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A resource theory of quantum coherence attempts to characterize the quantum coherence that exists in a given
quantum system. Many different approaches to a resource theory of coherence have recently been proposed,
with their differences lying primarily in the identification of “free” or “incoherent” operations. In this article, we
compare a number of these operational classes. In particular, the recently introduced class of dephasing-covariant
operations is analyzed, and we characterize the Kraus operators of such maps. A number of coherence measures
are introduced based on relative Rényi entropies, and we study incoherent state transformations under different
operational classes. In particular, we show that the incoherent Schmidt rank can be increased arbitrarily large by
certain noncoherence generating operations. The distinction between asymmetry-based versus basis-dependent
notions of coherence theory is clarified, and we further develop the resource theory of N asymmetry, where N is
the group of all diagonal incoherent unitaries.
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In quantum systems, the notion of coherence is ubiquitous.
For instance, the state |+〉 = √

1/2(|0〉 + |1〉) can be seen as a
coherent superposition of the states |0〉 and |1〉, while the state
|0〉 can itself be seen as a coherent superposition of |+〉 and
|−〉 = √

1/2(|0〉 − |1〉). Thus, without further qualification, it
is completely ambiguous to say that one state has coherence
while another does not. One way to make such a statement
meaningful involves first identifying a fixed reference basis,
and then defining coherence with respect to this basis. More
precisely, a basis for the system’s state space is specified
(called the incoherent basis), and then a given state is deemed
incoherent if it is diagonal in this basis.

Recently, researchers have used this distinction between
coherent and incoherent states to construct resource theories
of quantum coherence [1–10]. A general quantum resource
theory consists of a class of “free” states along with a class
of “free” or allowable operations [11]. The essential resource-
theoretic condition is that the set of free states is closed under
the set of free operations. Hence, any state that is not free
is a resource since it cannot be obtained using the allowable
operations. For quantum coherence, the free states are the
incoherent states I. As for the free or “incoherent” operations,
many different approaches have been proposed, motivated by
various degrees of physical and mathematical considerations.

The largest class of incoherent operations are the so-called
“maximal” incoherent operations (MIO) [1,12], and these
consist of all completely positive (CP) maps that act invariantly
on I. A smaller set of operations was introduced by Baumgratz
et al. and simply goes by the name “incoherent operations”
(IO) [3]. Two other proposed classes of operations are the
strictly incoherent operations (SIO) [7,9] and the dephasing-
covariant incoherent operations (DIO) [13,14]. Each of these
operational classes is defined to reflect different measurement
scenarios. However, from a resource-theoretic perspective,
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they all lack physical consistency in terms of their imple-
mentation: in order to perform a general MIO/IO/DIO/SIO
map, coherence needs to be consumed on some ancilla system
[13]. The class of operations that maintain implementation
consistency was introduced in Ref. [13] under the name
of physical incoherent operations (PIO). The relationship
between these various incoherent operations is depicted in
Fig. 1.

In conjunction with each of the operational classes, one
can define different measures of coherence. From a resource-
theoretic perspective, the crucial property of these measures is
that they are monotonic under the specified class of operations.
To give the measures physical meaning, one seeks to find some
operational interpretation of the measure, thereby enabling
the measure to quantify some particular physical property or
process. A number of coherence measures have been proposed
in the literature such as the relative entropy of coherence and
the �1 norm of coherence [3], entanglement-induced measures
of entanglement [15], distillable coherence and coherence of
formation [6,7], and the robustness of coherence [16]. For a
nice summary of different coherence measures, see the recent
review article [17]. In this paper, we introduce a general
prescription for generating a number of “distance-based”
measures of coherence.

Close parallels can be drawn between the resource theory
of coherence and the resource theories of asymmetry [18–20].
In the latter, one identifies a particular unitary group G, and
the free states are those that are invariant under the G-twirling
operation ρ → ∫

G
dg U (g)ρU (g)†. The free operations are

those that commute with the unitary action of the group and
are called G covariant. In physical systems, it is natural to
choose G as the group of unitaries that commute with the
time-translation operator eitH , where H is the Hamiltonian
of the system. In this way, one can speak of “coherences”
between the eigenspaces of H , and a state is incoherent if it
commutes with eitH for all time; states that do not commute
possess asymmetry with respect to the unitary group. Thus,
one obtains a type of coherence resource theory based on this
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FIG. 1. A heuristic comparison between the five incoherence
operations MIO/DIO/IO/SIO/PIO and TIO. The first five are classes
of CPTP maps defined on a system with a specified incoherent
basis. Maps from each of these classes act invariantly on the set
of states diagonal in this basis. TIO is fundamentally different since
the allowed operations in this class depend on invariances of the
generator H which may or may not fix a single incoherent basis. In
general, PIO will not be a subset of TIO since the former includes
all permutations while the latter may not. On the other hand, TIO �⊂
MIO because TIO allows for decoherence-free subspaces.

notion of asymmetry. The G-covariant operations are free in
this resource theory, and in Ref. [21] these operations were
also called translationally invariant operations (TIO).

Note that an asymmetry-based resource theory of co-
herence is categorically distinct from PIO/SIO/IO/DIO/MIO
resource theories since in general the set of G-invariant
states will not coincide with I. The resource theories of
PIO/SIO/IO/DIO/MIO are based on a basis-dependent defini-
tion of coherence which consists of first specifying an incoher-
ent basis and then defining incoherent states as being diagonal
in this basis. In contrast, the resource theory of TIO consists
of first specifying a symmetry and then defining incoherent
states as those possessing this symmetry. Consequently, the
asymmetry approach can lead to decoherence-free subspaces
when extending the symmetry to multiple systems, as we
discuss in Sec. IV of this paper. A detailed discussion on
the distinction between TIO and the family of operations
PIO/SIO/IO/DIO/MIO can also be found in [14].

The purpose of this article is to provide a comparative
investigation into the resource theories of coherence under
different operational classes. This is an accompanying paper
to Ref. [13] and covers the detailed proofs omitted from the
latter. A summary of results and an outline of the paper is as
follows.

(i) In Sec. I, we give a quantitative overview of the opera-
tional classes PIO/DIO/IO/DIO/ MIO. Aside from character-
izing the structure of maps belonging to these classes, we focus
on the ability of these maps to transform states. In particular,
we consider the question of pure-state transformations using
incoherent operations. We show that the so-called majorization
condition decides transformation feasibility for the classes SIO
and a special subclass of IO that we denote by sIO. However,
whether or not the majorization condition also holds for IO
remains an open problem and we point out mistakes in recent
proofs claiming it does [22,23]. By constructing an explicit
family of transformations, we show that the majorization

condition can be violated by MIO, even stronger the Schmidt
rank can be increased by MIO (Theorem 14).

(ii) For a general single-party state ρ, one can associate
a bipartite maximally correlated state ρ(mc) with respect to a
fixed incoherent basis according to

ρ =
∑
xy

cxy |x〉〈y| ⇔ ρ(mc) =
∑
xy

ccy |xx〉(5〈yy|. (1)

The question is then whether a transformation ρ → σ using
one of the incoherent operational classes implies that the
corresponding transformation ρ(mc) → σ (mc) is possible using
local operations and classical communication (LOCC). We
show that transforming states using PIO/SIO/sIO indeed
implies the ability to transform the corresponding maximally
correlated states using zero-communication LOCC/one-way
LOCC/ two-way LOCC, respectively.

(iii) In Sec. II, we introduce a number of incoherent
monotones and measures for the various operational classes
based. All of these measures are unified within a very general
framework for constructing incoherent measures. Two classes
of measures included in this framework are the relative Rényi
α entropies of incoherence and the quantum relative Rényi α

entropies of incoherence. Within this class are the robustness
of coherence and the � robustness of coherence.

(iv) In Sec. III, we provide a comprehensive overview
of coherence in qubit systems. Necessary and sufficient
conditions are proven for the transformation of qubit mixed
states using SIO/IO/DIO/MIO, a result first reported in [13].
We show that all measures of coherence for qubits can be
expressed in terms of the robustness of coherence and the �

robustness, and we provide such expressions for the relative
entropy of coherence, and the �-1 norm of coherence.

(v) In Sec. IV, we discuss in greater detail the relationship
between coherence resource theories based on asymmetry
and those using a basis-dependent definition of coherence.
We develop the resource theories of G asymmetry and N

asymmetry, where G is the group of all incoherent unitaries
and N is the group of all diagonal incoherent unitaries.

(vi) Finally, Sec. V describes a number of open problems
related to the coherence measures and incoherent state trans-
formations studied in this paper.

Throughout the paper we assume that an incoherent basis
has been fixed and is taken as the computational basis. We
consider d-dimensional quantum systems, and for bipartite
systems the dimensions of the subsystems will be denoted
by dA and dB . The map which completely dephases in the
computational basis will be denoted by �, and its action is
given by

ρ 	→ �(ρ) =
d∑

i=1

|i〉〈i|ρ|i〉〈i|. (2)

I. FIVE TYPES OF INCOHERENT OPERATIONS

A. Physical incoherent operations (PIO)

The class of PIO is defined as the collection of operations so
obtained via actions on a primary and an ancillary system that
are noncoherence generating on both systems [13]. Denoting
the primary system by A and the ancilla by B, a general PIO
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operation corresponds to performing an incoherent unitary
UAB on the input state ρA and some fixed incoherent state
ρ̂B , and then performing a general incoherent projective
measurement on system B. The Kraus operators for a general
completely positive trace-preserving map (CPTP) belonging
to PIO can be characterized by the following.

Proposition 1 ([13]). A CPTP map Ê is a physically
incoherent operation if and only if it can be expressed as
a convex combination of maps each having Kraus operators
{Kj }rj=1 of the form

Kj = UjPj =
∑

x

eiθx |πj (x)〉〈x|Pj , (3)

where the Pj form an orthogonal and complete set of
incoherent projectors on system A and πj are permutations.

State transformations

Proposition 1 shows that there is very little freedom in
the allowable Kraus operators for a PIO map. The following
lemma completely characterizes pure-state transformations by
PIO.

Proposition 2. For any two states |ψ〉 and |φ〉, the transfor-
mation |ψ〉 → |φ〉 is possible by PIO if and only if

|ψ〉 =
k∑

i=1

√
piUi |φ〉, (4)

where the Ui are incoherent isometries such that PiUi |φ〉 =
Ui |φ〉 for an orthogonal and complete set of incoherent
projectors {Pi}i .

Proof. Necessity of this condition follows from the form
of Kj as given in Eq. (3). Since Kj |ψ〉 ∝ |φ〉 for every j , we
must have 1√

pj
UjPj |ψ〉 = |φ〉. Thus,

1√
pj

Pj |ψ〉 = U
†
j |φ〉 = PjU

†
j |φ〉.

Sufficiency of Eq. (4) can likewise be seen. Given the form
of Eq. (4), one performs the incoherent projection {Pi}i on
|ψ〉. Since PjUi |φ〉 = 0 for i �= j , outcome Pj renders the
post-measurement state Uj |φ〉. The transformation is complete
by applying U

†
j . �

A generic state |ψ〉 will not have a decomposition given by
Eq. (4) for k > 1. Thus, most pure states cannot be transformed
into any other outside of their respective incoherent unitary
equivalence class. This situation is highly reminiscent of
multipartite entanglement in which most pure states cannot
be transformed to any another other outside their respective
LU equivalence class.

In the asymptotic setting of many copies, the power of PIO
is greatly improved. The following proposition shows that
PIO is just as powerful as maximally incoherent operations
(MIO) in terms of distilling maximally coherent bits |+〉 =√

1/2(|0〉 + |1〉) from many copies of a pure state. The optimal
distillation rate under MIO is given by S[�(ψ)], where S[ρ] =
−tr[ρ log2 ρ] is the von Neumann entropy [7].

Proposition 3 ([7]). For any ε > 0 and n sufficiently large,

the transformation |ψ〉⊗n → ε≈ |+〉⊗nR� is possible by PIO
whenever R < S[�(ψ)].

Proof. The proof for this is presented in Theorem 3 of
Ref. [7] where the authors consider distillation using more
general incoherent operations (IO). However, their protocol
consists of incoherent unitaries and projections, and therefore
it can be accomplished using PIO. �

Rather surprisingly, the reverse transformation |+〉⊗m → ε≈
|ψ〉⊗n is not possible for any coherent state |ψ〉 that is not max-
imally coherent, i.e., if |ψ〉 is not of the form 1√

d

∑d
x=1 eiθx |x〉.

As described in the main text, a proof of this fact follows from
communication complexity results in LOCC entanglement
transformations. The key idea is that a PIO transformation
ρ →∑

j pjρj ⊗ |j 〉〈j | can be converted into a bipartite

LOCC transformation ρ(mc) →∑
j pjρ

(mc)
j ⊗ |jj 〉〈jj | with

no communication, where the correspondence between ρj

and ρ
(mc)
j is given by Eq. (1). Specifically, if {UjPj } is the

PIO measurement, then the corresponding LOCC protocol
consists of Alice locally measuring {UjPj }, Bob learning
the outcome of this measurement through the projective
measurement {Pj }, and then him applying the corresponding
Uj . Therefore, if |+〉〈+|⊗m →∑

j pj |ψj 〉〈ψj | ⊗ |j 〉〈j | by

PIO with
∑

j pj |ψj 〉〈ψj |
ε≈ |ψ〉〈ψ |⊗n for arbitrarily small ε

and m is sufficiently large, then it is possible to transform
sufficiently large copies of an EPR state arbitrarily close
to |ψ (mc)〉⊗n by local operations and no communication.
However, as proven in Refs. [24,25], for any fixed n, there
exists an ε-dependent lower bound on the communication
needed to perform such an entanglement dilution, provided
|ψ (mc)〉 is not maximally entangled or a product state.

From this result we see that maximally coherent states are
the weakest among all pure states, in terms of their ability to
transform into other states. Under asymptotic PIO, the entire
hierarchy of coherent states gets turned upside down.

B. Strictly incoherent operations (SIO)

The class of SIO is defined as the collection of operations
so obtained via actions on a primary and an ancillary
system that are noncoherence generating on just the pri-
mary system. Note the difference in description between
SIO and PIO as stated above. A precise definition of
SIO is given in terms of Kraus operator representations as
follows.

Definition 1 ([7,9]). Let EA→B : L(HA) → L(HB) be a
CPTP map. Then, EA→B is said to be a strictly incoherent
operation (SIO) if it can be represented by Kraus operators
{Mj } such that

�(MjρM
†
j ) = Mj�(ρ)M†

j ∀ j, ∀ ρ. (5)

The following lemma characterizes the form of Kraus
operators belonging to an SIO CPTP map.

Lemma 4. Let EA→B : L(HA) → L(HB) be a CPTP map.
Then, EA→B is SIO if and only if it can be represented by
Kraus operators {Mj } of the form

Mj =
dA∑

x=1

cjx |πj (x)〉〈x|. (6)
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Proof. Sufficiency is obvious to check. Suppose now that
EA→B is SIO. Following the same arguments of Lemma 12,
there must exist Kraus operators {Mj } with the properties that

�(Mj |x〉〈x|M†
j ) = Mj |x〉〈x|M†

j and (7)

�(Mj |x〉〈x ′|M†
j ) = 0 (8)

for all x ′,x ∈ {1, . . . ,dA} with x ′ �= x. Equation (7) implies
that

Mj =
dA∑

x=1

cj,x |fj (x)〉〈x|, (9)

where fj : {1, . . . ,dA} → {1, . . . ,dA}. Equation (8) implies
that

〈y|Mj |x〉〈x ′|M†
j |y〉 = 0 ∀ x,x ′,y, (10)

which is equivalent to the condition that fj is one to one. Thus,
fj is a permutation πj and Mj takes the form of Eq. (6). �

1. Relating SIO to maximally correlated LOCC

The discussion after Proposition 3 describes how every PIO
operation can be translated into a zero-communication LOCC
protocol. A similar relationship holds for SIO and one-way
LOCC.

Proposition 5. Using the notation of Eq. (1), if ρ → σ

by SIO, then there exists a bipartite LOCC transformation
ρ(mc) → σ (mc).

Proof. Let {Mj } be a set of SIO Kraus operators so that for
state ρ =∑xy dxy |x〉〈y| the QC post-measurement state is

σ =
∑

j

MjρM
†
j ⊗ |j 〉〈j |

=
∑
x,y

cjxc
∗
jydxy |πj (x)〉〈πj (y)| ⊗ |j 〉〈j |, (11)

where we have used Eq. (6). Then, the transformation ρ(mc)

→ σ (mc) can be accomplished by Alice performing the
measurement {Mj }, announcing her result “j” to Bob, and then
Bob performing the local permutation �j :|x〉→|πj (x)〉. �

2. State transformations

Using Proposition 5, we can completely classify pure
state transformations under SIO. The following is an analog
to Nielsen’s theorem for entanglement transformations of
bipartite pure states [26]. Consider two states

|ψ〉 =
m∑

i=1

√
ψ

↓
i |i〉, |φ〉 =

n∑
i=1

√
φ

↓
i |i〉

where we have assumed without loss of generality that
the ψ

↓
i are non-negative and ordered such that ψ

↓
i � ψ

↓
i+1,

and likewise for the φ
↓
i . We say that |φ〉 majorizes |ψ〉

[denoted by �τ (ψ) ≺ �τ (φ)] if
∑k

i=1 ψ
↓
i �
∑k

i=1 φ
↓
i for all

k = 1, . . . , max{m,n}, where a sufficient number of zeros are
padded to the vector of shorter length so that both summations
can be taken over max{m,n} elements.

Lemma 6. The state transformation |ψ〉 → |φ〉 is possible
by SIO iff �τ (ψ) ≺ �τ (φ).

Proof. Sufficiency: Suppose that �τ (ψ) ≺ �τ (φ). Then, there
exists a doubly stochastic matrix D such that �τ (ψ) = D�τ (φ)
[27]. Birkhoff’s theorem assures that D =∑α pα�α , where
the pα form a probability distribution and the �α are permuta-
tion matrices. Then, define the operators Mα := √

pα�†
α • S,

where the elements of S are given by [[S]]ij = √
φi/
√

ψj and
“•” denotes the Hadamard product. Recall that the Hadamard
product of two matrices A and B is the matrix A • B with
elements [[A • B]]ij = [[A]]ij [[B]]ij . Note that each Mα has
the form of Eq. (6). By construction Mα|ψ〉 ∝ |φ〉 for every
α, and the relation �τ (ψ) =∑α pα�α �τ (φ) readily implies that∑

α M†
αMα = I.

Necessity: Now, suppose that |ψ〉 → |φ〉 by SIO. By
Proposition 5, this means that |ψ (mc)〉 → |φ(mc)〉 by bipartite
LOCC. However, a necessary condition for this is that �τ (ψ) ≺
�τ (φ) [26]. �

By the same arguments, additional statements about SIO
pure-state transformations can be made that are analogous to
statements in bipartite LOCC. The following are the coherence
versions of the results presented in [28] and [29], respectively.

Proposition 7. The multioutcome transformation |ψ〉 →
{|φi〉,pi} is possible by SIO iff �τ (ψ) ≺∑i pi �τ (φi).

Proposition 8. The maximum probability of converting
|ψ〉 → |φ〉 is given by

min
k∈{1,..., max{m,n}}

∑n
i=k ψ

↓
i∑n

i=k φ
↓
I

. (12)

With Lemma 6, the asymptotic transformation of pure states
becomes reversible under SIO. Indeed, the dilution protocol
described in Ref. [7] relies on being able to perform any pure-
state transformation provided the majorization condition is
satisfied. We thus have the following.

Corollary 9 ([7]). For any ε > 0 and n sufficiently large,

the transformation |ψ〉⊗nR� → ε≈ |ϕ〉⊗n is possible whenever
R < S[�(ψ)]/S[�(ϕ)].

C. Incoherent operations (IO)

The incoherent operations of Baumgratz et al. have received
a considerable amount of attention in the resource-theoretic
development of quantum coherence. Physically, these can be
seen as generalized measurements performed on a quantum
system that are coherence nongenerating for each measure-
ment outcome; however, their physical implementation may
require performing a coherence-generating unitary across the
primary system and the ancillary system. Formally, their
definition is given by the following.

Definition 2 ([3]). Let EA→B : L(HA) → L(HB) be a
CPTP map. Then, EA→B is said to be an incoherent operation
(IO) if it can be represented by Kraus operators {Mα} such that

�(Mα|x〉〈x|M†
α) = Mα|x〉〈x|M†

α ∀ x. (13)

From this definition, it is easy to see that an arbitrary
incoherent measurement has Kraus operators {Mα}α of the
form

Mα =
d∑

i=1

cα,i |fα(i)〉〈i|, (14)
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where fα : {1, . . . ,d} → {1, . . . ,d} and the completion iden-
tity demands ∑

α such that
fα (i)=fα (j )

c∗
α,icα,j = δij . (15)

Note that we could further decompose the sum as∑
α such that

fα (i)=fα (j )

c∗
α,icα,j =

d∑
k=1

∑
α such that
i,j∈f

−1
α (k)

c∗
α,icα,j = δij . (16)

Let us comment on the problem of transforming pure
states using incoherent operations. It has been reported that
the majorization condition characterizes pure-state transfor-
mations under IO, i.e., that Lemma 6 can be extended to IO
[22,23]. However, as we now discuss, the proofs given in these
references are not correct. It is still an open question whether
�τ (ψ) ≺ �τ (φ) is necessary for an IO transformation |ψ〉 → |φ〉.

1. Mistakes in the majorization proofs

To explain the mistake made in Ref. [22], let us begin by
studying the action of an incoherent operator Mα on a state
|ψ〉 =∑i ψi |i〉. We have

Mα|ψ〉 =
d∑

k=1

⎛⎝ ∑
i∈f −1(k)

cα,iψi

⎞⎠|k〉. (17)

What interests us are the diagonal elements of
�(
∑

α Mα|ψ〉〈ψ |M†
α). They have undergone the

transformation

(|ψk|2)k →
⎡⎣∑

α

⎛⎝ ∑
i∈f −1

α (k)

cα,iψi

⎞⎠⎛⎝ ∑
j∈f −1

α (k)

c∗
α,jψ

∗
j

⎞⎠⎤⎦
k

=
⎡⎣∑

α

⎛⎝ ∑
i,j∈f −1

α (k)

ψiψ
∗
j cα,ic

∗
α,j

⎞⎠⎤⎦
k

=

⎛⎜⎝∑
i,j

ψiψ
∗
j

∑
α such that
i,j∈f

−1
α (k)

cα,ic
∗
α,j

⎞⎟⎠
k

. (18)

In Ref. [22], the authors assume that for each value of k, the
cross terms vanish. In other words, the assumption is that∑

α such that
i,j∈f

−1
α (k)

cα,ic
∗
α,j = δij

when, in fact, the full condition is given by Eq. (16).
To bring this out more explicitly, we adopt the notation used

in [22]. From the completion identity, Eq. (18) of [22] gives∑
n

(δ1,i(2)δ1,i(3) + δ2,i(2)δ2,i(3))k
(n)
2 k

(n)
3 = 0. (19)

Note here the authors are assuming that the δj,i(l) do depend on
n, which is not true in general. Nevertheless, let us momentarily
continue with the argument with δj,i(l) being independent of n.
Because the measurement is incoherent, we have that

δ1,i(2)δ1,i(3) �= 0 ⇒ δ2,i(2)δ2,i(3) = 0,
(20)

δ2,i(2)δ2,i(3) �= 0 ⇒ δ1,i(2)δ1,i(3) = 0.

This means that Eq. (19) implies∑
n

δ1,i(2)δ1,i(3)k
(n)
2 k

(n)
3 =

∑
n

δ2,i(2)δ2,i(3)k
(n)
2 k

(n)
3 = 0. (21)

Therefore, when computing
∑

n | . . . |2 in their Eq. (21), the
left-hand side of the second equation becomes∑

n

∣∣δ2,i(2)k
(n)
2 ψ2 + δ2,i(3)k

(n)
3 ψ3

∣∣2
= δ2,i(2)ψ

2
2 + δ2,i(3)ψ

2
3

+ψ2ψ3

∑
n

δ2,i(2)δ2,i(3)
(
k

(n)
2 k

(n)
3 + k

(n)
3 k

(n)
2

)
= δ2,i(2)ψ

2
2 + δ2,i(3)ψ

2
3 , (22)

where we use Eq. (21). But, now let us consider the most
general IO measurement by allowing δj,i(l) to depend on
n. That is, we make the replacement δj,i(j ) → δ

(n)
j,i(j ). Then,

Eq. (19) becomes∑
n

(
δ

(n)
1,i(2)δ

(n)
1,i(3) + δ

(n)
2,i(2)δ

(n)
2,i(3)

)
k

(n)
2 k

(n)
3 = 0. (23)

However, we no longer have Eq. (21) because of the depen-

dence on n. In other words, in general
∑

n δ2,i(2)δ2,i(3)k
(n)
2 k

(n)
3 �=

0. Therefore,∑
n

∣∣δ(n)
2,i(2)k

(n)
2 ψ2 + δ

(n)
2,i(3)k

(n)
3 ψ3

∣∣2
=
∑

n

δ
(n)
2,i(2)

∣∣k(n)
2

∣∣2ψ2
2 +
∑

n

δ
(n)
2,i(3)

∣∣k(n)
3

∣∣2ψ2
3

+ ψ2ψ3

∑
n

δ
(n)
2,i(2)δ

(n)
2,i(3)

(
k

(n)
2 k

(n)
3 + k

(n)
3 k

(n)
2

)
. (24)

The cross term no longer vanishes.
An alternative proof for the majorization condition was

presented in Ref. [23]. The proof technique used is similar to
the proof of Lemma 6 in which the incoherent transformation
is mapped to a bipartite LOCC pure-state transformation.
However, the LOCC measurement described in that paper
is not trace preserving, and it is not clear how this can be
remedied [30].

2. Majorization for a special subclass of IO

At the present, it remains unknown whether or not the
majorization criterion dictates the feasibility of pure-state
transformations by IO. However, we can introduce yet an-
other class of operations more general than SIO for which
majorization precisely captures pure-state convertibility.

Definition 3. Let EA→B : L(HA) → L(HB) be a CPTP
map. Then, EA→B is said to be a special incoherent operation
(sIO) if it can be represented by Kraus operators {Mα} each
having the form

Mα =
∑

x

cαx�α|f (x)〉〈x|, (25)

where f : {1, . . . ,d} → {1, . . . ,d} and �α is a permutation.
Note that SIO ⊂ sIO ⊂ IO.
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We first show that the statement of Proposition 5 can be ex-
tended to sIO operations. However, the corresponding LOCC
transformation now uses two-way classical communication.

Proposition 10. If ρ → σ by sIO, then there exists a
bipartite two-way LOCC transformation ρ(mc) → σ (mc).

Proof. Suppose that ρ → σ =∑α MαρM†
α ⊗ |α〉〈α| for

sIO Kraus operators {Mα} given by Eq. (25). Let S ⊂
{1, . . . ,d} denote the range of f , κs = |f −1(s)| for s ∈
S, and κ =∏s∈S κs . For each s ∈ S, let {|s,js〉 : js =
0, . . . ,|f −1(s)| − 1} be a relabeling of the kets |x〉 with
x ∈ f −1(s). Next, we want to define a generalized Hadamard
basis with respect to the |s,js〉:⎧⎨⎩|s̃,ks〉 :=

κs−1∑
js=0

ei2πjsks/κs |s,js〉
⎫⎬⎭

ks=0,...,κs−1

.

Finally, for every sequence �k = (k1,k2, . . . ,k|S|) with ks ∈
{0, . . . ,κs − 1}, define the operator

N�k = 1√
κ

|S|∑
s=1

|s〉〈s̃,ks |. (26)

It can be seen that
∑

�k N
†
�kN�k = I. The LOCC protocol then

consists of Bob first performing the measurement {N�k}�k . The
state transformation corresponding to outcome �k = (ks)

|S|
s=1 is

ρ(mc) =
∑
xy

dxy |xx〉〈yy|

=
∑
ss ′

∑
js ,js′

dsjs ,s ′js′ |s,js〉〈s ′,js ′ |A ⊗ |s,js〉〈s ′,js ′ |B

→ ∝
∑
ss ′

∑
js ,js′

dsjs ,s ′js′ e
i2π(js−js′ )ks/κs

× |s,js〉〈s ′,js ′ |A ⊗ |s〉〈s ′|B. (27)

Bob then announces his outcome �k = (ks)
|S|
s=1 to Alice who

subsequently performs the unitary

U�k =
∑

s

∑
js

e−i2πjsks/κs |s,js〉〈s,js |. (28)

At this stage, Alice and Bob share the state

ρ̂(mc) =
∑
xy

dx,y |x〉〈y|A ⊗ |f (x)〉〈f (y)|B, (29)

regardless of Bob’s outcome �k. Alice now locally performs the
sIO measurement {Mα}. She announces her result to Bob who
then performs the conditional permutation �α on his system.
Thus, the resulting QC state is

σ (mc) =
∑
xy

dx,ycα,xc
∗
α,y

× (�α ⊗ �α)|f (x)f (x)〉〈f (y)f (y)|A1B1 (�α ⊗ �α)

⊗ |αα〉〈αα|A2B2 . (30)

�
Corollary 11. The state transformation |ψ〉 → |φ〉 is pos-

sible by sIO iff �τ (ψ) ≺ �τ (φ).

D. Dephasing-covariant incoherent operations (DIO)

We next introduce a class of operations that generalizes
SIO. Notice that SIO is defined in terms of the Kraus operators
of a generalized measurement and their covariance with
the completely dephasing channel. But, what if one looks
more generally at CPTP maps and not just specific Kraus
operator representations? DIO represents the class of all CPTP
maps that possess covariance with the completely dephasing
channel.

Definition 4. Let EA→B : L(HA) → L(HB) be a CPTP
map. Then, EA→B is said to be a dephasing-covariant inco-
herent operation (DIO) if

[�,EA→B] = 0 (31)

which is equivalent to

�(EA→B(ρ)) = EA→B(�(ρ)) ∀ ρ. (32)

The following provides an alternative characterization of
DIO maps that is computationally convenient.

Lemma 12. Let EA→B : L(HA) → L(HB) be a CPTP map.
Then, EA→B is DIO if and only if for all x ′,x ∈ {1, . . . ,dA}
with x ′ �= x:

EA→B(|x〉〈x|) ∈ I and (33)

�(EA→B(|x〉〈x ′|)) = 0. (34)

Proof. The first condition in the equation above ensures that
EA→B is a MIO. Therefore, this is a necessary condition. The
second condition is also necessary since

�(EA→B(|x〉〈x ′|))
= EA→B(�(|x〉〈x ′|)) = EA→B(0) = 0.

Now, to see that these two conditions are sufficient, note
that any density matrix ρ acting on HA can be decomposed as

ρ = �(ρ) + Z, (35)

where Z is a Hermitian matrix with zeros on the diagonal. We
therefore have

�(EA→B(ρ)) = �(EA→B(�(ρ))) + �(EA→B(Z))

= EA→B(�(ρ)) + �(EA→B(Z))

= EA→B(�(ρ)), (36)

where the second equality follows from (33), and the third
equality follows from (34). Hence, EA→B is DIO iff (33) and
(34) hold. �

Note that if we denote by

vy|x ≡

⎛⎜⎜⎝
〈y|M1|x〉
〈y|M2|x〉

...
〈y|Mm|x〉

⎞⎟⎟⎠ ∈ Cm, (37)

we get the following corollary:
Corollary 13. Using the notation of (37), a CPTP map

EA→B : L(HA) → L(HB) is a DIO if and only if there exist
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conditional probabilities ry|x such that

v†y ′ |xvy|x = ry|xδyy ′ , (38)

v†y|xvy|x ′ = ry|xδxx ′ . (39)

Consider now the equation σ = E(ρ) where E is DIO. We
therefore have

σyy ′ =
∑
x,x ′

ρxx ′ 〈y|E(|x〉〈x ′|)|y ′〉. (40)

In the notations above, this is equivalent to

σyy ′ =
∑
x,x ′

ρxx ′v†y ′ |x ′vy|x. (41)

The diagonal terms have the form

σyy =
∑

x

ry|xρxx. (42)

E. Maximal incoherent operations (MIO)

We reach the final class of operations in our overview. These
are simply the class of CPTP maps that act invariantly on the
set of incoherent states. It is not difficult to see that this can be
equivalently defined as follows.

Definition 5 ([1,12]). Let EA→B : L(HA) → L(HB) be a
CPTP map. Then, EA→B is a maximal incoherent operation
(MIO) if

� ◦ EA→B ◦ � = EA→B ◦ �. (43)

Let EA→B : L(HA) → L(HB) be a CPTP map with an
operator sum representation {Mj }mj=1, and let M denote the
set of MIOs. Then, from the definition above, EA→B ∈ M if
and only if

m∑
j=1

〈y|Mj |x〉〈x|M†
j |y ′〉 = 0 (44)

for all x ∈ {1, . . . ,dA} and y �= y ′ with y,y ′ ∈ {1, . . . ,dB}.
Using the notation of (37) we get that then EA→B ∈ M if and
only if there exist dAdB vectors vy|x ∈ Cm, and conditional
probability distribution ry|x (i.e., ry|x � 0 and

∑
y ry|x = 1)

such that

v†y ′ |xvy|x = ry|xδyy ′ , (45)

dB∑
y=1

v†y|xvy|x ′ = δxx ′ , (46)

where the first equation follows from (44) and the second from∑
j M

†
jMj = I .

State transformations

Consider a MIO CPTP map that converts |ψ〉 =∑
x

√
px |x〉 to |φ〉 =∑y

√
qy |y〉. In this case, we have

|φ〉〈φ| = E(|ψ〉〈ψ |), where E is MIO. Then, there must exist
coefficients cj such that

∑m
j=1 |cj |2 = 1 and Mj |ψ〉 = cj |φ〉.

Denoting c ≡ (cj )j ∈ Cm gives
√

qyc =
∑

x

√
pxvy|x ∀ y. (47)

Consider now the simpler case of dA = 2. We will also assume
that qy > 0 and dB � 3. The case dB = 2 is a special case of the
qubit mixed-state transformation to be discussed later. Denote
by ry ≡ ry|0 and ty ≡ ry|1 the two probability distributions,
and denote also vy|0 ≡ vy and vy|1 ≡ uy . With these notations,
conditions (45), (46), and (47) take the form

v†yvy ′ = ryδyy ′ , u†
yuy ′ = tyδyy ′ ,

(48)
dB∑

y=1

v†yuy = 0,
√

qyc = √
p0vy + √

p1uy.

The last equation can be written as
√

p1uy = √
qyc − √

p0vy. (49)

Hence, we must have

p1tyδyy ′ =p1u†
yuy ′ = √

qyqy ′ + p0ryδyy ′

− √
p0(

√
qyc†vy ′ + √

qy ′v†yc), (50)

where we have used the normalization of c and the orthogo-
nality of {vy} and of {uy}. Therefore, after dividing both sides
of the equation by

√
qyqy ′ (which is nonzero) we get

1 = √
p0

(
c†vy ′
√

qy ′
+ v†yc√

qy

)
∀ y �= y ′ (51)

and for y = y ′

p1ty = qy + p0ry − √
p0qy(c†vy + v†yc). (52)

From (51) we get that

√
p0

v†yc√
qy

≡ a, (53)

where a is some complex number independent of y satisfying
a + ā = 1. Substituting this into (52) we get

p1ty = qy + p0ry − qy. (54)

This equation holds iff

p0 = p1 = 1
2 and ty = ry. (55)

With these choices, the first equation of (48) gives

0 =
dB∑

y=1

v†yuy =
dB∑

y=1

v†y(
√

2qyc − vy), (56)

which is equivalent to

1 =
dB∑

y=1

√
2qyv†yc = 2a. (57)

We therefore conclude that

v†yc =
√

qy

2
. (58)

Since qy > 0 we get that vy �= 0 for all y and therefore ry >

0 for all y. Together with the orthogonality relation of vy ,
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this implies that the set of vectors { 1√
ry

vy} is orthonormal.
Therefore, the number of Kraus operators m (which is the
dimension of vy|x) must be at least dB . Hence, the equation
above gives

dB∑
y=1

qy

2ry

=
dB∑

y=1

c†vyv†yc
ry

� c†c = 1.

A simple calculation shows that
∑

y qy/ry obtains its mini-
mum value when

ry =
√

qy∑dB

y ′=1
√

qy ′
. (59)

Therefore, we get

1 �
dB∑

y=1

qy

2ry

� 1

2

⎛⎝ dB∑
y=1

√
qy

⎞⎠2

. (60)

We therefore arrive at the following theorem.
Theorem 14. Let |ψ〉 = √

p0|0〉 + √
p1|1〉 and |φ〉 =∑dB

y=1
√

qy |y〉, where qy > 0 and dB > 2. Then, |ψ〉 can be

converted to |φ〉 if and only if p0 = p1 = 1
2 and

dB∑
y=1

√
qy �

√
2. (61)

Proof. The necessity of this condition follows from the
arguments above. To prove sufficiency, take m = dB + 1 and
vy = √

ryey , where {ey} is the standard basis of Cm, and ry

is given in (59). To be consistent with (58) we define for
j = 1, . . . ,dB

cj =
√

qj√
2
∑dB

y=1
√

qy

(62)

and for j = dB + 1 we define

cdB+1 =
√√√√1 −

dB+1∑
j=1

c2
j . (63)

Note that the term inside the sum is positive due to (61). Finally,
we define for y = 1, . . . ,dB

uy = √2qyc − vy. (64)

With these choices, all the conditions in (48) are satisfied. This
completes the proof. �

Example 1. Consider the following two states:

|+〉 =
√

1
2 |0〉 +

√
1
2 |1〉 (65)

and

|ψ〉 :=
√

8

9
|0〉 +

√
1

18
|1〉 +

√
1

18
|2〉. (66)

We show that the transformation |+〉 → |ψ〉 is achievable
by maximally incoherent operations. Indeed, consider the

FIG. 2. Comparison of Sα(|+〉) = 1 (the horizontal line) and
Sα(|ψ〉) (the curved line) as a function of α. For 0 � α < 1

2 ,
Sα(|ψ〉) > Sα(|+〉), and for α > 1

2 , Sα(|ψ〉) < Sα(|+〉).

following three Kraus operators:

M1 =
√

2

3
√

3

⎛⎝3 1
0 1
0 1

⎞⎠, (67)

M2 = 1

3
√

6

⎛⎝0 4
3 −2
0 1

⎞⎠, (68)

M2 = 1

3
√

6

⎛⎝0 4
0 1
3 −2

⎞⎠. (69)

It is straightforward to check that
∑3

j=1 M
†
jMj = I2 where

I2 is the 2 × 2 identity matrix. Furthermore, note that

Mj |+〉 ∝ 4|0〉 + |1〉 + |2〉 ∝ |ψ〉 ∀ j = 1,2,3. (70)

To see that it is a maximal incoherent operation, note that

3∑
j=1

Mj |0〉〈0|M†
j =

3∑
j=1

Mj |1〉〈1|M†
j = 1

6

⎛⎝4 0 0
0 1 0
0 0 1

⎞⎠.

(71)

In Fig. 2, we plot the Rényi entropies of these two states. From
the graph it is clear that Sα(|ψ〉) > Sα(|+〉) = 1 for α ∈ [0, 1

2 ).
Therefore, this example also demonstrates that all the Rényi
entropies with α ∈ [0, 1

2 ) are not monotones and therefore
are not measures of coherence. Furthermore, it provides an
independent proof that the Rényi divergences Dα and D

(q)
α do

not satisfy the data processing inequality in the α ranges (2,∞]
and [0, 1

2 ), respectively.

II. FAMILY OF MONOTONES

In this section, we provide a general framework for
constructing distance-based coherence monotones and discuss
specific examples. Our main distinction will be functions
that behave monotonically under MIO and those that behave
monotonically under DIO.

Theorem 15. Let D(ρ ‖ σ ) be a contractive function, i.e.,
D[E(ρ) ‖ E(σ )] � D(ρ ‖ σ ) if E is a CPTP map. Let Aρ be a
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set of density matrices acting on Cd . Note that the set Aρ can
depend of the state ρ. If E(Aρ) ⊆ AE(ρ) for all free operations
E , then the two functions

CR
A (ρ) = min

σ∈Aρ

D(ρ ‖ σ ),

(72)
CL

A(ρ) = min
σ∈Aρ

D(σ ‖ ρ)

are monotonic under the set of free operations.
Proof.

CR
A [E(ρ)] = min

τ∈AE(ρ)

D[E(ρ) ‖ τ ]

� min
τ∈E(Aρ )

D[E(ρ) ‖ τ ]

= min
σ∈Aρ

D[E(ρ) ‖ E(σ )]

� min
σ∈Aρ

D(ρ ‖ σ ) = CR
A (ρ). (73)

Similar arguments prove that CL
A is also a monotone. �

A. MIO monotones

As a simple application of Theorem 15 take Aρ = I, the set
of incoherent diagonal states. In this case, Aρ is independent
of ρ so we get trivially that

E(Aρ) = E(I) ⊆ I = AE(ρ) (74)

for any DIO (or MIO) E . Moreover, in this case,

CR
A (ρ) = min

σ∈I
D(ρ ‖ σ ), (75)

which reduces to the the well-known relatively entropy of
coherence [3] when take D(ρ ‖ σ ) to be the relative entropy.
However, note that under PIO, SIO, IO, DIO, or MIO

CL
A(ρ) = min

σ∈I
D(σ ‖ ρ) (76)

is also a monotone.

1. Relative Rényi α monotones

Beyond the relative Shannon entropy, one can consider
the more general relative Rényi entropies. For α ∈ [0,∞] the
relative Rényi entropy is defined by

Dα(ρ ‖ σ ) := 1

α − 1
log2 tr(ρασ 1−α). (77)

This quantity is contractive (or equivalently satisfies the data
processing inequality) for all α ∈ [0,2]. We will therefore be
interested here only in this range of α. Define the α-coherence
monotone by (0 � α � 2)

Cα(ρ) := min
σ∈I

Dα(ρ ‖ σ ). (78)

We can compute this monotone explicitly, and part of the
following work overlaps with independent work conducted by
Rastegin in Ref. [31]. Let σ =∑x qx |x〉〈x| be some free state.
Then,

Cα(ρ) := min
{qx }

1

α − 1
log2

∑
x

q1−α
x 〈x|ρα|x〉. (79)

Denote

rx ≡ (〈x|ρα|x〉)1/α

r
where r ≡

∑
x

(〈x|ρα|x〉)1/α
. (80)

By definition,
∑

x rx = 1 and rx � 0. Therefore,

Cα(ρ) = α

α − 1
log2 r + min

{qx }
1

α − 1
log2

∑
x

q1−α
x rα

x

= α

α − 1
log2 r + min

{qx }
Dα({rx} ‖ {qx})

= α

α − 1
log2 r, (81)

where Dα({rx}‖{qx}) is the classical Rényi divergence. We
therefore conclude that for α ∈ [0,2], the quantities

Cα(ρ) = α

α − 1
log2

∑
x

(〈x|ρα|x〉)1/α (82)

are coherence monotones. Note that in the limit α → 1 we get
Cα(ρ) → Crel(ρ). Furthermore, in terms of the completely
dephasing map �(ρ) :=∑x〈x|ρ|x〉 |x〉〈x|, we have

Cα(ρ) = α

α − 1
log2 tr[(�(ρα))1/α]

= 1

α − 1
log2 tr[‖�(ρα)‖1/α]. (83)

Cα(ρ) can also be written in terms of the eigenvalues of ρ as
follows. Suppose the spectrum decomposition of ρ is given by

ρ =
n∑

y=1

λy |vy〉〈vy |, (84)

where λy are the eigenvalues of ρ, with corresponding
eigenvectors |vy〉. Denote by D the n × n doubly stochastic
matrix whose elements are Dxy ≡ |〈x|vy〉|2. Then, Eq. (83)
takes the form

Cα(ρ) = α

α − 1
log2

∑
x

(∑
y

Dxyλ
α
y

)1/α

. (85)

Note that for a pure state ρ = |ψ〉〈ψ | we have

Cα(ψ) = α

α − 1
log2

∑
j

p
1/α

j = S1/α(p), (86)

where S1/α is the Rényi entropy with parameter 1/α ∈
[1/2,∞].

Example 2. Consider α = 2 in (83). Then, this monotone
has a particular simple expression. Denoting by ρxy the
components of ρ we get

Cα=2(ρ) = 2 log2

∑
x

√
〈x|ρ2|x〉

= 2 log2

∑
x

(∑
y

|ρxy |2
)1/2

. (87)

We now apply this to the qubit case where

ρ =
(

p r

r 1 − p

)
. (88)
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Then,

Cα=2(ρ) = 2 log2[
√

p2 + r2 +
√

(1 − p)2 + r2]. (89)

2. Quantum relative Rényi α monotones

For α ∈ [ 1
2 ,∞], the quantum relative Rényi entropy is given

by

D(q)
α (ρ ‖ σ ) := 1

α − 1
log2 tr[(σ

1−α
2α ρσ

1−α
2α )α]. (90)

Define the quantum α-coherence monotone by

C(q)
α (ρ) := min

σ∈I
D(q)

α (ρ ‖ σ ). (91)

The minimization in this case is harder to perform. However,
for a pure state ρ = |ψ〉〈ψ | we have

D(q)
α (ρ ‖ σ ) = 1

α − 1
log2 tr

[(
σ

1−α
2α |ψ〉〈ψ |σ 1−α

2α

)α]
= α

α − 1
log2〈ψ |σ 1−α

α |ψ〉,

which is very similar to the expression we get for the relative
Rényi entropy. We therefore conclude that for pure states

C(q)
α (ψ) = 2α − 1

α − 1
log2

⎛⎝∑
j

p
α

2α−1
j

⎞⎠. (92)

Denoting γ ≡ α
2α−1 we can rewrite the expression above as

C(q)
α (ψ) = 1

1 − γ
log2

⎛⎝∑
j

p
γ

j

⎞⎠ ≡ Sγ (p). (93)

Note that the range of γ is also [ 1
2 ,∞]. Also, the other two

parameter quantum divergences introduced in [32] lead to the
same Rényi entropies for pure states. Therefore, one may be
tempted to conjecture that the transformation

|ψ〉 → |φ〉 (94)

is possible by MIO if and only if

Sα(p) � Sα(q) ∀ α ∈ [ 1
2 ,∞], (95)

where the probability vectors p and q correspond to |ψ〉 and
|φ〉, respectively. However, note that the requirements p0 =
p1 = 1

2 in Theorem 14 show that this conjecture is false. That
is, the above equation is necessary but not sufficient for the
existence of a MIO from |ψ〉 → |φ〉.

Example 3. Consider the case α = ∞ in (90). In this case,
D

(q)
α is known to be equal to the max relative entropy given by

D(q)
∞ (ρ ‖ σ ) = log2 min{λ : ρ � λσ }. (96)

The corresponding monotone is therefore

C(q)
∞ (ρ) = log2 min

{
tr(σ ) : ρ � σ ;

σ

tr(σ )
∈ I
}
. (97)

To calculate this expression, observe that it can be rewritten as

C(q)
∞ (ρ) = log2 min {tr(σ ) : ρ � �(σ ) ; σ � 0}. (98)

Next, we recall the dual formulation in linear programming
(see, e.g. Renes’ paper on subrelative majorization [23], as

well as recent work by Piani et al. [16]). Consider the following
setting of linear programming. Let V1 and V2 be two (inner
product) vector spaces with two cones K1 ⊂ V1 and K2 ⊂ V2.
Consider two vectors v1 ∈ V1 and v2 ∈ V2, and a linear map
T : V1 → V2. Then, the primal form

max
x ∈ K1

v2 − T (x) ∈ K2

〈v1,x〉1. (99)

The dual form involves T ∗ : V2 → V1:

min
y ∈ K2

T ∗(y) − v1 ∈ K1

〈v2,y〉2. (100)

Applying this to our formulation, take V1 = V2 = Hn the
vector space of n × n Hermitian matrices. Take K1 = K2 =
Hn,+ as the cone of positive-semidefinite matrices in Hn. Take
T = � which is self-adjoint. Finally, take v2 = I , v1 = ρ,
y = σ , x = τ . With these choices the dual is our original
expression for C∞ and the primal is the following expression:

C(q)
∞ (ρ) = log2 max {tr(ρτ ) : �(τ ) � I ; τ � 0} (101)

= log2 max {tr(ρτ ) : �(τ ) = I ; τ � 0}. (102)

Note that for j �= k, |τjk| � 1. Otherwise, if |τjk| > 1, one
can find θ ∈ [0,2π ] such that for |ψ〉 = |j 〉 + eiθ |k〉, the
expectation value 〈ψ |τ |ψ〉 < 0. We therefore conclude that

tr(ρτ ) = 1 +
∑
j �=k

ρjkτkj � 1 +
∑
j �=k

|ρjk|

= 1 + C�1 (ρ), (103)

where

C�1 (ρ) =
∑
j �=k

|ρjk| (104)

is the so-called �1 coherence measure [3]. This bound can
be saturated in the case where ρ is real with non-negative
off-diagonal terms, in which case we take τ = |ψ〉〈ψ | with
|ψ〉 =∑x |x〉.

Note the relation between C
(q)
∞ and the robustness of

coherence CR , which is defined as

CR(ρ) = min
t�0

{
t

∣∣∣∣ ρ + tσ

1 + t
∈ I, σ � 0

}
. (105)

Letting σ̂ = ρ + tσ so that t = tr[σ̂ ] − 1, we can rewrite this
as

CR(ρ) = min
σ̂

{
tr[σ̂ ] − 1

∣∣∣∣ σ̂

tr[σ̂ ]
∈ I, σ̂ � ρ

}
. (106)

Putting everything together, we obtain the following:
Proposition 16.

C(q)
∞ (ρ) = log2[1 + CR(ρ)]. (107)

Moreover, CR(ρ) = C�1 (ρ) for pure states, qubit mixed states,
and any state ρ with non-negative real matrix elements when
expressed in the incoherent basis.

It is still an open problem whether C�1 is a MIO monotone
in general, although it is a known monotone under IO [3].
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B. DIO monotones

Next, we turn to DIO operations and consider DIO oper-
ations derived from Theorem 15. Take Aρ = {�(ρ)} which
contains only a single state. Note that under DIO E we have

E(Aρ) = {E(�(ρ))} = {�(E(ρ))} = AE(ρ). (108)

Therefore, both the functions

CR
A (ρ) = D(ρ ‖ �(ρ)), CL

A(ρ) = D(�(ρ) ‖ ρ) (109)

are monotones. If we take D(ρ,σ ) = ‖ρ − σ‖, where ‖ . . . ‖
is the trace norm, we get

CR
A (ρ) = CL

A(ρ) = ‖ρ − �(ρ)‖ , (110)

which is a function only of the off-diagonal terms.
If we choose D as in (77), then we get the following

monotones:

CR
α (ρ) = 1

α − 1
log2 tr[ρα(�(ρ))1−α],

(111)

CL
α (ρ) = 1

α − 1
log2 tr[(�(ρ))αρ1−α].

For a pure state ρ = |ψ〉〈ψ | with |ψ〉 =∑x

√
px |x〉 we have

CR
α (ρ) = 1

α − 1
log2〈ψ |(�(ρ))1−α|ψ〉

= 1

α − 1
log2

∑
x

p2−α
x ≡ 1

1 − γ
log2

∑
x

pγ
x = Sγ (ρ),

(112)

where we denoted γ ≡ 2 − α. Since the CR
α is a DIO monotone

for α ∈ [0,2], together with the fact that DIO ⊂ MIO, we have
that all Rényi entropies are DIO monotones. This is in contrast
with the set of MIO for which Sγ is a monotone only for
γ � 1

2 .

Robustness of coherence

To obtain another DIO monotone, take

Aρ =
{

(1 + t)�(ρ) − ρ

t

∣∣∣∣ t > 0 ; (1 + t)�(ρ) − ρ � 0

}
.

(113)

In this case, it is straightforward to check that E(Aρ) ⊆ AE(ρ)

for all E ∈ DIO. We consider the quantum Rényi relative
entropy C

(q)
�,α(ρ) := minσ∈Aρ

D(q)(ρ ‖ σ ). Then, in the limit
α → ∞, we obtain analogs to Eqs. (96) and (98):

C
(q)
�,∞(ρ)

= log2 min

{
tr(σ )

∣∣∣∣ ρ � σ ;
σ

tr(σ )
∈ Aρ

}
= min

t,λ>0

{
λ

∣∣∣∣ ρ � λ
(1 + t)�(ρ) − ρ

t
; (1 + t)�(ρ) � ρ

}
= min

t,λ>0

{
λ

∣∣∣∣ t + λ

λ
ρ � (1 + t)�(ρ); (1 + t)�(ρ) � ρ

}
= min

t,λ>0

{
λ

∣∣∣∣ t + λ

λ
ρ � (1 + t)�(ρ)

}
, (114)

where the last equality follows from the fact that t+λ
λ

� 1.
Note that 0 � λ

(1+t)�(ρ)−ρ

t
− ρ, which means that 0 � (λ −

1)�(ρ); thus, λ � 1. Then, the minimum above can be written
as

min
t,λ>0

{
λ :

t + λ

1 + t
ρ � λ�(ρ)

}
. (115)

But, since t+λ
1+t

> 1 we must have ρ � λ�(ρ). On the other
hand, taking the limit t → ∞ in the above minimum gives
ρ � λ�(ρ). We therefore conclude that the above minimum
is equal to

min
λ>0

{λ : ρ � λ�(ρ)} (116)

or equivalently

1 + min
t>0

{t : ρ � (1 + t)�(ρ)}. (117)

Finally, note that t � 0 satisfies ρ � (1 + t)�(ρ) iff there
exists a matrix σ such that (i) ρ+tσ

1+t
∈ I, (ii) σ � 0, and (iii)

�(σ ) = �(ρ). Therefore, we have the � analog of Proposition
16:

C
(q)
�,∞(ρ) = log2[1 + C�,R(ρ)], (118)

where C�,R(ρ) is a quantity we shall call the � robustness of
coherence:

C�,R(ρ)

:= min

{
t � 0

∣∣∣∣ ρ + tσ

1 + t
∈ I , σ � 0 , �(σ ) = �(ρ)

}
.

(119)

By construction, C�,R is a DIO monotone.
Example 4. Consider the qubit state

ρ =
(

p r

r 1 − p

)
. (120)

Then, the matrix σ must have the form

σ =
(

p − r
t− r

t
1 − p

)
(121)

to ensure that ρ + tσ is diagonal and �(σ ) = �(ρ). Now,
the condition σ � 0 gives a lower bound on t . We therefore
conclude that for 0 < p < 1,

CR(ρ) = r√
p(1 − p)

(122)

and, otherwise, for p = 0 or p = 1, CR(ρ) = 0.
The form of σ above can be generalized to any dimension.

That is, for ρ = �(ρ) + Z, σ must have the form

σ = �(ρ) − 1

t
Z. (123)

Hence, CR(ρ) equals the minimum values of t � 0 such that
σ above is positive semidefinite. Note that the positivity of σ

is equivalent to the positivity of

t�(ρ) − Z = t�(ρ) − [ρ − �(ρ)] = (1 + t)�(ρ) − ρ.

(124)
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We therefore arrive at the following expression for CR:

C�,R(ρ) = min{t � 0 | (1 + t)�(ρ) − ρ � 0}

= max

{ 〈φ|ρ|φ〉
〈φ|�(ρ)|φ〉

∣∣∣∣ |φ〉 ∈ Cd , 〈φ|φ〉 = 1

}
.

(125)

Theorem 17. Consider the linear map

�t (ρ) ≡ (1 + t)�(ρ) − ρ. (126)

The following are equivalent:
(1) �t (ρ) is positive,
(2) �t (ρ) is completely positive,
(3) the parmeter t � d − 1.
Proof. The Choi matrix

I ⊗ �t (|ψ+〉〈ψ+|)
=
∑
j,k

|j 〉〈k| ⊗ �t (|j 〉〈k|)

=
∑

j

|j 〉〈j | ⊗ �t (|j 〉〈j |) +
∑
j �=k

|j 〉〈k| ⊗ �t (|j 〉〈k|)

= t
∑

j

|j 〉〈j | ⊗ |j 〉〈j | −
∑
j �=k

|j 〉〈k| ⊗ |j 〉〈k|

= (1 + t)
∑

j

|j 〉〈j | ⊗ |j 〉〈j | − |ψ+〉〈ψ+|.

Finally, note that the last term is positive if and only if 1 + t �
d. This completes the proof that (2) and (3) are equivalent. It
is therefore left to show that (1) implies (3). To see it, note that

�t (|+〉〈+|) = 1 + t

d
I − |+〉〈+|, (127)

where |+〉 ≡ 1√
d

∑
j |j 〉. Since we assume that �t is positive,

it follows that 1 + t � d. �
Corollary 18. The function

RD(ρ) := log2 [1 + CR(ρ)] (128)

which we call logarithmic robustness of dephasing is a
faithful measure of coherence [i.e., RD(ρ) = 0 iff �(ρ) = ρ]
satisfying

0 � RD(ρ) � log2 d. (129)

Conjecture 19. RD is additive. It is true for pure states (see
below), unknown for mixed states.

Lemma 20. For a pure state |ψ〉 =∑n
x=1

√
px |x〉, with n �

d and px > 0,

CR(|ψ〉) = n − 1. (130)

Proof. Let |φ〉 =∑n
x=1

√
qxe

iθx |x〉, then

〈ψ |ρ|ψ〉
〈ψ |�(ρ)|ψ〉 =

∑
x �=x ′

√
pxqxpx ′qx ′ei(θx−θx′ )∑

x pxqx

�
∑

x �=x ′
√

pxqxpx ′qx ′∑
x pxqx

= u†Au, (131)

where u is a unit vector in Cn with components

ux ≡
√

pxqx√∑n
x ′=1 px ′qx ′

(132)

and A is the n × n matrix

A =

⎛⎜⎜⎜⎜⎝
0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0

⎞⎟⎟⎟⎟⎠. (133)

Hence, by taking θx = 0 and

qx = 1

px

/ n∑
x ′=1

1

px ′
(134)

we get that u = 1√
n

(1, . . . ,1)T corresponds to the maximal

eigenvalue of A; i.e. for this choice u†Au = n − 1. This
completes the proof. �

III. QUBIT COHERENCE

In this section we focus exclusively on maps whose input
and output space consists of single-qubit density matrices. We
will say that a qubit state ρ is in standard form when expressed
as

ρ =
(

p r

r 1 − p

)
, p � 1

2
, r � 0 (135)

in the incoherent basis. Any state ρ can always be transformed
into standard form by an incoherent unitary transformation,
and thus each state can be uniquely parametrized by the tuple
(p,r) with p � 1

2 , r � 0.

A. Channels: IO-MIO equivalence

The main result we prove here is that every MIO channel E
has a Kraus operator implementation that belongs to IO.

Theorem 21. IO=MIO for CPTP maps E : B(C2) →
B(C2).

Proof. Consider an arbitrary MIO CPTP map E with Kraus
operator representation {Mj }tj=0. We want to prove that E
has another Kraus operator representation with each operator
having one of the forms given in Eq. (141). Since E is MIO,
we have

m−1∑
j=0

〈y|Mj |x〉〈x|M†
j |y ⊕ 1〉 = 0, ∀ x,y ∈ {0,1}. (136)

Our goal is to find another Kraus operator representation
{M̃j }t̃j=0 of the channel E such that

〈y|M̃j |x〉〈x|M̃†
j |y ⊕ 1〉 = 0, ∀ x,y ∈ {0,1},∀ j. (137)

We describe iteratively how this can always be done. In
the following, recall that Kraus operators {M̃j }t̃j=0 generate

the same channel E iff M̃j =∑m−1
k=0 ujkMk for some unitary

matrix ujk .
(1) Take x = 0. Find two distinct values (j,j ′) such that

〈0|Mj |x〉〈x|M†
j |1〉 �= 0 and 〈0|Mj ′ |x〉〈x|M†

j ′ |1〉 �= 0; relabel
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and denote these by (j,j ′) = (0,1). If two distinct values
cannot be found, then by Eq. (136) we must have that
〈0|Mj |x〉〈x|M†

j |1〉 = 0 for all j , and in which case set M̃j =
Mj for all j and proceed to step 4. Otherwise, proceed to step
2.

(2) Consider an m × m unitary matrix whose only non-
trivial action consists of a 2 × 2 block (u00 u01

u10 u11
). Then, a

different Kraus operator representation for E is realized by
the elements M̃i = ui0M0 + ui1M1 for i = 0,1 and M̃i = Mi

for i = 2, . . . ,m − 1. The unitary matrix is chosen such that
(u00,u01) is the normalized vector of (−〈0|M1|x〉,〈0|M0|x〉).
With this choice, we have

〈0|M̃0|x〉 = u00〈0|M0|x〉 + u01〈0|M1|x〉 = 0. (138)

(3) Repeat step 1 with the updated set of Kraus operators
{M̃0,M̃1,M̃i}m−1

i=2 .
(4) At this step in the procedure, we have a Kraus

representation {M̃j }m−1
j=0 for E such that either 〈0|M̃j |x〉 = 0 or

〈1|M̃j |x〉 = 0 for all j .
(5) Repeat the previous steps except with choosing x = 1.

In the end, we obtain an ensemble satisfying Eq. (137). This
completes the procedure. �

B. Transformations: SIO-DIO-IO-MIO equivalence

We now proceed to show that in terms of a single incoherent
transformation ρ → σ , MIO is just as powerful as SIO.
Since SIO is both a subset of IO and DIO it follows that
SIO=OI=DIO=MIO on qubits. As demonstrated above, the
robustness of coherence and the � robustness of coherence for
qubits can be computed explicitly:

CR(ρ) = 2r,
(139)

C�,R(ρ) = r√
p(1 − p)

.

In general, CR is a MIO monotone while C�,R is DIO
monotone. However, we will now show that C�,R is also a
MIO monotone for qubits.

Theorem 22. C�,R is monotonic under MIO channels E :
B(C2) → B(C2).

Proof. By Theorem 21, it suffices to prove that C�,R is an
IO monotone. For qubits, any CP map E that belongs to IO
can always be expressed as

σ = E(ρ) =
∑

α

JαρJ †
α +
∑

β

KβρK
†
β

+
∑

γ

Lγ ρL†
γ +
∑

δ

MδρM
†
δ , (140)

where the Kraus operators {Jα,Kβ,Lγ ,Mδ}α,β,γ,δ have the
general form

Jα = jα0|0〉〈0| + jα1|1〉〈1|,
Kβ = kβ0|1〉〈0| + kβ1|0〉〈1|,

(141)
Lγ = lγ 0|0〉〈0| + lγ 1|0〉〈1|,
Mδ = mδ0|1〉〈0| + mδ1|1〉〈1|.

Crucially, these operators share the following relationships
with �:

�(JαρJ †
α ) = Jα�(ρ)J †

α,

�(KβρK
†
β) = Kβ�(ρ)J †

β,

(142)
�(Lγ ρL†

γ ) = Lγ ρL†
γ ,

�(MδρM
†
δ ) = MδρM

†
δ

for all ρ. Suppose now that t � 0 satisfies (1 + t)�(ρ) − ρ �
0. Then, for an IO channel E we have

(1 + t)�[E(ρ)] − E(ρ) =tω +
∑

α

Jα[(1 + t)�(ρ) − ρ]J †
α

+
∑

β

Kβ[(1 + t)�(ρ) − ρ]K†
β,

where

ω = t

(∑
γ

Lγ ρL†
γ +
∑

δ

MδρM
†
δ

)
� 0.

By the assumption (1 + t)�(ρ) − ρ � 0 we likewise have
(1 + t)�[E(ρ)] − E(ρ) � 0. From the definition of C�,R , it
therefore follows that

C�,R(ρ) � C�,R[E(ρ)]. (143)

�
Next, we prove that monotonicity of C�,R(ρ) is also

sufficient for an SIO (and therefore also MIO) transformation.
Lemma 23. Let ρ and σ have standard-form parametriza-

tions (p,r) and (q,t), respectively. Then, ρ can be transformed
into σ by SIO if and only if

CR(ρ) � CR(σ ) and C�,R(ρ) � C�,R(σ ). (144)

Proof. We will describe a channel E consisting exclusively
of Kraus operators having the form Jα and Kβ as given in
Eq. (137). The transformation will consist of two steps ρ →
σmax → σ , where σmax has parameters [q,tmax(q)] with

tmax(q) =
{

r if p � q,

r

√
q(1−q)
p(1−p) if q � p.

(145)

The channel attaining tmax is given by ρ 	→ σmax = JρJ † +
KρK†, where

j 2
0 =
{

p+q−1
2p−1 if p � q,

q

p

p+q−1
2q−1 if q � p,

j 2
1 =
{

p−q

2p−1 if p � q,

1−q

1−p

p+q−1
2q−1 if q � p,

(146)

k2
0 = 1 − j 2

0 ,

k2
1 = 1 − j 2

1 .

Finally, the transformation σmax → σ can be seen as SIO
feasible by noting that any t < tmax(q) can be reached for a
fixed value of q by applying a dephasing channel ρ = J1ρJ

†
1 +

J2ρJ
†
2 where J1 = (cos θ 0

0 sin θ) and J2 = (sin θ 0
0 cos θ), for some

appropriately chosen θ . �
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Combining Theorem 22 with Lemma 23, we therefore
obtain the main result:

Theorem 24. For qubit states ρ and σ , the transformation
ρ → σ is possible by either DIO, IO, or MIO if and only if
both CR(ρ) � CR(σ ) and C�,R(ρ) � C�,R(σ ).

C. Coherence measures

For qubit states, a number of coherence measures have been
proposed and evaluated, in direct analogy to entanglement
measures in two-qubit systems. For instance, the so-called
coherence of formation and concurrence of coherence [6,7]
have been proposed, and both can be shown as being equivalent
to the �1 norm: C�1 (ρ) = 2r [6,33]. Distinct from these is
the relative entropy of coherence, which was known before
under the name G asymmetry (see [34] and references therein),
which takes the form

Crel(ρ) = S[�(ρ)] − S(ρ). (147)

All measures in qubit systems can be seen as arising from the
two robustness measures CR and C�,R according to

C�1 (ρ) = CR(ρ),

Crel(ρ) = f

[
CR(ρ)

C�,R(ρ)

]
− f

[
CR(ρ)

C�,R(ρ)

√
1 − C�,R(ρ)2

]
,

(148)

where f (x) = h( 1
2 [1 − √

1 − x2]) and h(x) = −x log2 x −
(1 − x) log2(1 − x).

IV. COHERENCE THEORIES BASED ON ASYMMETRY

A. Translation-invariant operations (TIO)

Let us now comment further on asymmetry-based resource
theories of coherence. For a general compact group G′, a G′-
asymmetry resource theory identifies its free states as those
that are invariant under G′ twirling

G(ρ) =
∫

G′
dg U (g)ρU (g)†,

where U : G′ → H is the representation of G′ on the Hilbert
space H and dg the Haar measure. The free operations are G′
covariant:

E[U (g)ρU (g)†] = U (t)[E(ρ)]U (g)†

for all g ∈ G′ and all ρ. A coherence resource theory based on
asymmetry then identifies incoherent states (resp. operations)
with the free states (resp. operations) defined with respect
to the particular symmetry. For instance, if H is some
observable, say the Hamiltonian, one can consider the unitary
group of translations {e−itH : t ∈ R}. A state ρ is said to be
incoherent if it commutes with every element of the group,
i.e., e−itH ρeitH = ρ for all t . The class of translation-invariant
operations (TIO) consists of all CPTP maps E that commute
with the unitary action of the group, i.e.,

E[e−itH (ρ)eitH ] = e−itH [E(ρ)]eitH

for all t and all ρ. The class TIO was first introduced and
studied in Ref. [21]. When H is proportional to the number

operator N̂ , then the unitary group of translations provides a
representation for U (1) [18].

Notice that the approach to defining coherence in the
asymmetry picture is different than the approach used in
the PIO/SIO/IO/DIO/MIO theories. The latter adopts a basis-
dependent definition of coherence in which a state is incoherent
if and only if it is diagonal in some specified basis I, called
the incoherent basis. In order that a G′-asymmetry theory
likewise identifies I as the free states, one needs that G′ and
its representation U are such that

G(ρ) = �(ρ).

In the case of TIO, the condition that G(ρ) ∈ I amounts to the
generator H having a nondegenerate spectrum. But, in general,
degeneracies will exist and the resulting resource theory
will look very different than the basis-dependent theories of
PIO/SIO/IO/DIO/MIO.

As an example of how TIO can define a resource theory
fundamentally different than PIO/SIO/IO/DIO/MIO, consider
a pair of bosons such as the electrons of a helium atom.
Due to the exchange symmetry, a natural incoherent basis to
consider for this system is {|b0〉 = √

1/2(|01〉 + |10〉), |b1〉 =√
1/2(|01〉 − |10〉), |b2〉 = |00〉, |b3〉 = |11〉}. In the basis-

dependent theories of PIO/SIO/IO/DIO/MIO, a state of this
system is incoherent if and only if it is diagonal in this basis.
However, in a coherence resource theory based on U (1) asym-
metry of the tensor product space C2 ⊗ C2, |b0〉 and |b1〉 are
still identified as incoherent states, but so is the superposition
state |ψ〉 = √

1/2(|b0〉 + |b1〉) as well as the mixture ρ =
1/2(|b0〉〈b0| + |b1〉〈b1|). Typically, |ψ〉 is called a coherent
superposition whereas ρ is an incoherent superposition. This
example shows how the notion of coherence in a TIO resource
theory depends crucially on the particular representation of
the symmetry group. Therefore, one cannot make a general
comparison between PIO/SIO/IO/DIO/MIO and TIO since
their relationship will depend on the representation.

Conceptuallly, a TIO-based resource theory can be inter-
preted as defining coherence with respect to just individual
degrees of freedom for a system, whereas a basis-dependent
definition of coherence considers all degrees of freedom. In
this sense, a basis-dependent theory of coherence may be
seen as capturing a more complete notion of coherence for a
system. In terms of the generator H , TIO theory characterizes
coherence between different eigenspaces of H rather than
among a specific set of eigenstates. In certain settings, it
may be desirable to think of coherence in this way [21]. See
also Ref. [14] for a complementary exposition of the different
approaches to defining coherence.

In the following, we introduce two resource theories of
asymmetry with the property that G(ρ) = �(ρ). In fact, we
identify the largest group with this property (Proposition 28).

B. G-asymmetry and N-asymmetry resource theories

The set of all incoherent unitary matrices forms a group
which we denote by G. The group G consists of all d × d

unitaries of the form πu, where π is a permutation matrix and
u is a diagonal unitary matrix (with phases on the diagonal).
We denote by N the group of d × d diagonal unitary matrices
and by � the group of permutation matrices. Note that N is
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a normal subgroup of G, and G = N � � is the semidirect
product of N and �. Clearly, the group G is compact and the
twirlings over N and G are given by∫

N

dg Tg(ρ) = �(ρ) and
∫

G

dg Tg(ρ) = 1

d
I, (149)

where Tg(ρ) := gρg†, and the integration is with respect to the
Haar measure dg.

1. G-covariant maps

We would like to characterize the set of all G-covariant
quantum channels. That is, we would like to characterize all
CPTP maps that satisfy

[E,Tg] = 0, ∀ g ∈ G. (150)

Consider the following three CPTP maps that are all G

covariant:

E (1)(ρ) = ρ,

E (2)(ρ) = 1

d − 1
[I − �(ρ)], (151)

E (3)(ρ) = 1

d − 1
[d�(ρ) − ρ].

Remark. (1) The map E (1) is the trivial map and it is
covariant under all groups (with unitary representations),
whereas the last two maps are nontrivial as they are not
covariant with respect to all groups. (2) The two convex
combinations of E (1), E (2), and E (3),

1

d2
E (1)(ρ) + d − 1

d
E (2)(ρ) + d − 1

d2
E (3)(ρ) = 1

d
I,

d

d + 1
E (2)(ρ) + 1

d + 1
E (3)(ρ) = 1

d2 − 1
(dI − ρ)

are also covariant under all groups (note that the coefficient d

in front of I in the right-hand side of the second equation is
necessary since otherwise the map is not completely positive).
(3) The map E (3) is completely positive (see Theorem 17) and
the coefficient d in front of �(ρ) is necessary since otherwise
the map is not positive. (4) The dephasing map is the following
convex combination of E (1) and E (3):

�(ρ) = 1

d
E (1)(ρ) + d − 1

d
E (3)(ρ). (152)

The following theorem shows that up to convex combina-
tions, these three CPTP maps are all the G-covariant maps.

Theorem 25. (a) Let G be as above, U be a unitary matrix,
and U(ρ) := UρU †. Then,

[U ,�] = 0 ⇐⇒ U ∈ G. (153)

(b) A CPTP map E is G covariant if and only if E is a convex
combination of the three CPTP maps defined above. Explicitly,
E is G covariant if and only if

E(ρ) = q1ρ + q2

d − 1
[I − �(ρ)] + q3

d − 1
[d�(ρ) − ρ]

(154)

for some qi � 0 with
∑3

i=1 qi = 1.

Proof. (a) A direct calculation shows that � is a G-covariant
map [it also follows from part (b)]. Conversely, suppose
[�,U] = 0. Note that that for a given fixed x,

�[U(|x〉〈x|)] =
∑
x ′

|〈x ′|U |x〉|2|x ′〉〈x ′|,

U[�(|x〉〈x|)] = U |x〉〈x|U †. (155)

Comparing the two expressions gives 〈x ′|U |x〉 = 0 except for
one value of x ′. Hence, U ∈ G. �

Before we prove part (b) of the theorem, we first prove the
following lemma:

Lemma 26. Let E be an N-covariant CPTP map; that is,

[E,Tg] = 0, ∀ g ∈ N. (156)

Then, E has the following Kraus decomposition:

E(ρ) =
∑

j

MjρM
†
j +
∑
x �=x ′

Jxx ′ρJ
†
xx ′ , (157)

where all Mj =∑x ajx |x〉〈x| are diagonal matrices and
Jxx ′ = bxx ′ |x〉〈x ′|.

Proof. We will apply Lemma 1 of [18] to the characteriza-
tion of N -invariant operations. Note first that the irreducible
representations of N ∼= U (1)d are labeled by d integers k =
(k1, . . . ,kd ), and are all one dimensional. The kth irreducible
representation uk : N → C has the form

uk(�θ) = ei �θ ·k, (158)

where �θ = (θ1, . . . ,θd ) ∈ U (1)d . It follows from Lemma 1 of
[18] that the Kraus operators Kk,α of an N -invariant operation
can be labeled by the irrep k and a multiplicity index α, and
satisfy

g�θ Kk,α g
†
�θ = ei �θ ·kKk,α, ∀ �θ ∈ U (1)d, (159)

where g�θ is the diagonal matrix with components eiθ1 , . . . ,eiθd

on the diagonal.
Note that by virtue of the fact that the irreps are one

dimensional, the Kraus operators do not get mixed with one
another under the action of N (this provides a significant
simplification relative to non-Abelian groups). The most
general expression for Kk,α is

Kk,α =
∑
x,x ′

c
k,α
xx ′ |x〉〈x ′|, (160)

with some coefficients c
k,α
xx ′ . Plugging this into (159) yields the

constraint

c
k,α
xx ′ (ei(θx−θx′ ) − ei �θ ·k) = 0, ∀ �θ ∈ U (1)d . (161)

Hence, c
k,α
xx ′ must be zero unless k = 0 and x = x ′, or the x

and x ′ components of k are 1 and −1, respectively, and all
other components are zero. This completes the proof of the
lemma. �

Note that the lemma above provides the form of the Kraus
operators in the resource theory of symmetric operations under
the group N . This can be viewed as a physical resource theory
of coherence. However, as discussed in the paper, resource
theories of asymmetry cannot be used for coherence due to
decoherence subspaces. Moreover, as we can see from the
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above form of the Kraus operators, in the resource theory of
N -asymmetry permutations are not free! We are now ready to
prove Theorem 25.

Proof. In addition to the form in (157), E also has to
commute with all permutations:

[E,Tπ ] = 0, ∀ π ∈ �. (162)

In particular, we get

Tπ [E(ρ)] =
∑
j,x,x ′

ajxājx ′ρxx ′ |π (x)〉〈π (x ′)|

+
∑
x ′ �=x

|bxx ′ |2ρx ′x ′ |π (x)〉〈π (x)|, (163)

whereas

E[Tπ (ρ)] =
∑
j,x,x ′

ajπ(x)ājπ(x ′)ρxx ′ |π (x)〉〈π (x ′)|

+
∑
x ′ �=x

|bπ(x)π(x ′)|2ρx ′x ′ |π (x)〉〈π (x)|. (164)

Hence, comparing the off-diagonal terms of E[Tπ (ρ)] =
Tπ [E(ρ)] give∑

j

ajx ājx ′ =
∑

j

ajπ(x)ājπ(x ′) ≡ c (165)

since E[Tπ (ρ)] = Tπ [E(ρ)] holds for all ρ and for all permu-
tations π ∈ �. The constant c ∈ R and is independent of x

and x ′ Comparing the diagonal terms of E[Tπ (ρ)] = Tπ [E(ρ)]
gives∑

j

|ajx |2ρxx +
∑

{x ′:x ′ �=x}
|bxx ′ |2ρx ′x ′

=
∑

j

|ajπ(x)|2ρxx +
∑

{x ′:x ′ �=x}
|bπ(x)π(x ′)|2ρx ′x ′ ∀ ρ. (166)

Since the equation above holds for all ρ we must have∑
j

|ajx |2 =
∑

j

|ajπ(x)|2 ≡ a (167)

and

|bxx ′ |2 = |bπ(x)π(x ′)|2 ≡ b, (168)

where a and b are non-negative real numbers independent of
x and x ′. We therefore get that

E(ρ) =
∑

x

aρxx |x〉〈x| +
∑
x �=x ′

cρxx ′ |x〉〈x ′| +
∑
x ′ �=x

bρxx |x ′〉〈x ′|

= a�(ρ) + c[ρ − �(ρ)] + b
∑

x

ρxx(I − |x〉〈x|)

= a�(ρ) + c[ρ − �(ρ)] + b[I − �(ρ)]. (169)

Note that the condition
∑

j M
†
jMj +∑x �=x ′ J

†
xx ′Jxx ′ = I gives

a + b(d − 1) = 1. (170)

We therefore conclude

E(ρ) = a�(ρ) + c[ρ − �(ρ)] + 1 − a

d − 1
[I − �(ρ)], (171)

where 0 � a � 1. We now argue that

− a

d − 1
� c � a. (172)

Indeed,

|c| �
∑

j

|ajxājx ′ | �
∑

j

1

2
(|ajx |2 + |ajx ′ |2) = a (173)

and we also have

0 �
∑

j

(∑
x

ajx

)(∑
x ′

ājx ′

)

=
∑

x

∑
j

|ajx |2 +
∑
x �=x ′

∑
j

ajx ājx ′ = da + d(d − 1)c,

which is equivalent to c � −a/(d − 1). Finally, we note that
(171) can be expressed as

E(ρ) =a + c(d − 1)

d
E (1)(ρ) + (1 − a)E (2)(ρ)

+ (a − c)(d − 1)

d
E (3)(ρ). (174)

The constraints on c in (172) ensure that the above equation
is a convex combination of E (1), E (2), and E (3). This completes
the proof of the theorem. �

2. N-covariant maps

The N -covariant operations given in Lemma 26 are very
similar to the “cooling operations” given in [35]. The only
difference is that Jxx ′ is zero unless x < x ′ (in the context
of thermodynamics, the x index corresponds to energy levels,
and cooling operations can not increase the energy). Therefore,
N -covariant operations are a bit more powerful than cooling
operations, as can be seen from the following theorem, when
compared with Theorem 1 in [35].

Theorem 27. Let ρ,σ be two density matrices of the same
dimensions, with all the off-diagonal terms of ρ being nonzero.
Define the matrix Q = (qxx ′ ) as follows:

qxx ′ :=
{

min
{

σxx

ρxx
, 1
}

if x = x ′,
σxx′
ρxx′ if x �= x ′. (175)

Then, σ = E(ρ) where E is N -invariant operation if and only
if Q � 0.

Proof. Let ax ≡ (ajx)j where ajx are the coefficients of Mj

as in Eq. (157). Denote also hxx ′ ≡ a†xax ′ , and

rx ′ |x ≡
{
hxx if x = x ′,
|bxx ′ |2 if x �= x ′, (176)

where bxx ′ are the coefficients associated with the operator
Jxx ′ in Eq. (157). Since E is trace preserving,

∑
x ′ rx ′|x = 1.

Note that the matrix H = (hxx ′ ) is Gramian and therefore
positive semidefinite. Recall also that the components of any
positive-semidefinite matrix can be written as a†xax ′ for some
vectors ax . Hence, from (157) it follows that there exists N -
covariant map E such that σ = E(ρ) iff there exists H � 0 and
a column stochastic matrix R = (rx|x ′ ) with diagonal elements
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rx|x = hxx such that

σxx ′ ≡
{∑

y rx|yρyy if x = x ′,
hxx ′ρxx ′ if x �= x ′. (177)

From the relation above we get

hxx ′ = σxx ′

ρxx ′
≡ qxx ′ for x �= x ′,

hxx = rx|x � min

{
σxx

ρxx

,1

}
≡ qxx. (178)

Suppose now that σ = E(ρ). Then, there exists H � 0 that
satisfies the above relations. Since Q and H are only different
in the diagonal elements we can write Q = H + D where
D is some diagonal matrix. The equation above shows that
D � 0. Therefore, Q � 0. Conversely, suppose Q � 0. We
need to show that there exists H � 0 and column stochastic
matrix R (with the same diagonal as H ) that satisfy Eq. (177).
We take H = Q and show that there exists R with the
desired properties. For simplicity of the exposition here,
suppose that ρxx � σxx for x = 1, . . . ,k and ρxx > σxx for
x = k + 1, . . . ,d. We take the column stochastic matrix R to
have the following form:

R =
(

Ik CD′
0 D

)
, (179)

where Ik is the k × k identity matrix, 0 is the (d − k) × k

zero matrix, D is the (d − k) × (d − k) diagonal matrix with
diagonal elements {σxx/ρxx} with x = k + 1, . . . ,d, the matrix
C is a k × (d − k) column stochastic matrix, and D′ is a
(d − k) × (d − k) diagonal matrix with diagonal elements
{1 − σxx/ρxx} with x = k + 1, . . . ,d. Hence, R is column
stochastic as long as C is column stochastic. With this form of
R, the condition σxx =∑y rx|yρyy is equivalent to⎛⎜⎜⎝

σ11

σ22
...

σkk

⎞⎟⎟⎠ =

⎛⎜⎜⎝
ρ11

ρ22
...

ρkk

⎞⎟⎟⎠+ C

⎛⎜⎜⎝
ρ(k+1)(k+1) − σk+1)(k+1)

ρ(k+2)(k+2) − σ(k+2)(k+2)
...

ρdd − σdd

⎞⎟⎟⎠. (180)

Define r to be the k-dimensional vector whose components
are σxx − ρxx for x = 1, . . . ,k, and t the (d − k)-dimensional
vector whose components are ρxx − σxx for x = k + 1, . . . ,d.
By definition, both vectors have non-negative components, and
note also that the sum of the components of r is the same as
the sum of the components of t. Hence, there exists a column
stochastic matrix C that satisfies r = Ct. This completes the
proof. �

In the next proposition we show that the group N is the
largest group possible with the property that its twirling is the
dephasing map �.

Proposition 28. Let G′ be any group with unitary represen-
tation U (g) for g ∈ G′ such that∫

G′
dg U (g)ρU (g)† = �(ρ). (181)

Then, the set {U (g)}g∈G′ is a subgroup of N .

Proof. If
∫
G′ dg U (g)ρU (g)† = �(ρ), then∫

G′
dg U (g)|x〉〈x|U (g)† = |x〉〈x|, ∀ x = 1, . . . ,d (182)

which gives

U (g)|x〉 = eiθx (g)|x〉, (183)

where {θx}dx=1 are one-dimensional representations of G′. The
equation above clearly indicates that U (g) ∈ N so that U (G′)
must be a subgroup of N . In this sense, N is the largest group
with the property that G(ρ) = �(ρ).

The requirementG(|x〉〈x ′|) = 0 for x �= x ′ gives in addition∫
G′

dg ei[θx (g)−θx′ (g)] = δxx ′ . (184)

Taking dg = dα
2π

and θx(g) = xα with α ∈ [0,2π ] reproduce
the U (1) twirling. Of course, the equation above is also
satisfied for θx(g) = x2α, but still the group G′ = U (1). �

V. OPEN PROBLEMS

We conclude with a few open questions.

A. State transformations

Pure-state transformations under SIO (both asymptotic and
single-copy cases) have been completely characterized in
this paper via the one-to-one correspondence with LOCC.
Consequently, among all coherence models discussed here,
the SIO model is the most similar to the theory of pure
bipartite entanglement. Particularly, in the single-copy regime,
pure-state transformations are determined by the majorization
criterion (similar to Nielsen theorem in entanglement theory).
A key open question is whether or not this criterion can be
extended to the IO and DIO models.

Since majorization is both a necessary and sufficient
condition for an SIO pure-state transformation |ψ〉 → |φ〉,
it follows that it is sufficient for both IO and DIO (recall SIO
is a subset of both IO and DIO). In IO it is also known to be
necessary if both pure states have a full Schmidt rank since
here the transformation is actually accomplished by sIO. But,
as we discussed in this paper, it is not clear if it is still the case
when the Schmidt rank of the target state |φ〉 is strictly smaller
than the Schmidt rank of |ψ〉.

As for DIO, we have shown that all the Rényi entropies of
the Schmidt components of a pure state are monotones under
DIO. In [36] it was shown that if Sα(ψ) � Sα(φ) for all α then
there exists a catalyst |C〉 such that the Schmidt components
of |ψ〉|C〉 are majorized by the Schmidt components of
|φ〉|C〉. Therefore, the existence of a catalyst provides a
sufficient condition for the transformation |ψ〉 → |φ〉 under
DIO. This means that necessary and sufficient condition for
pure-state transformation under DIO are somewhere between
majorization and catalytic majorization.

Majorization also provides sufficient condition for |ψ〉 →
|φ〉 under MIO, but here we also know that it is not necessary.
In fact, MIO can increase the Schmidt rank as demonstrated
in Theorem 14. However, Theorem 14 only involves a
transformation from pure qubit to pure qudit. It is left open
to extend it to higher dimensions.
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Necessary and sufficient conditions for mixed-state trans-
formations have only been found for the qubit case, and
a special type of asymmetry-based theory with symmetry
groups G and N . However, in higher dimensions, necessary
and sufficient conditions for mixed-state transformations for
SIO/IO/DIO/MIO are not known. In the asymptotic limit of
many copies of a mixed state we know that IO is not a
reversible model, and distillation and formation rates have
been calculated in [7]. MIO, on the other hand, is a reversible
quantum resource theory (QRT) in the asymptotic limit of
many copies, due to a general QRT theorem proved in [11].
However, the asymptotic distillation and formation rates are
not known for SIO and DIO.

Finally, another area of open inquiry pertains to determining
the precise relationship between SIO, IO, and DIO. To our
knowledge, no operational gap in terms of state transformation
is known between these classes, despite the fact that they
represent distinct collections of CP maps. More precisely, for
every transformation ρ → σ feasible by IO (resp. DIO), is it
also feasible by DIO (resp. IO) as well as SIO? We suspect
that such examples can be found, but perhaps not when ρ is
pure.

B. Monotones

There are few open problems regarding coherence mono-
tones. In [3] a measure of coherence under IO was introduced.
This measure was defined by

C�1 (ρ) =
∑
x �=y

ρxy, (185)

where ρxy are components of ρ in the incoherent basis. We
have shown that the robustness of coherence as defined in (105)
equals C�1 for pure states and mixed states with non-negative
real off-diagonal terms. While the robustness of coherence is a
monotone under MIO, it is not known if C�1 is also a monotone
under MIO.

In the Appendix we have also introduced many monotones
under DIO. These sets of monotones are closely related to
monotones under thermal operations. In the resource theory of
quantum thermodynamics, the free (or “thermal”) operations
take the form ρA → trB[U (ρA ⊗ γ

(T )
B )U †], where U is any

unitary that commutes with the joint Hamiltonian, and γ
(T )
B is

the Gibbs state at temperature T [37,38]. It was also observed
in [39] that thermal operations are time-translation symmetric,
and in particular belong to DIO when the incoherent basis is
taken to be the energy eigenstates, assuming no degeneracy
in the energy eigenstates. Therefore, all the DIO monotones
introduced in this appendix are also monotones under thermal

operations. In the case of degeneracy in the energy eigenstates,
it is left open how to apply the DIO monotones to thermody-
namics.

C. Relating coherence with maximally correlated entanglement

Propositions 5 and 10 show that every transformation
ρ → σ by either SIO or sIO corresponds to an LOCC trans-
formation between the corresponding maximally correlated
states ρ(mc) → σ (mc). One obtains the maximally correlated
state ρ(mc) from the single-system state ρ via the “coherent
channel” |x〉 → |xx〉. In and of itself, such a channel appears
in the theory of coherent communication where the tasks of
coherent superdense coding and coherent teleportation are
fully dual to one another (see Chap. 7 of [40]). We have been
interested in using this channel to map the theory of SIO/sIO
into one-way/two-way LOCC. A natural question is whether
or not such a connection can also be established between
IO and LOCC. Such a relationship has been conjectured
in Ref. [7], and a probabilistic version of it was proven
in Ref. [41]. Specifically, it was shown that for every IO
transformation ρ → σ , the transformation ρ(mc) → σ (mc) can
always be accomplished with some nonzero probability. It
is unknown whether a deterministic LOCC implementation
is always possible, and whether such a result also holds for
transformations ρ → σ that are feasible using DIO.

Lastly, Theorem 14 shows that ρ → σ by MIO fails to
imply ρ(mc) → σ (mc) by LOCC. Unlike LOCC, MIO is able
to increase the Schmidt rank under pure-state transformations.
An interesting open question is whether, analogous to MIO,
the Schmidt rank can be increased by some nonentangling
operation.

Note added. Recently, we became aware of independent
work by Marvian and Spekkens [14], where the physical
meaning of incoherent operations is analyzed and the class
of dephasing-covariant incoherent operations is presented.
Also recently, Bu and Xiong have demonstrated a state
transformation that can be performed by DIO but not IO [42].
Their example also shows that �-1 norm is not a monotone
under MIO, thus resolving one of the open problems listed
above.
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