (AH) = exp AH.

Our main object of study is the time evolution of the
probability distribution

P (i,t) = |〈i,t |i0,0〉|2 = |〈i|e−iH t |i0〉|2 (7)

with |i,t〉 denoting the quantum state of the ith node at time t

and with P (i0,t = 0) �= 0 only for a single node i0.

C. Bipartite and circulant graphs

Bipartite graphs are graphs whose nodes can be partitioned
into two disjoint sets (partitions) such that no edge connects
two nodes in the same set. For example, tree graphs such as the
star graph and ring graphs with an even number of nodes are
bipartite. Choosing a node ordering in which all nodes of one
partition are in sequence, the adjacency matrix of a bipartite
graph is antidiagonal,

A(N×N) =
(

0(m×m) B
(m×n)
1

B
(n×m)
2 0(n×n)

)
, (8)

where B1,2 are the biadjacency matrices of the directed graph.
If the graph is undirected, then B2 equals BT

1 .
A circulant graph is a graph whose nodes can be ordered

in such a way that its adjacency matrix is a circulant
matrix [19]. A circulant matrix M is defined by a vector
(m0, . . . ,mN−1) and the specification that the ith row is given
by (m0, . . . ,mN−1) circularly shifted to the right i times,
i.e., Mij = m(j−i) mod N . We denote this N × N matrix by
M = [m0, . . . ,mN−1]c.
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Any circulant matrix M can be diagonalized using the
unitary change of basis DM = S∗MS with

Smn = e2πimn/N/
√

N for m,n = 0, . . . ,N − 1. (9)

We use a similar notation to denote diagonalized circulant
Hamiltonians DH or adjacency matrices DA, etc. For a
circulant graph the Hamiltonian matrix H will be circulant
since it is the sum of products of circulant matrices.

Note that the dynamics of continuous-time quantum walks
on graphs does not depend on the choice of the vertex ordering.
A permutation of the node labels can destroy the circularity of
the Hamiltonian matrix. A Hamiltonian matrix of a quantum
walk on a circulant graph is circulant only in certain orderings
of the vertices. An even number of nodes is a necessary
condition for a circulant graph to be bipartite. Otherwise it
would contain cycles of odd length.

D. Bipartite circulant graphs

The continuous-time quantum walk Hamiltonian matrix H

of a circulant graph is circulant for a general matrix polynomial
J (AH) as long as A is chosen circulant. Here we focus on
circulant graphs that are bipartite. Then their number of nodes
N is even (see Sec. II D). Their continuous-time quantum walk
Hamiltonian matrix H = [h0, . . . ,hN−1]c can be expressed as
a block structure after a change of basis H̄ = PHP T using

Pij =
{

1, if
(�2i/N	 − j + 2i

)
mod N = 0,

0, otherwise,
(10)

where i,j = 0, . . . ,N − 1 and �.	 denotes the floor function.
The following diagram illustrates the form of P for N = 8:

P (N = 8) ∼ , (11)

with the black squares indicating matrix elements Pij = 1. The
matrix H̄ decomposes into four equal-sized square blocks,

H̄ =
(

[h0 ,h2, . . . ,hN−2]c [h1,h3, . . . ,hN−1]c
[hN−1,h1, . . . ,hN−3]c [h0,h2, . . . ,hN−2]c

)
. (12)

Each block of H̄ is given by a circulant matrix with even- or
odd-indexed coefficients only. The even-indexed coefficients
are present on the block diagonal and the odd-indexed
coefficients on the block antidiagonal.

Therefore any circulant matrix C = [c0, . . . ,cN−1]c with
ci = 0 whenever i is even can be transformed into the form of
Eq. (8). If in addition ci ∈ {0,1} for all i odd then C viewed as
an adjacency matrix defines a bipartite circulant graph.

III. RESULTS AND DISCUSSION

A. Suppression of transport on bipartite graphs

In this section we present our main finding that complete
suppression of transport occurs at α = π/2 for any bipartite
graph.

Hamiltonians of the form of Eq. (6) are block diagonal at
α = π/2 if the graph is bipartite. This holds for any power

series or polynomial J (AH) = ∑N−1
n=0 jnA

n
H. For α = π/2,

AH(α = π/2) = i(A − AT ) is antisymmetric. It follows that
AT

H = −AH at α = π/2 and that odd powers of the Hermitian
adjacency matrix AH cancel in the Hamiltonian:

H (α = π/2) = J (AH) + J T (AH)

=
N−1∑
n=0

[
jnA

n
H + jn

(
AT

H

)n]

=
N−1∑
n=0

jn(1 + (−1)n)An
H

= 2j0I + 2Jeven(AH).

(13)

Here the notations Jeven(AH) = ∑
n≥1 j2nA

2n
H and I for the

identity matrix are introduced. For bipartite graphs and a
suitable node labeling, the adjacency matrix A(N×N) is block
antidiagonal and even powers of AH are block diagonal. As a
consequence H (α = π/2) is block diagonal. The state space
is therefore split into a sum of two subspaces. Probability
transport between the two subsystems (node partitions) is
completely suppressed. In physical terms, this corresponds to
two isolated subsystems that evolve independently in time.
Assuming that the phase α can be tuned experimentally
to α = π/2 (e.g., using magnetic fields), this opens a way
to continuously isolate two subsystems that are otherwise
strongly coupled.

B. Quantum walks on star graphs

In this section we apply quantum walks to directed and
undirected star graphs with N + 1 nodes. The adjacency
matrices of the directed and undirected star graphs are given
by

Adir
ij = δi0(1 − δj0) =

(
0 11×N

0N×1 0N×N

)
, (14)

Aundir = Adir + Adir,T =
(

0 11×N

1N×1 0N×N

)
, (15)

with matrix indices i,j = 0, . . . ,N and δij being the Kronecker
delta. The index 0 is assigned to the central node of degree N

and indices 1, . . . ,N are assigned to the peripheral nodes. Fo-
cusing on the directed star graph AH = Adireiα + Adir,T e−iα ,
one has

AH =

⎛
⎜⎜⎜⎝

0 eiα · · · eiα

e−iα 0 · · · 0
...

...
. . .

...
e−iα 0 · · · 0

⎞
⎟⎟⎟⎠, A2

H =

⎛
⎜⎜⎝

N 0 · · · 0
0 1 · · · 1
...

...
. . .

...
0 1 · · · 1

⎞
⎟⎟⎠.

(16)

Note that A2
H is not α dependent. For n ≥ 0, we find

A2n+1
H = NnAH, (17)

A
2(n+1)
H = NnA2

H. (18)
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Splitting J (AH ) into constant, even and odd functions of AH ,
one obtains

J (AH) = j0A
0
H + Jeven(AH) + Jodd(AH)

= j0I + Jeven(
√

N )

N
A2

H + Jodd(
√

N )√
N

AH, (19)

where Jeven and Jodd are even and odd functions of their
argument. Equation (19) reveals the general structure of the
α and N dependencies for any regular function J . The
Hamiltonian is

H = J + J T = 2j0I + 2

N
Jeven(

√
N )A2

H

+ 2 cos(α)√
N

Jodd(
√

N )AH(α = 0). (20)

This result expresses the Hamiltonian in terms of AH at
α = 0 and A2

H only, although the original definition contained
an arbitrary power series J (AH). It shows the α and N

dependencies explicitly, again for a general function J . An
α dependency is introduced only when J (AH) is not an
even function. At α = π/2, H is block diagonal since the
block antidiagonal term Jodd(AH) does not contribute. This
demonstrates complete suppression of transport because the
Hamiltonian in quantum mechanics is the generator of time
translations and a block-diagonal Hamiltonian only generates
state transitions within each state subspace.

To study the time dependence at finite t �= 0, we use a
specific exchange interaction J . We choose J = exp(AH) in
order to include all powers of AH [and, by Eq. (20), of

√
N ]

in a nontrivial manner. We find

j 0 = 1, (21)

Jeven(
√

N ) = cosh(
√

N ) − 1, (22)

Jodd(
√

N ) = sinh(
√

N ). (23)

The time evolution of the initial state 〈j |ψ(0)〉 = δj0 at t = 0
is evaluated by computing the matrix exponential Uj0(t) =
[exp (−iH t)]j0. The probability for the system to be in state
|i〉 at time t is

|〈i|ψ(t)〉|2 = |〈i|U (t)|ψ(0)〉|2 =
N∑

j=0

|Uij 〈j |ψ(0)〉|2 (24)

= |Ui0|2 =
{

1
2 (1 + cos ωt), i = 0,
1

2N
(1 − cos ωt), i = 1 . . . N,

(25)

where the oscillation frequency ω is

ω = 4 sinh(
√

N ) cos α. (26)

These results are valid for an arbitrary number of edges N .
Note that ω is α- and N -dependent. A variation in N causes
a reweighting of the probabilities of the external nodes shown
in Eq. (25) and also affects the oscillation frequency ω. The
reweighting of the external nodes is a consequence of the star
graph’s symmetry with respect to permutations of the external
nodes. The harmonic oscillation is then essentially the dynami-
cal behavior of a 2-node line graph, or equivalently a star graph

with N = 1. The sinh
√

N dependency of ω is a consequence
of the choice of J = exp (AH) = sinh (AH) + cosh (AH).

The results for the undirected star graph are again given by
Eq. (25), but with

ω = 8 sinh(
√

N ) cos α. (27)

The oscillation frequencies of the directed and undirected star
graph differ by a factor of two. Thus the time evolution on the
undirected star graph is twice as fast as on the directed star
graph.

At α = π/2, the oscillation frequency ω vanishes both for
the directed and undirected star graph [Eqs. (26) and (27),
respectively]. This implies a complete suppression of transport
as predicted in Sec. III A since all directed and undirected star
graphs are bipartite.

C. Quantum walks on bipartite circulant graphs

In this section we show that for circulant matrices, the
diagonalized Hamiltonian DH and time evolution operator DU

can be calculated analytically for a general matrix polynomial
J (AH), for a general phase α and a general number of nodes
N , because all N × N circulant matrices are diagonalizable
using the change of basis given in Eq. (9).

If the adjacency matrix A is circulant, then AT , AH, J , H ,
and U are circulant as well. Thus DH = S∗HS is diagonal and
gives the spectrum of the quantum system. Diagonalizing AH

one obtains

[DAH (α)]mm = 2
N−1∑
k=0

ak cos

(
α − 2πmk

N

)
, (28)

where the ak denote the entries of the first row of the circulant
adjacency matrix A. For circulant matrices a diagonalization
of the identity AT

H(α) = AH(−α) [from Eq. (2)] results in
DAT

H
(α) = DAH (−α). Using this, the diagonal matrix DH is

obtained as

DH = S∗HS = J (DAH (α)) + J (DAH (−α)). (29)

The time evolution operator is calculated using

U = e−iH t = S exp(−iDHt)S∗. (30)

This form uses only two matrix multiplications and is therefore
rather efficient for numerical simulations. Equations (1) and (7)
then compute the quantum walk P (i,t).

D. Simulations of quantum walks on bipartite
circulant graphs

The dynamical behavior of a single node in a quantum walk
on the undirected ring graph has been studied before [20,21].
Some insight into quantum walks on circulant graphs is found
by visually inspecting numerical simulations. In the following
we simulate the time and α dependencies of the probability
flow P (i,t) for all graph nodes, varying the parameter α

between zero and π/2. In Sec. III E several characteristics of
these simulated quantum walks are explained using analytic
methods.

We study two types of bipartite circulant graphs: ring
graphs and directed Möbius ladder graphs. Möbius ladder
graphs can be characterized as ring graphs of even length with
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(a) (b) (c) (d)

FIG. 1. Bipartite circulant graphs with N = 10 nodes. The two node types correspond to the graph’s node partitions. The Möbius ladder
graphs (c) and (d) are bipartite if N/2 is odd. Continuous-time quantum walks on ring graphs corresponding to (a) and (b) with N = 200 nodes
are shown in Fig. 2. Walks on Möbius ladder graphs (c) and (d) with N = 202 nodes are shown in Fig. 3.

additional edges connecting every node with the diametrically
opposite one [22] (see Fig. 1). They are bipartite only if N/2
is odd.

Continuous-time quantum walks on circulant graphs start-
ing from a uniform initial state are stationary. Therefore we
choose an initial state that is fully localized on one node,
|i,t = 0〉 = δi,100. We use natural units, time being measured
in units of 1 eV−1. J is chosen as J = exp AH in units of eV/�,
and the number of nodes is set to N = 200 and N = 202.
Experiments not shown in this paper confirm the general
property of circulant Hamiltonians that the behavior of the
system does not qualitatively depend on N , except for scaling
effects due to different cycle lengths.

1. Directed and undirected ring graphs

Figure 2 shows the continuous-time quantum walk on the
directed (upper row) and undirected (lower row) ring graph.
The corresponding graphs are illustrated in Fig. 1(a) and
Fig. 1(b), respectively, but with N = 10 nodes for sake of
clarity.

A series of oscillating waves leaves the initial probability
concentration at i0 = 100 in a first wave front. Both for
the directed and undirected rings [Figs. 2(a) and 2(b)] their
velocities decrease from α = 0 to α = π/4, where they travel
around half of the ring in 9 eV−1 to 17 eV−1. For the directed
ring, the velocity continues to decrease from α = π/4 to
α = π/2 at a lower rate. In the case of the undirected ring

α = 0 α = π/4 α = π/2

(a)

(b)

FIG. 2. Time evolution of the quantum walk on a directed ring (a) and an undirected ring (b) for different values of the phase α = 0 (left
column), α = π/4 (middle column), and α = π/2 (right column). Both rings have N = 200 nodes. At t = 0, the quantum walk is started at
node i0 = 100.
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α = 0 α = π/4 α = π/2

(c)

(d)

FIG. 3. Time evolution of quantum walks on directed and undirected Möbius ladder graphs as shown in Figs. 1(c) and 1(d), but with
N = 202 nodes. The walks start at node i0 = 100. The values of the phase α are α = 0 (left column), α = π/4 (middle column), and α = π/2
(right column).

in Fig. 2(b), propagation continuously slows down and comes
to a complete stop at α = π/2.

At α = 0, for both the directed and undirected rings most
of the probability stays around node i0 = 100. For the directed
ring, the central probability concentration at node i0 = 100
is less pronounced and disperses in a secondary wave front
for α � π/4. Its propagation velocity reaches its maximum
at α = π/2 where it equals the propagation velocity of the
first wave front. The suppression of transport is visible [in
Fig. 2(a), right panel] as horizontal dark lines interrupting the
wave front and corresponding to a probability value of zero on
all the odd-valued node indices, P (i odd,t) = 0. The features
described here are discussed further in Sec. III E.

2. Möbius ladder graphs

Figure 3 shows the continuous-time quantum walk on
Möbius ladder graphs as shown in Fig. 1(c) and Fig. 1(d),
but with N = 202 nodes. They differ from the ring graphs by
the presence of additional links i → i + N/2. These walks are
similar to the ones on ring graphs (see Fig. 2), but with notable
differences. The probability concentration around i0 = 100
and the first wave front can be observed for both graphs.
For α �= π/2, the links i → i + N/2 lead to probability wave
fronts and a central beam based around the opposite node at
index i = 201. The propagation of the first wave front around
the ring proceeds much faster, with the wave front reaching
the opposite node at α = 0, α = π/4, and α = π/2 in 1 eV−1,
4 eV−1, and 19 eV−1 for the directed outer ring, and at α = 0,
α = π/4 in 6 eV−1 and 12 eV−1 for the undirected outer
ring, respectively. The wave fronts slow down as α is varied

from 0 to π/2, but the effect is much more pronounced for
the directed outer ring [Fig. 3(c)] than for the directed ring
graph of Fig. 2(a). Near α = π/2, the slow propagation of the
directed ring is reached. The split of the central beam into a
secondary wavefront can be seen for the directed outer ring
[Fig. 3(c)], but at α = π/4 its velocity is much slower than for
the directed ring [Fig. 2(a)]. As in the case of the directed ring
graph the interference of the first and the second wave front
leaving the initial node happens at α = π/2 where a complete
suppression of transport occurs. For the undirected outer ring
[Fig. 3(d)] the continuous-time quantum walk does not leave
the initial node.

E. Analytic results on quantum walks on bipartite
circulant graphs

The continuous-time quantum walks on circulant graphs
discussed in the previous section show a rich set of features.
We explain some of them based on analytic arguments and state
the class of directed quantum walks onto which our reasoning
extends.

1. Suppression of transport due to bipartitivity

At α = π/2, quantum walks on all the circulant graphs
(a)–(d) discussed in Sec. III D show a suppression of transport.
If the initial state is localized on the node partition labeled
by even indices this suppression of transport takes the form
P (i,t) = 0 ∀t if i is odd. It is due to our main result that
all bipartite graphs show a suppression of transport (see
Sec. III A) and the fact that the graphs (a)–(d) are bipartite.
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This fact is established in Sec. II D where it was shown that
if the adjacency matrix of a circulant graph has the form
A = [0,a1,0, . . . ,aN−1]c, then the graph is bipartite. All graphs
in Fig. 1 are of this form, and their Hamiltonians H will
therefore exhibit complete suppression of transport at α = π/2
for any polynomial J (AH).

2. Trivial time evolution for quantum walks
on symmetric graphs and edges

The graphs (b) and (d) in Fig. 1 are symmetric graphs.
Their quantum walks stop evolving at α = π/2, i.e.,
P (i,t) = P (i,t0)∀t [see Figs. 2(b) and 3(d)]. This is due
to AH(α = π/2) = i(A − AT ) = 0 because the adjacency
matrix A = AT is symmetric. The Hamiltonian therefore is
diagonal, H (α = π/2) = 2J (0) = 2j0. The state evolution
is |ψ,t〉 = exp [−2ij0(t − t0)]|ψ,t0〉 and the quantum walk
P (i,t) = |〈i|e−2ij0(t−t0)|i〉|2 = P (i,t0) evolves trivially.

The expression AH(α = π/2) = i(A − AT ) holds gener-
ally and offers insight into why the quantum walk of Fig. 2(a)
is identical to the one in Fig. 3(c). Quantum walks at α = π/2
depend via H (AH) on A − AT only and not on A and AT

separately. A symmetric edge between nodes i and j has
Aij = Aji = 1 and therefore AH(α = π/2) and H (AH) do not
depend on it. Thus the two quantum walks are exactly equal.

Suppression of transport also occurs for non-bipartite
graphs if all edges linking nodes within a partition are
undirected. These edges cancel in AH(α = π/2), leaving
a continuous-time quantum walk on a bipartite graph that
exhibits complete suppression of transport. An example is a
directed ring graph with N = 4n for any integer n and with
additional undirected edges linking opposite nodes.

3. Periodicity in the complex phase

Figures 2 and 3 show quantum walks for α = 0, π/4, and
π/2 only because apart from the trivial 2π periodicity, their
α dependence has mirror symmetries around α = 0 and π/2.
We prove the mirror symmetry around α = 0 to be exact for
all directed quantum walks with Hamiltonians of the form
H = J (AH) + J T (AH), i.e., for any node i and time t and for
all coupling functions J (AH). The mirror symmetry around
α = π/2 holds for a large class of quantum walks on bipartite
circulant graphs as specified below.

Denote by Pα(i,t) the explicit α dependence of the quantum
walk P (i,t). Let �α denote the deviation of α from π/2 by
defining α± = π/2 ± �α. In this notation the symmetries to
be shown read

Pα(i,t) = P−α(i,t) ∀α,i,t, (31)

Pα+ (i,t) = Pα− (i,t) ∀�α,i,t. (32)

It follows that any quantum walk Pα(i,t) with these symmetries
has a period of (at most) π in α and that by defining it on an
interval of length π/2 the symmetries extend the definition to
all real values of α.

Equation (31) is shown by noting that by Eq. (2) it holds that
AT

H(α) = AH(−α) and consequently we have H (α) = J (α) +
J (−α). From this the mirror symmetries H (α) = H (−α) and
Eq. (31) follow immediately.

To prove Eq. (32), let A = [a0, . . . ,aN−1]c be the circulant
adjacency matrix of a graph with ai = 0 ∀i even, and let N be
even. Then the graph is bipartite due to the results of Sec. II D.
In Appendix A we derive a mirror symmetry in α between
energy levels. It reads

[DH(α+)]mm = [DH(α−)]m± N
2 ,m± N

2
(33)

with the plus-minus signs suitably chosen such that the matrix
indices lie in the range 0, . . . ,N − 1. Using Eqs. (9), (29),
and (30), Eq. (33) is written in the form

H (α+)ij = (−1)i+jH (α−)ij . (34)

For U = exp (−iH t) it follows that

U (α+)ij = (−1)i+jU (α−)ij . (35)

Details are given as in Appendix A. If we now consider an
initial state |ψeven〉 that is localized on even sites only (such
that 〈i|ψeven,t = 0〉 = 0 for all odd i) we find 〈i|ψeven,t〉α− =
(−1)i〈i|ψeven,t〉α+ . Therefore the two quantum walks with
phases α+ and α− are identical:

|〈i|ψeven,t〉α−|2 = ∣∣〈i∣∣ψeven
0 ,t

〉
α+

∣∣2
or (36)

Pπ
2 −�α(i,t) = Pπ

2 +�α(i,t) ∀�α,i,t. (37)

Equations (36) and (37) show the mirror symmetry of quantum
walks on bipartite circulant graphs in α around α = π/2.

4. Graph-locality of the quantum walk and constancy
of the speed of propagation

In the quantum walks discussed in Figs. 2 and 3, shortly
after t = 0 the probability distribution P (i,t � 1) is mostly
localized around node i0 = 100. Nodes at a certain geodesic
graph distance from i0 are only weakly excited before a wave of
significant probability amplitude reaches it. The wave travels
at a constant group velocity.

The constancy of these propagation velocities is an im-
mediate consequence of the circularity of the graph: by
cyclic permutation invariance all nodes react equally to being
excited and pass on excitations at the same rate. The cyclic
permutation symmetry i → i + �i of the graph is broken
by the localized initial state, but the mirror symmetry HT =
H is retained which dictates P (i0 + i,t) = P (i0 − i,t) ∀i =
0, . . . ,N − 1,∀t with all index computations to be taken
modulo N .

The locality in excitation propagation is not expected to be
a general feature but depends on the coupling function J (AH).
It holds for J (AH) = ∑

p jpA
p

H which have coefficients jp that
decay quickly with p. We show that in this case the Hamil-
tonian is nonzero mainly along or near the diagonal. Thus
localized wave functions 〈i|ψ,t〉 = δi,i0 mainly propagate into
their local neighborhood.

We show this for the directed ring graph by computing
H = SDHS∗ for a general matrix polynomial J (AH):

Hmn = 2 cos [(m − n)α]
N∑

p=1

jp

p∑
k=0

(
p

k

)
δ2k,m−n+p. (38)

Details are given in Appendix B. For jp = 1
p! , i.e., J (AH) =

exp (AH), Eq. (38) contains the binomial factor jp

(
p

k

) =
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BEAT TÖDTLI et al. PHYSICAL REVIEW A 94, 052338 (2016)

1
k!(p−k)! that peaks at k = p/2 (for p even). The estimate
k ∼ p/2 implies m ∼ n due to the Kronecker delta factor
δ2k,m−n+p in Eq. (38). The elements Hmn are therefore largest
near the matrix diagonal. The Hamiltonian H is broadly
diagonal, with the magnitude of its matrix elements declining
with a growing distance |m − n| from the diagonal.

Focusing on jp = δp1, i.e., J (AH) = AH, the Hamiltonian
simplifies to

Hmn = 2(δm,n−1 + δm,n+1) cos α, (39)

H = 2(A + AT ) cos α, (40)

with A = [0,1,0, . . . ,0]c, indicating that the quantum walk is
strictly local. For a localized initial state, only the neighboring
nodes are affected at any given time. Higher powers of AH

(larger p) contribute in a less local way. In a qualitative way
this can be understood from the fact [23] that classically, the
pth power of the adjacency matrix [Ap]ij describes the total
number of paths of length p from node j to node i.

IV. CONCLUSIONS AND OUTLOOK

We studied continuous-time quantum walks on directed
bipartite graphs by setting up an XY spin model whose
exchange interaction depends on the adjacency matrix of the
graph, while Hermiticity of the Hamiltonian was ensured
by introducing a single complex phase α. We prove that
complete suppression of transport occurs at α = π/2 for all
such quantum walks on any bipartite graph. Our results show
that the complex phase α provides a switch to isolate the two
node partitions from each other and to switch undirected edges
on and off. This switch is available for bipartite graphs with
an arbitrary topology and number of nodes N .

We provide analytical results for quantum walks on two
classes of graphs, star graphs and circulant graphs. Star
graphs are sufficiently simple for the analytic solution of
their quantum walks to provide a rather complete picture.
Our analytical results on circulant graphs give access to their
accurate numerical simulation.

Simulations of walks on circulant graphs reveal a rich
dynamical structure. The suppression of bidirected edges and
the mirror symmetries and periodicity in their α dependence
are discussed in a rigorous manner. The degree to which some
walks are local is analyzed on the ring. Further phenomena
remain to be investigated such as the secondary wave front
visible at α � π/4, its velocity and interference with the
fastest-traveling wave precisely at α = π/2, and the degree
to which the probability accumulation remains concentrated
around the initial node.

The influence of the graph structure and its directionality
and of the complex phase α and coupling function J (AH) on
quantum walks as well as interference effects due to nonlocal
initial states need to be investigated further. Progress in this
direction is needed in order to facilitate the engineering of
directed quantum walks according to predefined goals and
experimental constraints.

APPENDIX A: DERIVATION OF EQUATIONS (33)–(35)

Let N be an even positive integer and A a circulant N × N -
matrix of the form

A = [0,a1,0,a3, . . . ,0,aN−1]c. (A1)

Then AH(α) and H (AH) in Eq. (6) are also circulant. Let
DH = S∗HS denote the diagonal matrix obtained using the
unitary change of basis given by Eq. (9), and α± = π/2 ± �α.
Equation (33) states that for any value of �α,

[DH(α+)]m,m = [DH(α−)]m+ N
2 ,m+ N

2
(A2)

with the indices m + N/2 understood to be taken modulo N , as
in all subsequent expressions. This is shown by diagonalizing
Eq. (6) and establishing the identity

[DAH (±α+)]m,m = [DAH (∓α−)]m+ N
2 ,m+ N

2
. (A3)

From Eq. (28) we see that

[DAH (±α+)]m,m = 2
N−1∑
k=0

ak cos

(
±α+ − 2πmk

N

)
, (A4)

= 2
N−1∑
k = 0
k odd

ak cos

(
±α+ − 2π

(
m + N

2

)
k

N
+ πk

)
. (A5)

The summation is restricted because by Eq. (A1), ak = 0
whenever k is even. Since k is odd, we substitute πk → ∓π in
the third term since the difference is a multiple of 2π . Noticing
that ±α+ ∓ π = ∓α− one obtains

[DAH (±α+)]m,m = 2
N−1∑
k=0

ak cos

(
∓α− − 2π

(
m + N

2

)
k

N

)

= [DAH (∓α−)]m+ N
2 ,m+ N

2
. (A6)

The last equality is due to Eq. (28). This establishes Eq. (A3).
Equation (A2) is then obtained by diagonalizing Eq. (6) and

using AT
H(α) = AH(−α),

DH(α±) = J
(
DAH (α±)

) + J
(
DAT

H
(α±)

)
(A7)

= J
(
DAH (α±)

) + J
(
DAH (−α±)

)
. (A8)

Switching to component notation we have

[DH(α−)]m+ N
2 ,m+ N

2
= J

([
DAH (α−)

]
m+ N

2 ,m+ N
2

)
+ J

([
DAH (−α−)

]
m+ N

2 ,m+ N
2

)
,(A9)

and using Eq. (A3)

[DH(α+)]m,m = J
([

DAH (α+)
]
m,m

) + J
([

DAH (−α+)
]
m,m

)
= J

([
DAH (−α−)

]
m+ N

2 ,m+ N
2

)
+ J

([
DAH (α−)

]
m+ N

2 ,m+ N
2

)
. (A10)

The two right-hand sides of Eqs. (A9) and (A10) are equal,
which proves Eq. (A2).

By transforming Eq. (A2) back into a relation between
the circulant Hamiltonians one proves Eqs. (34) and (35).
Applying H = SDHS∗ and using Smn = (−1)mSm,n+N/2 one
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obtains

Hmn(α+) =
N−1∑
k=0

SmkDH[(α+)]kkS
∗
kn (A11)

=
N−1∑
k=0

(−1)m+nSm,k+ N
2
DH[(α−)]k+ N

2 ,k+ N
2
S∗

k+ N
2 ,n

,

=
N−1∑
k=0

(−1)m+nSmkDH[(α−)]kkS
∗
kn, (A12)

= (−1)m+nHmn(α−). (A13)

This relation also holds for products of Hamiltonians, e.g.,

[H 2(α+)]mn = (−1)m+n[H 2(α−)]mn (A14)

and therefore it also holds for the time evolution operator
U = exp(−iH t).

APPENDIX B: COMPUTATION OF THE RING
HAMILTONIAN

We compute the Hamiltonian matrix H = SDHS∗
explicitly for the directed ring graph with adjacency matrix
A = [0,1,0, . . . ,0]c. The diagonalized Hamiltonian is given
by Eq. (29) and DAH (α) is computed using Eq. (28). Denoting
xm = 2πm

N
for brevity we have

[
DAH

]
mm

= 2 cos(α − xm)

= exp[i(α − xm)] + exp[i(xm − α)],

and by Eq. (29) we find

NHmn = N

N−1∑
l=0

Sml[Dll]HS∗
ln

=
N−1∑
l=0

N∑
p=1

jp

p∑
k=0

[(ei(α−xl ) + e−i(α−xl ))p

+ (ei(−α−xl ) + e−i(−α−xl ))p]SmlS
∗
ln

=
N−1∑
l=0

N∑
p=1

jp

p∑
k=0

(
p

k

)
[ei(α−xl )ke−i(α−xl )(p−k)

+e−i(α+xl )kei(α+xl )(p−k)]eixl (m−n)

=
N−1∑
l=0

N∑
p=1

jp

p∑
k=0

(
p

k

)
eixl (−2k+m−n+p)[eiα(2k−p)

+e−iα(2k−p)]

=
N∑

p=1

jp

p∑
k=0

(
p

k

)
2 cos[α(2k − p)]

N−1∑
l=0

eixl (m−n+p−2k).

Performing the l sum using
∑N−1

l=0 eixl (m−n) = Nδmn we
obtain Eq. (38):

Hmn =
N∑

p=1

jp

p∑
k=0

(
p

k

)
δ2k,m−n+p2 cos [α(2k − p)]

= 2 cos [(m − n)α]
N∑

p=1

jp

p∑
k=0

(
p

k

)
δ2k,m−n+p.

Clearly, m − n + p is even for terms that contribute to Hmn.
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