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We theoretically investigate the implementation of a quantum controlled-PHASE gate in a system constituted
by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we
show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control
field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a
controlled-PHASE gate between two single photons. To this end, first one needs to store a (control) photon in
the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system.
Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different
phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon
stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled
states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of
quantum controlled-PHASE gates using the recent technologies. In particular, we have found a lower bound for the
cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The
induced shift on the phase of a photonic qubit and the controlled-PHASE gate between single photons, combined
with optical devices, enable one to perform universal quantum computation.
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I. INTRODUCTION

Optical systems are promising candidates for numerous
applications in quantum information processing. In this con-
text, single atoms trapped inside optical resonators integrates a
system in which the light-matter coupling can be significantly
enhanced, offering the feasibility to control and manipulate its
optical properties with a few photons [1,2].

Photonic qubits have the great advantage to carry infor-
mation over long distances being robust to the decoherence
process [3]. Thus optical architectures have been potentially
used to implement a variety of quantum devices, such as optical
transistor [4], quantum network [5], quantum memory [6],
and to implement quantum logic operations on one or two
qubits [7–9]. A fundamental element for these applications in
the field of quantum information and quantum computation is
the conditional quantum dynamics, where the quantum state
of a system can control the measurement result of another
quantum system. In this sense, as single photons do not interact
naturally, it becomes necessary for a medium to intermediate
such interaction.

Atomic systems coupled to optical cavities are ideal
environments in which photonic and atomic states can be
coherently manipulated. Nonlinear optical effects as electro-
magnetically induced transparency (EIT) have been experi-
mentally demonstrated in these systems [10]. In the cavity-EIT
phenomenon an external control field can establish efficiently
quantum destructive interference, causing significant changes
on the optical properties of the medium and allowing it to be
used to enhance expressively the interaction between photons
[11,12]. Besides that, in the context of quantum information
processing, cavity-EIT has a key role in the implementation of
quantum memory and optical transistor [13,14]. The storage
of quantum information encoded in a photonic qubit into a
single atom trapped in a cavity has already been realized
experimentally and investigated theoretically in several works
[15,16]. Also based on cavity-EIT effect, Chen et al. [17]

demonstrated the realization of an all-optical transistor with
an atomic ensemble.

Candidate systems for quantum information processing
must satisfy some basic requirements, among others are the
capability to perform controlled logic gates and arbitrary
rotations on one qubit. For instance, two-qubit quantum
gates present the advantage of generating entangled states.
Several schemes using atoms coupled to optical cavities
have been proposed to perform quantum logic operations
[18–20]. Reiserer et al. [21] demonstrated experimentally
the realization of a controlled-PHASE gate between the spin
state of a single 87Rb atom and the polarization state of a
photon. The atom-photon quantum gate is performed in the
strong-coupling regime of the atom-cavity system (i.e., when
the atom-field coupling is much stronger than the atomic and
cavity dissipation rates), providing the possibility to generate
entanglement between atom-photon and between atom and
two photons. Several theoretical schemes using the atom-
cavity system have presented different ways to implement
controlled quantum operations. Waks and Vuckovic proposed
a theoretical scheme in which an external waveguide field
may have its phase shifted by π , in a system composed by a
single-sided cavity containing a dipole [22]. In their model the
dipole is a cascade three-level system and the nonlinear phase
shift is induced by a strong optical Stark shift between one
of the transitions. Quantum gates as controlled-NOT, Toffoli,
and controlled-PHASE flip were theoretically investigated for
atom-photon in different coupling regimes with optical cavities
[23–25]. In this sense, the atom-cavity system assisted by
external fields constitutes a fundamental building block, where
it is possible to investigate nonlinear optical effects, to generate
entangled states and to perform all the tasks and quantum
operations necessary for the realization of universal quantum
computation.

Here we investigate theoretically three schemes for the im-
plementation of quantum controlled-PHASE gates in a physical
system constituted by a single trapped atom inside an optical

2469-9926/2016/94(5)/052337(7) 052337-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.052337


HALYNE S. BORGES AND CELSO J. VILLAS-BÔAS PHYSICAL REVIEW A 94, 052337 (2016)

cavity. The atomic system can be modeled by a three-level
atom in a �-level configuration. The key mechanism for the
controlled-PHASE gate implementation is the cavity-EIT effect,
i.e., a phase shift of π can be imprinted on the probe field
(target qubit) in the strong-coupling regime, if the classical
control field is on or off. It happens because the phase of the
input field experiences π phase shift when it is immediately
reflected (which can happen when the classical control field is
off) but there is no change in the phase of the input field
when it enters and then is transmitted by the cavity. This
last situation can happen in the cavity-EIT regime, when the
classical control field is on, making the atom-cavity system
transparent to the probe field. Here, first we demonstrated that
based on cavity-EIT effect, the control field, described in our
model as a classical field, can induce a phase on the probe field.
We analyze the set of parameters the controlled-PHASE gate
can be implemented for a classical probe field or considering
a single photon. Combining a quantum memory process based
on cavity-EIT effect and the basic mechanism of the phase shift
induced due to reflection of the input light, we also investigate
the implementation of a quantum logic gate between two
single photons. In this case, a control photon is stored into
atomic states and, depending on the coupling strength between
atom-cavity, the controlled-PHASE gate is efficiently performed
on the target photon (probe pulse). Here we discuss the
performance of the controlled-PHASE gates as a function of the
system parameters and we show that there is a lower bound for
the cooperativity of the atom-cavity system which allows the
implementation of the photon-photon controlled-PHASE gate.

The paper is organized as follows. In Sec. II we discuss
the physical system and model. Section III is devoted to
show the implementation of the quantum controlled-PHASE

gate considering a classical probe field and single photons.
We also analyze the performance of the controlled-PHASE gate
as a function of the system parameters. Section IV presents
concluding remarks.

II. THEORY AND MODEL

Here we investigate the implementation of the quantum
controlled-PHASE gate in different ways considering a system
composed by a three-level atom in a �-configuration, inside
a single-sided optical cavity. The ground |1〉 and excited |3〉
atomic states (transition frequency ω31) are coupled by the
cavity mode (frequency ω), with g representing such atom-
field coupling (single-photon Rabi frequency). The levels |2〉
and |3〉 (transition frequency ω32) are coupled by a classical
control field (frequency ωC) with Rabi frequency �C . As the
maximum efficiencies for our quantum gates happen for the
resonant case, throughout this work we assume ω31 = ω and
ω32 = ωC . The single-sided cavity configuration denotes a
cavity in which one of its mirror is perfectly reflective, while
the other one has non-null transmission coefficient. In this way,
the incident field can only enter and exit by one side of the
cavity. In our model this setup corresponds to the condition
where κA � κB , with κA and κB being the cavity-field decay
rates associated to each one of the cavity mirrors (in the ideal
situation κB = 0).

Considering the rotating wave approximation, the Hamilto-
nian that describes the atom-cavity system under the incidence

of the control and the probe fields (without temporal depen-
dency) is given in the interaction picture by (� = 1) [14]

HI = �(σ11 − a†a) + (εa + gaσ31 + �Cσ32 + H.c.), (1)

where � = ωP − ω represents the detuning between the cavity
mode and the probe field (ωP ) frequencies. The atomic
operators are represented by σkl = |k〉〈l| (k,l = 1,2,3) and
H.c. stands for Hermitian conjugate. The operators a and a†

are associated to the internal cavity mode. The pumping on the
cavity through the probe laser is represented by the strength
ε. In relation to the atom-cavity coupling g, it is important to
point out that we do not take into account oscillations of the
atom in the cavity, considering in all our results a constant
coupling g.

Our main goal in this paper is to investigate theoretically
the implementation of a quantum logic gate where a field
induces a phase shift of π on another one. Thus, considering the
atom-cavity system under the incidence of a classical control
field, we show the implementation of a quantum gate for three
different situations, i.e., when (i) the probe and control fields
are treated classically, (ii) the control field is classical while
the probe field is a single photon with its temporal shape
described by a Gaussian pulse, and (iii) a target photon has
its phase changed by an amount of π if a control photon is
successfully stored into the atomic states. In the last case,
as it will be explained later, the classical control field has a
suitable temporal shape which ensures the memory process
has efficiency close to 100% [16].

The master equation that governs the dynamics of the atom-
cavity system is given by

dρ

dt
= −i[HI ,ρ] + κ(2aρa† − a†aρ − ρa†a)

+
∑
i=1,2

�3i(2σi3ρσ3i − σ3iσi3ρ − ρσ3iσi3), (2)

with κ = κA + κB being the total decay rate of the cavity field,
and �32 and �31 the polarization decay rates of the excited
level to levels |2〉 and |1〉, respectively.

Equation (2) provides the dynamics of the internal cavity
mode, represented by the annihilation operator a(t), which
is related to the external mode operators by the input-output
expression:

aout(t) =
√

2κAa(t) − ain(t), (3)

where the operators ain and aout describe the incoming and
outgoing fields, respectively, for a single-sided cavity whose
field decays at a rate κA. We compute the phase of the outgoing
mode field aout simply by

〈aout〉 = eiφ|〈aout〉|, (4)

with φ being the phase acquired by the field after having been
reflected or transmitted by the cavity.

In all these cases, the key ingredient for the gate implemen-
tation is the cavity-EIT effect. As it is well known, under the
EIT regime, |g〈a〉max| � |�C |, with 〈a〉max = ε/(� − iκA),
the atom-cavity system is transparent to the probe laser when
it is resonant with the cavity mode (� = 0). In this way, when
the input field impinges on the cavity mirror it can enter into
the resonator and then it will be transmitted. On the other hand,
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FIG. 1. (a) Configuration of energy atomic levels and relevant
Hamiltonian parameters. (b) Schematic representation of the imple-
mentation of the quantum controlled-PHASE gate.

if the external control field is off and the atom is in the ground
state |1〉, the input pulse is directly reflected due to the normal
mode splitting of the atom-cavity system, thus enabling the
implementation of the quantum controlled-PHASE gate [21].

III. RESULTS

First we analyze the phase shift induced by a control
laser on a continuous coherent probe field. Considering the
atom-cavity system in the single-sided configuration described
in the previous section, if the classical control field is turned
off, only the atomic levels |1〉 and |3〉 take part in the dynamics,
reducing the system to a two-level atom-cavity one (in this case
we assume the characteristic times and intensity of the probe
field such that the atomic decay from |3〉 to |2〉 does not play an
important role in the dynamics of the system). Thus, according
to the Jaynes-Cummings model, in the strong-coupling regime
(g � κ,�31) the resonant photons (� = 0) that impinge onto
the system do not enter the cavity. This happens due to the
normal mode splitting caused by the atom-cavity coupling.
Then, the probe laser that is resonant with the transition
|1〉 ↔ |3〉 and with the cavity mode is directly reflected by
the left mirror, acquiring a π phase shift. Conversely, if the
control laser couples resonantly the |2〉 ↔ |3〉 transition, the
probe laser enters the cavity. As we are in the EIT condition,
the field is not absorbed by the atom and then is transmitted
without experiencing any change in its phase. Therefore, in this
experimental setup, the control laser has an important role to
induce a phase difference between the reflected and transmitted
fields, such that  = φ(�C = 0) − φ(�C �= 0) = π , when the
probe laser is resonant with the cavity mode. Figure 1(a) shows
the diagram of atomic levels and Fig. 1(b) shows a schematic
representation of the implementation of the controlled-PHASE

gate with a classical field (control field) inducing a π phase
shift in another field.

In the Hamiltonian system the pumping on the cavity is
represented by the parameter ε. The connection between the
master equation formalism and the input-output theory is given
by the relation ε = −i

√
κA〈ain〉 for a coherent driving field.

Considering a weak coherent probe field ε =
√

10−2κ , we
plot in Fig. 2(a) the acquired phase φ by the probe field, in
π units as function of the detuning �, when the control laser
is turned off (dotted black line) and when the system is in
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FIG. 2. (a) Acquired probe laser phase in π units, as function
of �/κ , considering �C = 0 (dotted black line) and �C = 3κ

(dashed red line). (b) Phase shift [ = φ(�c = 0) − φ(�c �= 0)] of
the probe laser (solid blue line) and the normalized mean number
of photons inside the cavity for �C = 3κ (dashed red line) and
for �C = 0 (dotted black line). The parameters used here were
�31 = �32 = 0.6κ, g = 5.0κ , and ε = √

10−2κ .

the cavity-EIT regime (dashed red line), considering a strong-
coupling regime g = 5κ and �31 = �32 = 0.6κ . In panel 2(b)
are plotted the phase difference  = φ(�C = 0) − φ(�C �= 0)
induced by the classical control field (solid blue line) and
the normalized mean number of photons inside the cavity
(〈a†a〉N ), for �C = 3κ (dashed red line) and �C = 0 (dotted
black line). When the classical control field is off (�C = 0),
the atom-cavity coupling makes the splitting of the normal
modes of the system, resulting in two peaks in the transmission
spectrum. This signature of the atom-cavity coupling can also
be observed in Fig. 2(a), where probe field phase is abruptly
changed at � ≈ ±g. As mentioned previously, for �C = 0
and � = 0 the probe field is directly reflected experiencing a
conditional phase shift of π . Under these conditions φ(�C =
0) = π . In the EIT regime (�C = 3κ) the probe field, at � = 0,
enters the cavity and then is transmitted, without changing
its phase, such that φ(�C �= 0) = 0. In this way, when the
probe laser is resonant with the cavity mode, the phase shift
is exactly  = π . In Fig. 2(b) the EIT regime and absorption
regions due to the mode splitting can be clearly evidenced
in the regions around � = 0 and � ≈ ±g, respectively. In
the regions around the normal mode splitting we also can
see a phase difference of the order of π , but in this case
the acquired phase is followed by a strong atomic absorption
of the probe field, thus not preserving the initial probe field
properties. It is important to mention that measurements of the
field intensity in this setup cannot distinguish the reflected and
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transmitted fields, since they are detected on the same side of
the cavity. For this reason, one way to properly observe the
EIT phenomenon signature in a one-sided cavity system could
be through phase measurements instead of the usual spectrum
transmission measurements [10].

Controlled- PHASE gate for single photons. Considering the
same principle of phase shift in a classical probe field induced
by the classical control field, now we analyze the implemen-
tation of the controlled-PHASE gate for single photons. Unlike
the situation described previously, the probe field incoming to
the cavity is a single photon with its amplitude written as a
wave packet given, without loss of generality, by the Gaussian
temporal shape:

αin(t) = Cne
− 1

2
(t−t0)2

η2 , (5)

where its full width at half maximum (FWHM) is given
by FWHM = 2η

√
2 ln(2). The multiplicative factor Cn =

(
√

πη)−1/2 ensures that the Gaussian function is normalized,
such that

∫ |αin(t)|2dt = 1. t0 is the time the pulse (its
maximum) enters the cavity.

Due to the atom-cavity coupling, the incidence of the
external control field, and probe field with at most one
single photon, the states of our system can be described in
terms of product states of the bare atomic and cavity field
states: |1,0〉, |1,1〉, |2,0〉, and |3,0〉 (where the first and second
indexes refer to atom and cavity field, respectively). In fact,
considering the same procedure used in [16], the evolution of
the probability amplitudes of the state vector written in the
basis above is given by the following system of equations:
⎛
⎜⎜⎜⎝

ċ1,0

ċ1,1

ċ2,0

ċ3,0

αout

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 κA 0 0 0
0 −κA −ig

√
2κA

0 0 0 −i�C 0
0 −ig −i�C −�3 0
0

√
2κA 0 0 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c1,0

c1,1

c2,0

c3,0

αin

⎞
⎟⎟⎟⎠,

(6)

where �3 = �31 + �32 is the total decay rate of the excited
state |3〉. In this description the temporal evolution of the
amplitude of the internal cavity mode is provided by c1,0(t) and
ci,j (t) (with i = 1,2,3 and j = 0,1) the amplitude coefficients
associated to other atom-cavity states |i,j 〉.

Through the equations system (6) we are able to obtain the
dynamics of the output field αout and to examine the phase
shift acquired by a single photon after interacting with the
atom-cavity system as a function of the system parameters.
In our simulation we consider as the initial state |ψi〉 = |1,0〉.
In Fig. 3 is plotted the amplitude of the output mode αout

normalized by the maximum amplitude of the input pulse as a
function of time, for different values of the �C . The solid black
line represents the normalized input pulse. The parameters of
the probe pulse considered for these results were t0 = 4 μs
and FWHM = 1.0 μs.

As we are interested in the implementation and optimization
of the controlled-PHASE gate for the atom-cavity system based
on cavity-EIT effect, we consider the probe pulse on resonance
with the cavity mode (� = 0). For strong atom-field coupling
regime, when the classical control field is off the probe pulse
is directly reflected without entering the cavity, as can be seen
in Fig. 3 (dotted-dashed gray line). In this case, the outgoing
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FIG. 3. Normalized amplitudes of the input pulse αin (black solid
line) and the output field αout as function of time for different values
of classical control field intensity: �C = 0 (dotted-dashed gray line),
�C = 2κ (dashed red line), and �C = 10κ (dotted blue line). The
parameters used here were κ/2π = 2.5 MHz, g = 10κ, �31 = �32 =
0.6κ, FWHM = 1.0 μs, and t0 = 4 μs. The inset shows the probe
pulse width in frequency domain (black solid line) and EIT window
width for �C = 2κ (dashed red line) and �C = 10κ (dotted blue
line).

field αout has exactly the Gaussian shape of the input field, but
with the phase difference of π in relation to the incident pulse.
For the set of parameters considered here, when the classical
control field is on, the system is in the cavity-EIT regime. In
this context it is important to recall that the width of the EIT
window depends directly on the rate �2

C/g2 [10]. In Fig. 3 the
atom-cavity coupling was kept fixed as g = 10κ . In this way,
the width of the transparency window (�ωEIT ) is different for
each value of the external control field, as can be seen on the
inset of Fig. 3. The inset shows the probe field in frequency
domain (solid black line) and the transparency window around
the resonance region for �C = 2κ and �C = 10κ . When
�C = 2κ (dashed red line) the EIT window �ωEIT is such
that the probe pulse does not fit well inside the EIT window.
In this way, part of the probe field is directly reflected, being
represented by the gray area shown in the inset. However, as
the system is in the EIT regime, the remaining part of the pulse
enters, interacts with the atom, and then is transmitted without
changing its phase. For this case, the outgoing cavity field
has a negative part associated to the reflected light exhibiting
a phase shift of π , and a positive part corresponding to the
transmitted light. So, this external control field intensity is
not strong enough to give rise to phase difference (when the
control field is on and off) of π on the whole pulse. On the
order hand, when �C = 10κ (dotted blue line) the spectrum
of the single-photon pulse is entirely within the EIT window.
Thus, as can be observed on the dotted blue curve in Fig. 3,
the outgoing field is transmitted without changing its phase,
but a little delayed in relation to the input field. This delay
occurs due to two reasons: the time spent by the light to enter
the cavity and to interact with the system and the slow-down
of the group velocity that the incoming field undergoes due to
the EIT effect [26].

Controlled-PHASE gate between two single photons. In
the following we show how our experimental setup can be
used to implement a controlled-PHASE gate between two
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single photons and investigate its optimization in terms of the
parameters of the system. Our proposal consists of a control
single-photon pulse which can imprint a π phase shift on
another single-photon field (target pulse). To this end, the
first single photon must be successfully stored in the atomic
states. Then, the second photon will experience a phase shift
depending on whether the first photon was stored or not. Thus
the success of our protocol depends on (i) the efficiency of the
quantum memory process (for the control photon) and (ii) the
capability of the atom-cavity system to induce a phase shift on
the second (target) photon. It is important to mention a similar
protocol was used in [7] to induce a phase shift on a target
photon, but with the control photon being stored in an atomic
ensemble in free space.

In our model we assume, without loss of generality, both
the target and the control pulses as single photons with
their wave packet given by the Gaussian function (5). In
this case, the control and target pulses (single photons) have
both the temporal shape, such that

∫ |αC(T )
in (t)|2dt = 1 (where

the indexes C and T refer to control and target pulses,
respectively). It is important to stress that our scheme is
different from the one presented in [9], which does not require
the storage of the control photon, but needs detection and
manipulation of the atomic states. Also, with our scheme, as
the control photon must be stored in the atomic states, it can
be used subsequently to induce phase shift on any number of
target photons, without applying any operation or detection on
the atomic states, being limited to the time the atomic system
can keep the control photon stored. Thus, compared with the
scheme presented in [9], our scheme has the disadvantage
of requiring a memory process, but has the advantage of not
involving detection or manipulation of the atomic states.

(i) Memory process for the control photon: quantum mem-
ory based on cavity-EIT effect has already been extensively
investigated in theoretical and experimental works. The basic
idea of the quantum memory process in this context is to
store the photonic qubit, for instance, polarization states of
the light or a coherent superposition of 0 and 1 photon, in
atomic ground states. Thus, through the appropriate temporal
shape of a classical field �C(t) (control field in cavity-EIT), it
is possible to store the information encoded in the input pulse
into the ground atomic states |1〉 and |2〉. In a previous work, we
studied in detail the atom-cavity system under the EIT regime
[14]. Among the results, we showed how to optimize the
memory efficiency value for close to 100%, for a single-sided
cavity setup when a weak coherent pulse is sent. In that case it
was not possible to apply the impedance matching algorithm
derived by Dilley et al. [16], since it is valid for single-photon
pulses. Now, as we are interested in the implementation of a
quantum controlled-PHASE gate between single photons, the
protocol derived by Dilley et al. [16] becomes very convenient
since it allows the derivation of specific forms for the classical
field �C(t) for each input field αin(t). In their scheme, the
expression of the �C(t) is obtained for a given input field after
imposing an impedance matching condition, which consists
of assuming the total cancellation of the outgoing field of
the cavity (αout ≈ 0), due to a destructive interference process
between the reflected and transmitted fields. Thus, from the
equation system (6), we derive a temporal form to �C(t) for a
single photon described by a Gaussian pulse, whose temporal

FIG. 4. (a) Temporal shape of the classical field �C , derived
from phase-matching condition and equations (6) (dotted-dashed
black line) and time sequence in which the control (red dashed
line) and target (blue solid line) single-photon pulses are sent. The
target photon is delayed 4 μs in relation to the control photon.
(b) Probabilities P1 and P2 of finding the atom in the state |1〉
and |2〉, respectively, as a function of cooperativity C after the
storage process of the control photon. The parameters used here were
�31 = �32 = 0.6κ and FWHM = 1.0 μs.

shape is shown in Fig. 4(a) (dotted-dashed black line) for an
atom-field coupling g = 10κ , for illustration. Figure 4(a) also
shows the time sequence of the normalized control and target
photon pulses (red dashed and blue solid lines, respectively).

It is important to recall that, in the cavity-EIT regime, the
dark state of the system is given by the superposition

|ψ0〉 = − sin θ |1,1〉 + cos θ |2,0〉, (7)

with tan θ = �C/g. Thus, in our scheme the state vector of the
system |ψ〉 can evolve from the state |1,1〉 to |2,0〉 with a given
probability, without undergoing the excited state |3,0〉, if the
storage process is performed so that the classical control field is
turned off adiabatically. The temporal form of the �C derived
from the phase-matching condition [Fig. 4(a)] has all necessary
requirements to optimize the storage process. Thus, after the
realization of the storage process of the first photon (control
photon), one has two possibilities: the atom has absorbed the
control photon, so the system state is |2,0〉 (when the memory
process is perfectly accomplished), or the atom does not absorb
the control photon, leaving the system in the state |1,1〉 and
then, through the cavity decay process, goes to |1,0〉. In this
way, there is a probability P2 (P1) of finding the system in the
state |2,0〉 (|1,0〉), which in turn is exactly the efficiency of the
memory process. In Fig. 4(b) are plotted the probabilities P1

and P2 as a function of the cooperativity of the atom-cavity
system C = g2/2κ�3, when the control photon is sent. As it
was mentioned in Ref. [16], the procedure used to derive the
temporal form of the classical control field is not valid in the
limit C < 1/2. Thus, in our simulations we consider values
of g coupling in which the protocol used does not fail, i.e.,
g >

√
�3κ . For high values of C, the first photon is stored

with an efficiency close to 100%, preparing the atom in the
state |2〉, which is not coupled to the cavity mode. Thus, for
the strong-coupling regime, when there is one photon on the
control pulse, the target pulse enters the cavity and then is
transmitted without changing its phase.

(ii) Phase shift acquired by the target photon: in the next
step of our protocol, a target photon must impinge on the
atom-cavity system. If there was a single photon on the control
photon and it was perfectly stored in the atomic system, its
final state will be |2〉, being decoupled from the cavity mode.
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FIG. 5. (a) Normalized amplitudes of the input αin (solid blue
line) and output fields αout, as function of time, considering co-
operativity C ≈ 100 and different initial atomic states, i.e., for |1〉
(dashed black line) and |2〉 (dotted red line), resulting in reflected and
transmitted pulses, respectively. (b) Normalized αout as function of
time for initial atomic state |1〉 and different values of cooperativity C.
For C < 1/2 the pulse is transmitted and for C > 1/2 it is reflected,
but in both cases part of the light is lost due to atomic scattering.
Only in the limit C � 1 the scattered light can be negligible. (c)
Mean number of photons outside the cavity (black solid line) and
the scattered light by the atom (dashed red line) as a function of
the cooperativity, considering the atom initially in the state |1〉 and
single-photon input pulses. The gray area represents the “dark region,”
where a significant part of the light is lost due to atomic scattering,
destroying the information encoded in the photonic state. The inset
shows a zoom in the region close to the dark region, evidencing the
point C = 1/2 where the light from the pulse is totally scattered. (d)
The probability of success (Psucc) of the controlled-PHASE gate as a
function of the cooperativity. The set of parameters used here are the
same as those used in Fig. 4.

Otherwise, if there was no control photon (or, equivalently,
if its polarization is such that it does not couple the atomic
transition |1〉 ↔ |3〉) the final atomic state will be |1〉. Thus, in
the strong atom-field coupling regime and keeping the classical
control field off (�C = 0), when the atom is in the state |1〉
(|2〉), the target photon is immediately reflected (transmitted)
by the cavity, acquiring a phase shift φR = π (φT = 0). The
acquired phase can be seen in Fig. 5(a), where we plotted the
amplitude of the outgoing field αout(t) considering C ≈ 100
and, for atomic states |1〉 (reflected light) and |2〉 (transmitted
light). For not so strong-coupling regimes, part of the target
pulse can be scattered by the atom when it is in the state |1〉,
losing information.

In Fig. 5(b) we plot the amplitude of the outgoing field for
different values of cooperativity C and considering the atom in
the state |1〉. For C < 1/2 we see that the field enters the cavity
and then part is transmitted and part is scattered by the atom.
In this way, for C < 1/2 it is impossible to perform the phase
gate since the target photon is always transmitted, i.e., the
atom-cavity system cannot induce a phase shift on it depending
on the atomic state (|1〉 or |2〉). For C = 1/2 all the light from
the target pulse is scattered by the atom, making this value
a lower bound for the controlled-PHASE gate implementation.

In fact, this specific value in which the system scatters all the
light can be derived from a calculation of an effective decay and
from the analysis of equations obtained in the steady regime,
as it was explained in our previous paper [14]. For C > 1/2
part of the light is immediately reflected, acquiring a phase
shift of π , and part enters the cavity and then is scattered
by the atom. This means that, when the target photon is not
lost (due to atomic scattering), it will acquire a phase shift
depending on the atomic state, i.e., φR = π (φT = 0) for |1〉
(|2〉), thus performing the controlled-PHASE gate. However, as
in some events the target photon will be lost, we end up with
probability of success of our controlled-PHASE gate Ptarget. In
Fig. 5(c) we plot the average number of photons outside the
cavity as a function of the cooperativity C. As the input target
pulse contains just a single photon, the average number of
photons is exactly the probability of having one photon in the
outgoing field when the atom is in the state |1〉, i.e., n̄out =
Ptarget. In Fig. 5(c) we also plot the scattered light by the atom
(
∫

�3P3dt , where P3 is the population of the excited state |3〉).
As expected, n̄out + ∫

�3P3dt = 1. We note that for C � 10,
part of the light is significantly lost due to the atomic scattering
process. In this way, we denote the region represented by the
gray area as a “dark region,” where a significant part of the
target pulse is lost (when the atom is in the state |1〉). At C ≈
10, around 20% of the light is lost by the scattering process.
Therefore, only outside the dark region a significant part of
the input light is recovered. In this way, the controlled-PHASE

gate can be perfectly performed, providing a phase shift of π

on a single photon, only for strong-coupling regime such that
C > 10. For couplings not so strong but still satisfying C >

1/2, the controlled-PHASE gate can work out but with given
probability. The efficiency of the quantum memory (P2) for the
control photon times the probability of success of the phase
shift on the target photon (Ptarget) gives us the total probability
of success of our controlled-PHASE gate, i.e., Psucc = P2Ptarget.
In Fig. 5(d) we plot Psucc as a function of the cooperativity
C (for C > 1/2). One sees that Psucc reaches values close to
100% for strong-coupling regimes, as expected.

IV. CONCLUSIONS

In summary, we have analyzed the implementation of a
quantum controlled-PHASE gate in the atom-cavity system,
where the cavity-EIT effect is the key ingredient for its
performance. Depending on whether the input field is reflected
or transmitted from the cavity, it can acquire a phase shift of
π , which will be induced by a classical control field. Based
on cavity-EIT effect we have shown the phase shift can be
imprinted on the probe field described as a classical field and
as a single photon. Based on the same scheme we also have
presented a study to accomplish a photon-photon gate, where
the phase shift of π onto the target photon becomes possible if
another photon is successfully stored in the atomic states. We
have shown that for cooperativity C � 10 a great part of the
target photon is scattered by the atom, losing information and
imposing limitations on the controlled-PHASE gate. However,
even for C � 10 but for C > 1/2, when the target photons
are not scattered by the atom, they will certainly acquire a π

phase shift depending on the atomic state, thus introducing
a probabilistic aspect to the controlled-PHASE gate. In this
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way, the value C > 1/2 represents a lower bound for the
cooperativity of the atom-cavity system which enables the
implementation of phase shift on single photons. In general,
this work demonstrates the great feasibility to avail all the
advantages that the atom-cavity system provides to implement
quantum logic operations, enabling numerous applications in
the area of quantum processing information.
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