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We test a general method to detect lower bounds of the quantum channel capacity for two-qubit correlated
channels. We consider in particular correlated dephasing, depolarizing, and amplitude damping channels. We
show that the method is easily implementable, it does not require a priori knowledge about the channels, and it
is very efficient, since it does not rely on full quantum process tomography.
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I. INTRODUCTION

The property of a quantum communication channel to con-
vey quantum information is quantified in terms of the quantum
capacity Q [1–4], which corresponds to the maximum number
of qubits that can be reliably transmitted per channel use.
In any realistic scenario noise is unavoidably present and
the amount of information that can be transmitted is lower
than in the ideal noiseless case. It is therefore important to
develop efficient means to establish whether the channel can
still be profitably employed for information transmission in
the presence of noise, which may be completely unknown.

A standard method to infer the effect of noise on a commu-
nication channel relies on quantum process tomography [5],
however this is a demanding procedure in terms of the number
of different measurement settings needed, since it scales as
d4 for a finite d-dimensional quantum system. In Ref. [6]
a method was recently proposed to gain some information
about the channel’s ability to transmit quantum information by
employing a smaller number of measurements, which scales
as d2. A lower bound on the quantum channel capacity was
derived and it was shown that it can be experimentally accessed
with a simple procedure. Such a procedure can be applied to
any unknown quantum communication channel. The efficiency
of the method was tested for many examples of single-qubit
channels and for the generalized Pauli channel in an arbitrary
finite dimension.

In this paper we generalize this detection method to
correlated qubit channels and test its efficiency in this case.
Correlated qubit channels were originally studied in terms of
classical information transmission and it was shown that for
certain ranges of correlation strengths the use of entanglement
allows one to enhance the amount of transmitted information
along the channel [7]. Quantum memory (or correlated)
channels then attracted growing attention and interesting new
features emerged by modeling relevant physical examples,
including depolarizing channels [8], Pauli channels [9–11],
dephasing channels [12–16], amplitude damping channels
[17,18], Gaussian channels [19], lossy bosonic channels
[20,21], spin chains [22], collision models [23], and a micro-
maser model [24] (for a recent review on quantum channels
with memory effects see Ref. [25]).

The paper is organized as follows. In Sec. II we review
the method of bounding the quantum capacity by means of
the Shannon entropy pertaining to a vector of probabilities

that can be inferred by performing a few measurements on the
output of the channel and a reference system. In the subsequent
sections we apply the method to two-qubit correlated chan-
nels, considering explicitly the memory dephasing channel
(Sec. III), the memory depolarizing channels (Sec. IV), and
the fully correlated damping channel (Sec. V). We summarize
the results of the paper in Sec. VI.

II. DETECTION METHOD

Let us consider a generic quantum channel E acting on a
single system and define EN = E⊗N , where N represents the
number of channel uses. The quantum capacity Q is defined
as [1–4]

Q = lim
N→∞

QN

N
, (1)

where QN = maxρ Ic(ρ,EN ), and Ic(ρ,EN ) denotes the coher-
ent information [26]

Ic(ρ,EN ) = S[EN (ρ)] − Se(ρ,EN ). (2)

In Eq. (2), S(ρ) = − Tr[ρ log2 ρ] is the von Neumann en-
tropy and Se(ρ,E) represents the entropy exchange [27],
i.e., Se(ρ,E) = S[(IR ⊗ E)(|�ρ〉〈�ρ |)], where |�ρ〉 is any
purification of ρ by means of a reference quantum system
R, namely, ρ = TrR[|�ρ〉〈�ρ |].

In Ref. [6] we derived a lower bound for the quantum
capacity Q that can be easily accessed without requiring full
process tomography of the quantum channel. We briefly review
the derivation in the following. For any complete set of or-
thogonal projectors {�i}, one has [28] S(ρ) � S(

∑
i �iρ�i).

Then, for any orthonormal basis {|�i〉} for the tensor product
of the reference and the system Hilbert spaces, one has the
following bound to the entropy exchange:

Se(ρ,E) � H ( �p ), (3)

where H ( �p ) ≡ −∑
i pi log2 pi denotes the Shannon entropy

for the vector of the probabilities {pi}, with

pi = Tr[(IR ⊗ E)(|�ρ〉〈�ρ |)|�i〉〈�i |]. (4)

From Eq. (3) one obtains the chain of bounds

Q � Q1 � Ic(ρ,E1) � S[E(ρ)] − H ( �p ) ≡ Qdet, (5)

which holds for any ρ and �p. A lower bound Qdet to the
quantum capacity of an unknown channel can then be detected
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by preparing a bipartite pure state |�ρ〉 and sending it through
the channel IR ⊗ E , where the unknown channel E acts
on one of the two subsystems. Suitable local observables
on the joint output state are then measured in order to
estimate S[E(ρ)] and �p and to compute Qdet. Typically, for
a fixed measurement setting, one can infer different vectors
of probabilities pertaining to different sets of orthogonal
projectors, as will be shown in the following. Moreover, one
could also adopt an adaptive detection scheme to improve the
bound (5) by varying the input state |�ρ〉. Since no information
is given a priori about the communication channel, typically
we always choose a maximally entangled input state so that
the reduced input ρ has maximum input entropy.

We will assume that only the local observables Oi ⊗ Oi

on the system and reference are measured, where {Oi} is a
tomographically complete set on the system alone. Notice that
the above measurements allow one to measure {Oi} on the
system alone by ignoring the statistics of the measurement
results on the reference. In this way, a complete tomography
of the system output state can be performed and therefore
the term S[E(ρ)] in Eq. (5) can be estimated exactly. Our
goal is to optimize the bound Qdet given these resources.
This procedure requires d2 − 1 measurement settings with
respect to a complete process tomography, where d4 − 1
observables have to be measured; this choice greatly simplifies
the experimental setup to detect the quantum capacity.

Let us now consider explicitly the case of qubits with
{Oi} = {σx,σy,σz}. By denoting the Bell states by

|�±〉 = 1√
2

(|00〉 ± |11〉), |�±〉 = 1√
2

(|01〉 ± |10〉), (6)

it can be proven [6] that the local measurement settings
{σx ⊗ σx,σy ⊗ σy,σz ⊗ σz} allow one to estimate the vector
�p pertaining to the projectors onto the inequivalent bases

B1 = {a|�+〉 + b|�−〉, − b|�+〉 + a|�−〉,
c|�+〉 + d|�−〉, − d|�+〉 + c|�−〉}, (7)

B2 = {a|�+〉 + b|�+〉, − b|�+〉 + a|�+〉,
c|�−〉 + d|�−〉, − d|�−〉 + c|�−〉}, (8)

B3 = {a|�+〉 + ib|�−〉,ib|�+〉 + a|�−〉,
c|�−〉 + id|�+〉,id|�−〉 + c|�+〉}, (9)

with a,b,c,d real and such that a2 + b2 = c2 + d2 = 1.
The probability vector �p for each choice of basis is

evaluated according to Eq. (4). In order to obtain the
tightest bound in (5) given the fixed local measurements
{σx ⊗ σx,σy ⊗ σy,σz ⊗ σz}, the Shannon entropy H ( �p ) will
be then minimized as a function of the bases (7)–(9), by
varying the coefficients a,b,c,d over the three sets. In an
experimental scenario, after collecting the outcomes of the
measurements {σx ⊗ σx,σy ⊗ σy,σz ⊗ σz}, this optimization
step corresponds to classical processing of the measurement
outcomes.

The simplification of choosing a restricted set of mea-
surements may generally come at a cost, since the evaluated
Shannon entropy H ( �p ) in Eq. (5) may give a poor bound to
the quantum capacity. Even for a unitary transformation, a

simplified measurement setting could be inefficient to provide
a detectable bound. For example, a detection scheme for qubits
for the unitary channels

U = 1

2

(
I + i

∑
α=x,y,z

εασα

)
, εα = ±1, (10)

with input |�+〉 and measurement on any of the bases
(6)–(9) gives always a uniform probability vector, hence
H ( �p ) = 2. In these cases it is mandatory to adopt an adaptive
detection scheme: Clearly, by varying the input state to
(IR ⊗ U †)|�+〉 one obtains H ( �p ) = 0 from the Bell basis
(6), thus recovering the result Qdet = 1. A further possibility
is to support our method with efficient estimation methods for
unitaries [29]. We recall that the bound we are providing also
gives detectable lower bounds to the private information [3,6]
and the entanglement-assisted classical capacity [6,30,31].

III. CORRELATED DEPHASING CHANNEL

We consider a dephasing quantum channel that maps two-
qubit input states ρ onto

E(ρ) =
∑
i1,i2

Ai1,i2ρA
†
i1,i2

, ik = 0,1, (11)

where Kraus operators Ai1,i2 are defined in terms of the Pauli
operators σ0 = I and σ1 = σz as

Ai1,i2 = √
pi1,i2Bi1,i2 , Bi1,i2 ≡ σ

(1)
i1

⊗ σ
(2)
i2

, (12)

with
∑

{ik} pi1,i2 = 1 and σ
(k)
ik

acting on the kth qubit. We
describe the joint probabilities in Eq. (12) by a Markov chain
[7,12], namely,

pi1,i2 = pi1pi2|i1 , (13)

with

pi2|i1 = (1 − μ)pi2 + μδi1,i2 . (14)

The parameter μ ∈ [0,1] measures the degree of correlation of
the channel: It is the probability that the same operator (either
I or σz) is applied for two consecutive uses of the channel,
whereas 1 − μ is the probability that the two operators are
uncorrelated. The limiting cases μ = 0 and μ = 1 correspond
to memoryless channels and channels with perfect memory,
respectively. The correlated dephasing channel is easily shown
to be degradable [32], hence Q = Q1, and its quantum capacity
is given by [13,14,33]

Q = {2 − pH2[(1 − p)(1 − μ)]

− (1 − p)H2[p(1 − μ)] − H2(p)}, (15)

where p ≡ p1 and H2(p) ≡ −p log2 p − (1 − p) log2(1 − p)
denotes the binary Shannon entropy. Notice also that Eq. (15)
is invariant by replacing p with (1 − p).

We consider now a detection scheme with two input
qubits A and B that are maximally entangled with two
reference qubits RA and RB , namely, a global input state
|�+〉RA,A|�+〉RB,B . The corresponding output state is given
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FIG. 1. Detected quantum capacity for the correlated dephasing
channel versus the correlation parameter μ for different values of the
probability p (from top to bottom p = 0.01,0.1,0.2,0.3,0.5). Two
maximally entangled input states are used and Bell measurements
are considered. The curves coincide with the quantum capacity given
by Eq. (15).

by


 = IRA
⊗ IRB

⊗ E2(|�+〉〈�+|RA,A ⊗ |�+〉〈�+|RB,B)

= (1 − p)[(1 − p)(1 − μ) + μ]|�+〉〈�+|RA,A

⊗|�+〉〈�+|RB,B

+p[p(1 − μ) + μ]|�−〉〈�−|RA,A ⊗ |�−〉〈�−|RB,B

+p(1 − p)(1 − μ)|�+〉〈�+|RA,A ⊗ |�−〉〈�−|RB,B

+p(1 − p)(1 − μ)|�−〉〈�−|RA,A ⊗ |�+〉〈�+|RB,B.

(16)

The reduced input state for qubits A and B is simply
1
4IA ⊗ IB and it remains invariant under the action of E , hence
the reduced output entropy equals two bits. We consider a
measurement scheme on the output state (16) where the set of
observables σx ⊗ σx , σy ⊗ σy , and σz ⊗ σz is measured on both
couples of qubits RA,A and RB,B. Such a scheme provides
the vector of probabilities

�p = {(1 − p)[(1 − p)(1 − μ) + μ],p[p(1 − μ) + μ],

p(1 − p)(1 − μ),p(1 − p)(1 − μ)}. (17)

A straightforward calculation shows that the detected quantum
capacity coincides with the quantum capacity, namely,

Q ≡ Qdet = 2 − H ( �p ). (18)

Our detected bound provides exactly the quantum capacity,
since Q = Q1 due to the degradability of the channel, and
the components of the vector �p in Eq. (17) correspond to the
eigenvalues of the joint output state (16). In Fig. 1 we plot
the detected capacity (15) versus the correlation parameter
μ, for the values p = 0.01,0.1,0.2,0.3,0.5 (or, equivalently,
p = 0.99,0.9,0.8,0.7,0.5).

IV. CORRELATED DEPOLARIZING CHANNEL

We study the correlated depolarizing quantum channel [7]
that maps two-qubit input states ρ onto

E(ρ) =
∑
i1,i2

Ai1,i2ρA
†
i1,i2

, ik = 0,1,2,3, (19)

where Kraus operators are defined as in Eq. (12), now with
σ0 = I , σ1 = σz, σ2 = σx , and σ3 = σy . The joint probabilities
still satisfy the Markov chain rule as in Eqs. (13) and (14), with
p0 = 1 − p and p1 = p2 = p3 = p

3 .
As in the previous case, the parameter μ ∈ [0,1] measures

the degree of correlation of the channel: It is the probability
that the same operator σi is applied for two consecutive uses
of the channel, whereas 1 − μ is the probability that the two
operators are uncorrelated. Again, the limiting cases μ = 0
and μ = 1 correspond to memoryless channels and channels
with perfect correlation, respectively.

Let us consider now two input qubits A and B that are
maximally entangled with two reference qubits RA and RB ,
namely, an input |�+〉RA,A|�+〉RB,B . We also rename the Bell
states as follows:

|�0〉 ≡ |�+〉, |�1〉 ≡ |�−〉,
|�2〉 ≡ |�+〉, |�3〉 ≡ |�−〉. (20)

The output state can then be written as


 = IRA
⊗ IRB

⊗ E(|�0〉〈�0|RA,A ⊗ |�0〉〈�0|RB,B)

=
3∑

i,j=0

pij |�i〉〈�i |RA,A ⊗ |�j 〉〈�j |RB,B, (21)

where

p00 = (1 − μ)(1 − p)2 + μ(1 − p),

pii = (1 − μ)
(p

3

)2
+ μ

p

3
, i = 1,2,3

pij = (1 − μ)
(p

3

)2
, i,j = 1,2,3, i �= j

p0i = pi0 = (1 − μ)
p

3
(1 − p), i = 1,2,3. (22)

The reduced input state is simply 1
4IA ⊗ IB and remains

invariant under the action of E , hence the reduced output
entropy equals two bits. A measurement scheme on the output
state (21) where the set of observables σx ⊗ σx , σy ⊗ σy , and
σz ⊗ σz is measured on both couples of qubits RA,A and RB,B

provides all probabilities pij in Eq. (22).
Then we can write our detected bound as

Q � Qdet = [2 − H ({pij })]
= 2 + p00 log2 p00 + 3p11 log2 p11

+ 6p12 log2 p12 + 6p01 log2 p01. (23)

The detected capacity Qdet coincides with the maximum of the
coherent information evaluated in Ref. [33] for a single use of
the memory channel (19). Since the channel is not degradable,
Qdet is just a lower bound of the quantum channel capacity,
whose exact expression is still unknown.

We notice, however, that for the fully correlated channel,
i.e., μ = 1, Kraus operators {σi ⊗ σi} are a commuting set,
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FIG. 2. Detected quantum capacity for the correlated depolariz-
ing channel versus memory parameter μ for different values of the
probability p (from top to bottom p = 0.005,0.05,0.1,0.15,0.2). The
detected quantum capacity is given by Eq. (23) using two maximally
entangled input states and Bell measurement.

hence the channel is degradable [32] and one has

Q ≡ Qdet = Q = 2 − H2(p) − p log2 3, (24)

which corresponds to the exact quantum capacity, which is
therefore efficiently detected by our method. The result of
Eq. (24) can be easily generalized to the case of fully correlated
depolarized channels for qudits, thus giving

Q ≡ Qdet = Q = d − H2(p) − p log2(d2 − 1). (25)

In Fig. 2 we plot the detected bound (23) versus the correlation
parameter μ, for the values p = 0.005,0.05,0.1,0.15,0.2.

V. FULLY CORRELATED DAMPING CHANNEL

In this section we consider the following correlated ampli-
tude damping channel acting on two qubits [17]:

E(ρ) =
2∑

i=1

BiρB
†
i , (26)

with Kraus operators

B1 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0

√
η

⎞
⎟⎠,

B2 =

⎛
⎜⎝

0 0 0
√

1 − η

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, (27)

where the ordered basis {|00〉,|01〉,|10〉,|11〉} has been used.
This channel describes a fully correlated damping, namely,
only the state |11〉 undergoes decay to |00〉 with probability η,
while the other states |00〉,|01〉,|10〉 remain unaltered.

We only consider the fully correlated case, because for par-
tially correlated amplitude damping channels just numerical
bounds on the quantum capacity are known [18]. On the other
hand, the fully correlated amplitude damping channel has been

shown to be degradable for η � 1/2 and its quantum capacity
is explicitly obtained by the maximization [17]

Q = max
α,β,δ

{−[α + (1 − η)δ] log2[α + (1 − η)δ]

− 2β log2 β − ηδ log2 ηδ

+ [1 − (1 − η)δ] log2[1 − (1 − η)δ]

+ (1 − η)δ log2[(1 − η)δ]}, (28)

with the constraints α + 2β + δ = 1 and α,β,δ � 0. For η �
1/2, one simply has Q = log2 3, corresponding just to coding
on the noiseless subspace spanned by {|00〉,|01〉,|10〉}.

As in the previous examples, we consider an input maxi-
mally entangled state between the two qubits A and B with
two reference qubits RA and RB , namely, |�+〉RA,A|�+〉RB,B .
The output state is then given by


 = IRA
⊗ IRB

⊗ E(|�+〉〈�+|RA,A ⊗ |�+〉〈�+|RB,B). (29)

Notice that Kraus operators B1 and B2 in Eq. (27) can be
rewritten as

B1 = 3 + √
η

4
IA ⊗ IB + 1 − √

η

4
σzA ⊗ IB

+ 1 − √
η

4
IA ⊗ σzB − 1 − √

η

4
σzA ⊗ σzB,

B2 =
√

1 − η

4
(σxA + iσyA) ⊗ (σxB + iσyB ). (30)

It follows that the output state (29) has a block-diagonal form,
i.e., 
 = 
1 ⊕ 
2, with


1 = B1(|�+〉〈�+|RA,A ⊗ |�+〉〈�+|RB,B)B†
1

= yη

⎛
⎜⎜⎝

x2
η xη xη xη

xη 1 1 1
xη 1 1 1
xη 1 1 1

⎞
⎟⎟⎠, (31)

on the ordered basis {|�+〉RA,A|�+〉RB,B,|�+〉RA,A|�−〉RB,B,

|�−〉RA,A|�+〉RB,B,|�−〉RA,A|�−〉RB,B}, with

yη = (1 − √
η)2

16
, xη = 3 + √

η

1 − √
η
, (32)

whereas


2 = B2(|�+〉〈�+|RA,A ⊗ |�+〉〈�+|RB,B)B†
2

= 1 − η

4
|10〉〈10|RA,A ⊗ |10〉〈10|RB,B. (33)

The reduced output state is given by

E
(

IA

2
⊗ IB

2

)
= 1

4

⎛
⎜⎝

2 − η 0 0 0
0 1 0 0
0 0 1 0
0 0 0 η

⎞
⎟⎠, (34)

on the ordered basis {|00〉,|01〉,|10〉,|11〉}. Notice that the
present channel is clearly an example of a nonunital channel.

We consider now a detection scheme on the output state
where the set of observables σx ⊗ σx , σy ⊗ σy , and σz ⊗ σz

is measured on both couples of qubits RA,A and RB,B. The
set of probabilities that can be obtained by this measurement
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setting and minimizes the Shannon entropy H ( �p ) corresponds
to the set of projectors on the states

|00〉RA,A|01〉RB,B, |00〉RA,A|10〉RB,B, |11〉RA,A|01〉RB,B,

|11〉RA,A|10〉RB,B, |01〉RA,A|00〉RB,B, |01〉RA,A|01〉RB,B,

|01〉RA,A|10〉RB,B, |01〉RA,A|11〉RB,B, |10〉RA,A|00〉RB,B,

|10〉RA,A|01〉RB,B, |10〉RA,A|11〉RB,B, (35)

for which p = 0;

|10〉RA,A|10〉RB,B, (36)

for which p = 1−η

4 ; and [34]

|χ1〉 ≡ (a|�+〉RA,A + b|�−〉RA,A)(a|�+〉RB,B + b|�−〉RB,B),

|χ2〉 ≡ (a|�+〉RA,A + b|�−〉RA,A)

× (−b|�+〉RB,B + a|�−〉RB,B),

|χ3〉 ≡ (−b|�+〉RA,A + a|�−〉RA,A)

× (a|�+〉RB,B + b|�−〉RB,B),

|χ4〉 ≡ (−b|�+〉RA,A + a|�−〉RA,A)

× (−b|�+〉RB,B + a|�−〉RB,B), (37)

with a and b real such that a2 + b2 = 1 and −∑4
i=1 qi log2 qi

is minimized, where

qi = 〈χi |
1|χi〉. (38)

We can now write the detection bound as

Q � Qdet = H (�s ) − H2

(
1 − η

4

)
− H (�q ), (39)

where �s = {(2 − η)/4,1/4,1/4,η/4} corresponds to the eigen-
values of the output reduced state (34) and �q = {q1,q2,q3,q4}.

In Fig. 3 we plot the detection bound along with the quantum
capacity of the fully correlated amplitude damping channel
versus damping parameter η. The looseness of the bound for
η < 1/2 is due to the fact the input maximally entangled state
is very suboptimal for strong damping. Notice, however, that

0.2 0.4 0.6 0.8 1.0
η

0.8

1.0
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1.4

1.6

1.8
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FIG. 3. Fully correlated amplitude damping channel with the
parameter η: detected quantum capacity (thick line) with maximally
entangled input and projective measurement on states (35)–(37),
along with the theoretical quantum capacity (dashed line) given by
Eq. (28).

the positivity of the quantum capacity is witnessed for all
values of η.

VI. CONCLUSION

We have applied a general method to witness lower bounds
to the quantum capacity of quantum communication channels
developed in Ref. [6] to the case of correlated qubit channels.
We have shown that our method does not require any a
priori knowledge about the channel itself and relies on a
number of measurement settings that scales more favorably
with respect to full process tomography. Specifically, we tested
the method on two-qubit correlated channels of dephasing,
depolarizing, and amplitude damping type and showed that a
fixed maximally entangled input state of two system qubits
and two reference qubits and a setting of local measurements
allow one to certify the quantum capacity, without the need
of a complete tomographical reconstruction of the channel
operation. We want to emphasize that for quantum optical
systems our method is easily implementable with present-day
technologies [35].
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