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We consider the notion of unitary transformations forming bases for subspaces of M(d,C) such that the square
of the Hilbert-Schmidt inner product of matrices from the differing bases is a constant. Moving from the qubit
case, we construct the maximal number of such bases for the four- and two-dimensional subspaces while proving
the nonexistence of such a construction for the three-dimensional case. Extending this to higher dimensions, we
commit to such a construct for the case of qutrits and provide evidence for the existence of such unitaries for
prime dimensional quantum systems. Focusing on the qubit case, we show that the average fidelity for estimating
any such transformation is equal to the case for estimating a completely unknown unitary from SU(2). This is
then followed by a quick application for such unitaries in a quantum cryptographic setup.

DOI: 10.1103/PhysRevA.94.052328

I. INTRODUCTION

The idea of indistinguishability of quantum states and the
inability to clone an arbitrary state has brought with it the
acceptance of physical limits on how much one can know
of a quantum system. In the context of mutually unbiased
bases (MUBs) (for a review on the subject of MUBs, see, e.g.,
Ref. [1]), considering an unknown quantum state selected from
sets of MUBs, a measurement of an observable described by
projectors onto states in a basis mutually unbiased with respect
to the prepared one produces completely random results.
This came to be the key ingredient in the well-known BB84
quantum key distribution (QKD) protocol [2] as well as in
most (if not all) prepare and measure QKD schemes where
eavesdropping of a transmitted message would statistically
induce errors for which, below a certain threshold, legitimate
parties may distill a secret key nonetheless.

While the optimal estimation of a quantum state deals
with the maximal information extraction of the system’s state,
the issue of estimating an unknown physical transformation,
described by a unitary operator, of a state is another matter.
This was studied in Ref. [3] and it is a more challenging
task compared to state estimation because it requires not
only the use of optimal measurements of the resulting state
post transformation but also an optimal state prior to the
transformation to begin with. An immediate use of such
estimation, namely the alignment of reference frames using
quantum spins, was noted in Ref. [4] as being equivalent to
estimating unknown rotations of SU(2).

This paradigm has also found its way into the field of
quantum cryptography where protocols making use of a
bidirectional quantum channel and unitary transformations
for encoding purposes like those of Refs. [5–7] rely on the
inability of an eavesdropper (commonly referred to as Eve)
to ascertain the transformations perfectly without inducing
errors. However, this inhibition for Eve does not reflect an
intrinsic inability with regard to the transformations them-
selves, rather it is chiefly due to the inability of estimating
the encoded states traveling between the legitimate parties
(commonly referred to as Alice and Bob). It was in Ref. [8]

that the notion of two-way QKD based on indistinguishable
unitaries was first mooted where Alice’s transformation for
encoding purposes was selected from two orthogonal bases
of unitary transformations: one comprising the identity and
Pauli matrices, and the other being those unitaries multiplied
by a rotation by the angle 2π/3 about the axis (1,1,1)/

√
3

of R3. In Ref. [9], these bases were referred to as mutually
unbiased bases of orthogonal qubit unitaries. A two-way
QKD study with nonentangled qubits using “nonorthogonal”
unitaries was later reported in Ref. [10], providing for a higher
security threshold compared to its conventional predecessors
for selected attack strategies.

Such a notion of “nonorthogonal” unitaries is intimately
linked to unitary 2-designs [11,12] which are a set of matrices
such that the average over them reproduces the average over
the entire unitary group. The notion of “mutually unbiased
unitary-operator bases” (MUUBs) was put forward in Ref. [11]
for unitary operators acting on a d-dimensional Hilbert space
as the set of d2 − 1 unitary operator bases with the property that
each pair is mutually unbiased. That is, two sets of operator
bases (each of cardinality d2), say T0 and T1, are mutually
unbiased if∣∣Tr

(
T

(i)†
0 T

(j )
1

)∣∣2 = 1, ∀T
(i)

0 ∈ T0,T
(j )

1 ∈ T1, (1)

where i,j = 1, . . . ,d2 and Tr(A†B) is the Hilbert-Schmidt
inner product of A and B. It was used in the construction
of a unitary 2-design, a study done in the context of process
tomography of unital quantum channels. Reference [11] also
showed that for d = 2, 3, 5, 7, and 11, a complete set, i.e.,
d2 − 1 MUUB, can be found. The idea of such unbiasedness
for a unitary basis is arguably deeper than afforded by the
definition of 2-designs, and in our work here, we treat the
notion of such unbiased unitary bases in its own right.

Motivated by the equiprobable transition between states in
one basis to another in the case of MUBs, we consider an
analogous idea of equiprobable guesses of unitaries towards a
generalized notion of unbiased unitary operator bases (though
we retain the abbreviation, MUUB) and provide a systematic
study of their properties. The generalization here is made in
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the sense of neither restricting the value of the Hilbert-Schmidt
norm of Eq. (1) to unity nor the cardinality of the operator
basis. We proceed in Sec. II with the characterization on the
maximal number of MUUBs on a two-dimensional Hilbert
space, H2, namely, a qubit. We then show how this is
immediately connected to maximally entangled states forming
MUBs (Sec. III), explicitly so for the relevant subspaces of the
Hilbert space H2 ⊗ H2. We then provide in the subsequent
section an explicit construction for the case of MUUBs
on a three-dimensional Hilbert space and follow up with a
simple proof of the existence of MUUBs on prime numbered
dimensional quantum systems. Focusing on the MUUBs for
H2, we calculate the fidelities in distinguishing between the
unitaries. We show how this is equal to the discrimination of
the maximally entangled states from the varying MUBs as well
as the estimation of a completely unknown unitary from SU(2)
(Sec. IV). Before concluding, we discuss the use of MUUBs
in a QKD setup.

II. MUUB FOR QUBITS

MUB refers to orthonormal bases of a Hilbert space such
that the transition from any one state in one basis to any state
in the other basis is equiprobable [1]. In other words, if one is
asked to guess an unknown state, |u〉, prepared in one basis of
say a d-dimensional Hilbert space, Hd , and we let the states
|r〉 and |s〉 be “guesses” (resulting from a measurement) from
a mutually unbiased basis, then

|〈u|r〉|2 = |〈u|s〉|2 = 1/d. (2)

In estimating an unknown unitary, U ∈ SU(d), with a guess,
Ur , Ref. [3] considers how closely Ur resembles U by
determining the behavior of the unitaries, averaged over all
states |α〉 ∈ Hd given by

∣∣∣∣
∫

〈α|U †
r U |α〉dα

∣∣∣∣
2

= 1

d2
|Tr(UU †

r )|2. (3)

Thus, beginning with a unitary, U , and letting Ur and Us be
guesses for U , we could say that the guesses are equiprobable
if |Tr(UU

†
r )|2 = |Tr(UU

†
s )|2.

Definition 1. Consider two distinct orthogonal bases,A0 and
A1, composed of unitary transformations for some subspace
of the vector space M(d,C) . A0 and A1 are sets of MUUBs
provided

∣∣Tr
(
A

(i)†
0 A

(j )
1

)∣∣2 = C, ∀A
(i)
0 ∈ A0,A

(j )
1 ∈ A1, (4)

for i,j, = 1, . . . ,n and some constant C �= 0.
With the number n as the cardinality of the basis sets which

reflect the dimensionality of the subspace, in the following
subsections, we limit ourselves to unitaries acting on states in
H2, i.e., d = 2, and provide explicit constructions of MUUBs
for n = 4 and 2. Furthermore we note that no MUUBs exist
for n = 3. This is simply due to the fact that any subspace
spanned by three orthogonal 2 × 2 matrices necessitates the
uniqueness of such a basis.

We should like to note that, differently from Ref. [11], the
definition given above is motivated by the idea of equiprobable
guesses of a unitary and is more general in the sense that
the definition in Ref. [11] requires the Hilbert-Schmidt inner

product of the matrices to equal 1, restricted to the subspace
of dimension d2; ours is a constant C without specifying the
dimensionality of the subspace. We see later, at least through
the explicit construction of MUUBs acting on H2, how our
definition reduces to that in Ref. [11] in the case of n = 4
while the value of C is different in the case of n = 2. We further
note that our constructions for MUUBs are straightforwardly
derived from our definition and could possibly provide for
simpler insights to higher dimensions.

A. MUUBs for n = 4

We first need to ensure that our construction here will
provide for a result which holds in general. To this end, we
define the equivalence between bases for possibly distinct
subspaces.

Definition 2. Consider two distinct orthogonal bases,
X = {X1,X2, . . . ,Xn} and Y = {Y1,Y2, . . . ,Yn}, for some
n spanning possibly distinct subspaces M(X ) and M(Y),
respectively. X is equivalent to Y,X ≡ Y , provided that
ζjYj = UXj , ∀j = 1,2, . . . ,n, for some unitary U and |ζj | =
1.

Proposition 1. Given the above definition for X ≡ Y
for some n, X is unbiased with regards to a set Z =
{Z1,Z2, . . . ,Zn} ⊂ M(X ) if and only if Y is unbiased with
regards to a set UZ = {UZ1,UZ2, . . . ,UZn} ⊂ M(Y).

The above proposition is easily shown to be true
by |Tr(X†

jZk)|2 = |Tr[(UXj )†UZk]|2 = |Tr[(ζjYj )†UZk]|2 =
|Tr[(Yj )†UZk]|2.

The case for n = 4 here has M(X ) = M(Y) and is trivially
the case of a changing basis in M(2,C). Thus, one could
begin with a basis containing arbitrary but pairwise orthogonal
unitaries for M(2,C) and do a basis change by multiplying
each element of the basis with some unitary operator (and
ignoring possible overall phase factors) resulting in the basis
B0 = {I2,σ1,σ2,σ3}, where I2 is the identity operator and σ1,
σ2, and σ3 are the Pauli matrices given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
. (5)

We can therefore consider the basis B0 with no loss of
generality. We next define a unitary element, U , as a linear
combination of elements of B0,

U = p0I2 +
3∑
i

piσi . (6)

Along with |Tr(σjU )|2 = 4|pj |, ∀j , and U †U = I2, we have
|pj |2 = 1/4. On the other hand, a generic 2 × 2 unitary matrix,
U , may be written as

U = eiα

(
a b

−b∗ a∗

)
, (7)

with |a|2 + |b|2 = 1. By comparing Eqs. (6) and (7) with
regard to element eiαa and eiαa∗, we can write

eiαa = p0 + p3 ⇒ eiαa∗ = e2iα(p∗
0 + p∗

3), (8)

eiαa∗ = p0 − p3 ⇒ eiαa = e2iα(p∗
0 − p∗

3). (9)
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The above equations give us

p2
0 = −p2

3 = e2iα/4. (10)

Similar treatment for elements eiαb and −eiαb∗ would result
in

p2
1 = p2

2 = −e2iα/4. (11)

There can only be two solutions for each pi in the above
equations. Representing the solutions for pi to the above
equations as a four-vector, (p0,p1,p2,p3), one can have at
most 16 sets of solutions for a given α. As

|Tr[U †
a (eiβUb)]|2 = |Tr[U †

a (Ub)]|2, (12)

we say eiβUb is equivalent to Ub; eiβ acts like a “global
phase factor” and is inconsequential in the context of MUUBs.
Hence, the set (p0,p1,p2,p3) and (−p0,−p1,−p2,−p3) (the
case where β = π ) would provide for equivalent matrices, then
the number of nonequivalent solutions would be at most 8 for a
given α. As the factor α itself has no effect on the equivalence
of matrices, we conclude that there can be at most 8 matrices
which are mutually unbiased with regards to all elements in
B0. The 8 sets of solutions allow us to explicitly construct the
vectors for bases B1 and B2 as

Bk =
⎧⎨
⎩
I2 + i

∑3
j=1 djσj

2
|dj ∈ {±1},

3∏
j=1

dj = (−1)k

⎫⎬
⎭

(13)

for k = 1 and 2. It can easily be shown that both B1 and B2

span M(2,C) and

|Tr(U †
aUb)|2 = 1, ∀Ua ∈ B1,Ub ∈ B2. (14)

Thus the number of MUUBs for n = 4 is three (including B0).
This maximal number is known to be achieved from Ref. [11].

B. MUUBs for n = 3

As mentioned earlier, no MUUBs can exist in the case of
n = 3. The proof is rather straightforward.

Beginning with an arbitrary basis V = {V1,V2,V3} ⊂
M(2,C) for a three-dimensional subspace of M(2,C), it
can always be mapped to S = {I2,σi,σj }, for i �= j where
V

†
1 V1 = I2 and V

†
1 V2 = σi . If we require V to be unbiased

with respect to S, V1 must be an element of the span of S and
V1 = q0I2 + qiσi + qjσj , with |q0|2 = |q1|2 = |q2|2 = 1/3.
Thus V2 = V1σi = q0σi + qiI2 + qjσiσj . However, σiσj is
not in the span of S, hence V cannot be an MUUB with respect
to S and we conclude no MUUBs exist for n = 3.

C. MUUBs for n = 2

While all orthogonal (possibly distinct) bases of M(2,C)
span the same space, M(2,C), the case for n = 2 suggests
the possibility of considering a number of possible orthogonal
bases of which each basis could very well span a distinct
subspace. Hence, constructing MUUBs for one subspace
naturally causes one to question whether the same number
of MUUBs could be constructed in another subspace.

Referring to Definition 2 and Proposition 1, we are however
assured that, if we consider an arbitrary orthogonal basis

defined by {A,B} for a two-dimensional subspace of M(2,C),
it is equivalent to the basis W0 = {I2,ω}, where ω = A†B and
spans a subspace, say, M1, which would have the same number
of MUUBs for the subspace spanned by {A,B}. We then let ω

be represented by a generic matrix like Eq. (7) with the factor
α as γ .

Let W0 = r0I2 + r1ω ∈ M1 be a unitary matrix. With
|Tr(I2W0)|2 = |Tr(ωW0)|2 = 4|rj |2, ∀j and W

†
0 W0 = I2, we

have |rj |2 = 1/2. Working with the same approach as we did
for n = 4, where we compare W0 with a generic 2 × 2 unitary
matrix (say with a factor α = β), we have

r2
0 = e2iγ /2, r2

1 = e2i(β−γ )/2. (15)

The above admits only four sets of solutions for (r0,r1)
and given that (r0,r1) and (−r0,−r1) provide for equivalent
matrices, the number of MUUBs for n = 2 is two. Explicit
examples in terms of Pauli matrices are include {I2,σ2} which
is unbiased with respect to {(I2 ± iσ2)/

√
2} and {I2,σ3} which

is unbiased with respect to {(I2 ± iσ3)/
√

2}.

III. MUUBs AND MUBs OF MAXIMALLY
ENTANGLED STATES

The study of unitary transformations, more generally
quantum channels, is well known to be closely connected to
that of maximally entangled states through the isomorphism
between unitaries, U on a d-dimensional Hilbert space, Hd ,
and vectors, |U 〉〉 (using the notation from Refs. [13,14]) in
Hd ⊗ Hd ,

U ≡
∑

i

∑
j

〈j |U |i〉|i〉|j 〉 = |U 〉〉 ∈ Hd ⊗ Hd (16)

for some basis vectors |i〉 and |j 〉 of Hd . With |〈〈Ua|Ub〉〉|2 =
|Tr(U †

aUb)|2 and |U 〉〉/√d giving a maximally entangled state
[15], the search for MUUBs is tantamount to looking for sets
of maximally entangled states which not only form a basis for
Hd ⊗ Hd but are also mutually unbiased to one another. Thus,
referring to the previous sections, the dimensionality of H2 ⊗
H2 is 4; i.e., states are mutually unbiased if the absolute value
of their inner product is given by 1/2. Hence, with |I2,〉〉/

√
2 =

|	+〉, |σ1〉〉/
√

2 = |
+〉, |σ2〉〉/
√

2 = |
−〉, and |σ3〉〉/
√

2 =
|	−〉, the maximal number of such MUBs is three and they
are

B0 = {|	+〉,|
+〉,|
−〉,|	−〉},
Bk =

⎧⎨
⎩

|E0〉 + ∑3
j=1 cj |Ej 〉
2

|cj ∈ {±1},
3∏

j=1

cj = (−1)k

⎫⎬
⎭,

(17)

for k = 1 and 2 with |E0〉 = |	+〉, |E1〉 = i|
+〉, |E2〉 =
|
−〉, and |E3〉 = i|	−〉 (also known as a “magic basis” [16]).
It is worth noting that the requirement for entangled states as
a basis would not allow for the construction of the maximal
number of MUBs for a four-dimensional system (which would
be five). It was noted in Ref. [17] that, in constructing
MUBs for two-qubit states, if one begins by constructing three
Bell-type bases which are mutually unbiased, then one cannot
construct two additional basis sets.
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This connection can be extended to the case of MUUBs for
n = 2 as the dimension of the subspace is two where mutually
unbiased states have the absolute value of their inner product
as 1/

√
2. The absolute value of the inner product between

maximally entangled states, say |Ua〉〉/
√

2 and |Ub〉〉/
√

2,
derived from differing MUUBs in this case would result in
|〈〈Ub|Ua〉〉|/2 = |Tr(U †

bUa)|/2 = 1/
√

2.

IV. MUUBs FOR PRIME NUMBERED DIMENSIONAL
QUANTUM SYSTEMS

It is natural to consider the construction of MUUBs on
higher-dimensional systems, Hd , and much is hinted at from
the qubit scenario. We begin with the issue of subspaces of
M(d,C) which may admit MUUBs (or rather those that do
not). To this end, we provide the following theorem.

Theorem 1. Consider a subspace of M(d,C) and let its
dimensionality be n. If n is neither d nor d2, then no MUUB
can exist for such a subspace.

The proof for this follows from that of Sec. II B by having
one basis consisting of the identity and some Pauli matrices
and then demanding another which is a MUUB to it to contain
elements which are in the span of the former. Let a basis D be
defined (unitary operator basis [18]) by

{Xai Zbj |i ∈ [0,m],j ∈ [0,n]} (18)

for m,n,ai,bi ∈ Zd and with X and Z as the generalized Pauli
operators for the d-dimensional system given in Ref. [19]. We
fix a0 = b0 = 0 so that D includes Id . We can represent this
set by the set of pairs,

CD = {(i,j )|i ∈ [0,m],j ∈ [0,n]}. (19)

Consider an element E1 from another basis E such that

E1 =
m∑
i

n∑
j

qijX
ai Zbj ∈ span(D) (20)

for qij ∈ C. Another element, say, E2 ∈ E , can then be written
as

E2 =
⎛
⎝ m∑

i

n∑
j

qijX
ai Zbi

⎞
⎠XakZbl

=
m∑
i

n∑
j

qij ηdX
ai+akZbj +bl (21)

for some element XakZbl ∈ D and ηd = exp (2πi/d).
Requiring E be the MUUB to D, we require E2 ∈ span(D)
implying Xai+akZbj +bl ∈ D or (i + k,j + l) ∈ CD for all i,k ∈
[0,m] and j,l ∈ [0,n]. It is obvious to note that E2 ∈ span(D)
only if CD is closed under addition mod d which gives |D| = d

or d2.
While this tells us about the nonexistence of MUUBs in

certain subspaces, it does not promise the existence of MUUBs
for the remaining subspaces. To this extent, we only verify the
existence of MUUBs operating on Hd for the d2-dimensional
subspace with d being a prime number by noting the existence
of MUB for maximally entangled states in Hd ⊗ Hd . Given
the recipe for constructing MUBs for maximally entangled
states in Ref. [20], we write a basis of maximally entangled

states forHd ⊗ Hd as {|U 0,0
d 〉〉, . . . ,|Ud−1,d−1

d 〉〉}, with |Un,m
d 〉〉

given by

∣∣Un,m
d

〉〉 = 1√
d

d−1∑
p=0

η
np

d |(p + m) mod d〉|p′〉 (22)

for n,m = 0,1, . . . ,d − 1, and |(p + m) mod d〉 and |p′〉 refer
to states, each being elements of the orthonormal bases of
their respective Hilbert spaces. A basis mutually unbiased
with respect to the above could be one with elements given
by Id ⊗ Up|Un,m

d 〉〉 with Up|p′〉 → |p′′〉, where |〈p′|p′′〉| =
1/

√
d (hence |〈〈Un,m

d |Up|Un,m
d 〉〉| = 1/d). As there would

be only d + 1 MUBs for a d-dimensional system, we can
conclude that this recipe provides for d + 1 MUBs for the
maximally entangled states from Hd ⊗ Hd , thus implying the
same number for MUUBs acting onHd for the d2-dimensional
subspace. This obviously provides for the minimal number
of such MUUBs. It was noted in Ref. [11] that the maximal
number that such a MUUB can possibly have is d2 − 1, though
it remains unclear if this is saturated for all prime d. Given all
these factors, we have the following proposition.

Proposition 2. The maximal and minimal numbers of
MUUBs for a subspace of M(d,C) with dimensionality d2

are d2 − 1 and d + 1, respectively, for a prime number d.
In the specific case of d = 2 (n = 4), the minimal number

of MUUBs is in fact also the maximal, i.e., three.
Constructing a maximal set of MUUB for any d dimen-

sional is obviously a challenge, and following the construction
for the qubit case, we consider the following. If a basis is given
by Eq. (18) with m = n = d − 1, and a unitary U is taken
from a MUUB containing Xai Zbj , then, with U †U = Id and
|Tr(U †Xai Zbj )|2 = |Tr(U †XakZbl )|2,∀i,j,k,l ∈ Zd , we have

U =
∑

qijX
ai Zbj ⇒ |qij | = 1/d2, (23)

and because |Tr(U †Xai Zbj )|2 = |qij Tr(Id )|2, we see that this
reduces to the definition given for such unitaries in Ref. [11]. It
is now not difficult to consider a numerical search where one
selects qij = exp (2πi/d)tij for some tij ∈ Zd and searches
through all possible values for the possibilities of unitaries that
fulfill the relevant criterion. Carrying this out for the case of
M(3,C), for example, we begin with a set of unitary matrices
that span M(3,C), constructed from a set of unitary operator
bases [18] containing the identity I3 and the generalized Pauli
matrices for qutrits,

B30 = {
X

j

3Z
k
3

∣∣j,k = 0,1,2
}
, (24)

with X3 and Z3 being the generalized Pauli operators for qutrits
(explicitly given in Ref. [19]). We then find the following
MUUBs,

B3l = {RlX
jZk|j,k = 0,1,2}, (25)

for l = 1, . . . ,7 with

R1 = I + η3X + η2
3X

2 + η3Z + η2
3Z

2

+ η3XZ + η2
3(XZ)2 + η3XZ2 + η2

3(XZ2)2

R2 = I + X + η3X
2 + Z + η3Z

2

+η2
3XZ + (XZ)2 + η2

3XZ2 + (XZ2)2
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R3 = I + X + η3X
2 + Z + η2

3Z
2

+XZ + η2
3(XZ)2 + η2

3XZ2 + η2
3(XZ2)2

R4 = I + X + η3X
2 + Z + η2

3Z
2

+η3XZ + (XZ)2 + η3XZ2 + η3(XZ2)2

R5 = I + X + η2
3X

2 + Z + η3Z
2

+XZ + η2
3(XZ)2 + η3XZ2 + (XZ2)2

R6 = I + X + η2
3X

2 + Z + η3Z
2

+η3XZ + (XZ)2 + XZ2 + η2
3(XZ2)2

R7 = I + X + η2
3X

2 + Z + η2
3Z

2

+η2
3XZ + η2

3(XZ)2 + XZ2 + η3(XZ2)2. (26)

This saturates the maximal number of eight that has been
showed to be achieved in Ref. [11]. As for the subspace
of dimension 3, we are able to construct three MUUBs.
Beginning with say D0 = {I3,A,A2}, where A ∈ B30 − {I3},
we can construct two sets of MUUBs, D1 and D2 given by

Dj = {D,DA,DA2}, (27)

where D = I3 + η
j

3A + η
j

3A
2 for j = 1 and 2.

V. APPLICATIONS

Analogous to MUBs which set constraints on state dis-
tinguishability, we consider in this section the issue of
distinguishability of unitaries selected from a set of MUUBs
on H2 and then proceed to consider its use in a QKD setup.

A. Distinguishability of unitaries

In distinguishing between unitaries selected randomly from
the set SU(d), Refs. [3,21,22] consider a black box executing
the unitary transformation, where one may submit a particular
quantum state (which may comprise a qubit entangled with an
ancillary system), through the black box and the resulting state
may be measured to provide information of the transformation.
Given a single use of the box, the task requires not only
an optimal input but also an optimal measurement of the
output state. If one considers the set {Ug} as a (projective)
irreducible representation of a group G, a pure maximally
entangled state, |�〉, may be used as an optimal input [15] and
the issue of discriminating between unitaries Ug reduces to
one of discriminating states in the group orbit [21]

{|�g〉〈�g| = (Ug ⊗ IR)|�〉〈�|(Ug ⊗ IR)†|g ∈ G}. (28)

It is necessary though to subscribe to the minimal discriminat-
ing requirement of Ref. [21] where Ug = λUk ⇒ g = k for
λ ∈ C,g,k ∈ G.

In considering the discrimination between elements of
MUUBs, we apply the same method above, though we restrict
our study to the case of n = 4. More precisely, let us consider
the scenario of selecting a unitary transformation randomly
from the set of unitaries ∪2

i=0Bi and let us choose for the input
state |
〉 = ∑1

i=0 |i,i〉/√2 ∈ H2 ⊗ H2.1 It is easy to check

1According to Ref. [11], ∪2
i=0Bi forms a 2-design.

that

∀|ψ〉 ∈ Bi ,∀U ∈ Bj ,U ⊗ I |ψ〉 ∈ B(i+j ) mod 2 (29)

and the problem of discriminating between unitaries selected
from the set ∪2

i=0Bi reduces to an optimal discrimination of
maximally entangled states forming mutually unbiased bases;
i.e., the group orbit here is {|�g〉〈�g|||�g〉 ∈ ∪2

i=0Bi}.
In discriminating between the maximally entangled states

above, we apply quite directly the method and use of extremal
covariant measurements in Ref. [23] for quantum states of
prime powered dimensions. Let us rewrite the states of B0

with |	+〉 ≡ |0〉, |
+〉 ≡ |1〉, |
−〉 ≡ |2〉, and |	−〉 ≡ |3〉
with {|i〉,i ∈ F4} as the “computational basis” in H4, where
F4 is the finite field of cardinality 4. Let us then consider the
projective representation of the Abelian group G = F4 × F4

as [23]

R(G) = {UqVw|(q,w) ∈ F4 × F4}, (30)

where Uq |i〉 = |i ⊕ q〉 and Vw|i〉 = 〈w,i〉|i〉, with 〈w,i〉 =
χ (w � i), where χ (x) is a nontrivial character of the additive
group F4. The operations ⊕ and � are of course field
addition and multiplication, respectively. Writing x as a
tuple (s1,s2),si ∈ {0,1}, we choose χ (x) as exp (πis1) [24].
Considering the state (call it initial) |0〉〈0|, it can be easily
checked that its orbit under R(G) is indeed {|i〉〈i|,i ∈ F4}.
This holds similarly for the states from B1 and B2 where the
orbits under R(G) for any one “initial” state in one basis are
the set of all states from the respective bases and the stability
groups for the initial states are nontrivial. From Ref. [23],
with R(G) being irreducible, an extremal positive operator
valued measure is the group orbit of a single operator, and we
may conclude that, with the choice of basis, B0, B1, and B2

being equally probable, the optimal measurement operator is
the orthogonal measurement onto any one of the bases. The
average estimation fidelity [3] in discriminating these states
can then be written as

1

12

∑
u,s

P (|s〉||u〉)|〈s|u〉|2, (31)

where P (|s〉||u〉) is the probability of a measurement of
state |u〉 resulting in |s〉. It is easy to show that the average
fidelity of discriminating between states selected randomly
from ∪2

i=0Bi is really 1/2. This is in fact the same maximal
value for the average estimation fidelity of a completely
unknown maximally entangled states inH2 ⊗ H2 immediately
calculated from Ref. [3] as well as that of a completely
unknown unitary in SU(2) as from Ref. [9].

B. MUUBs in a quantum key distribution setup

The idea of “bases” for unitary transformation was men-
tioned in Ref. [9] and later also used in Ref. [10] to
highlight richer points as opposed to a prepare and measure
type QKD scheme. From the above sections describing the
“unbiasedness” of such bases in a more precise way, applying
it to two-way QKDs is the most natural step in generalizing
such protocols to include all MUUBs. The basic structure of
the protocol remains; Bob would submit a qubit prepared in
a particular basis to Alice who would encode on it with a
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unitary transformation before sending the qubit back to Bob
for measurements.

For the sake of clarity, we propose a protocol which is a
generalization (in terms of the encoding) of one proposed and
analyzed in Ref. [25]. For encoding purposes, Alice randomly
selects an operator from her “bases” B0, B1, and B2. Binary
values are assigned to each operator in B0 as in Ref. [25],
i.e., 0,1,1,0 to I2,σ1,σ2,σ3, respectively, which can be done
as well for B1 and B2. Bob submits a qubit prepared in one
of two MUBs and measures the returned qubit in a randomly
selected basis; either the same as the one he prepared in or
one mutually unbiased to it. While B0 retains the bases of
Bob’s qubit states, B1 and B2 shift them to a basis mutually
unbiased. At the end of the protocol, Alice announces (on
a public channel) which of the the “bases” she used for a
given round of the protocol. Alice further discloses if she used
either one of two subsets from her basis choice where each
subset contains elements that can be distinguished perfectly
by Bob’s measurements (subject to Bob measuring the qubit
in the correct basis). As a quick example from Ref. [25], we
give the subsets {I2,σ2} and {σ1,σ3}. Hence, 1/3 of the time
Bob retains his measurements where he can determine Alice’s
encoding conclusively for key purposes while discarding the
rest (instances where he measures a qubit in a wrong basis).

To provide an insight into the security of such a protocol,
we consider the simplest strategy for an eavesdropper, Eve,
to ascertain Alice’s encoding. She would hijack Bob’s qubit
en route, submit a Bell state to Alice instead to estimate the
unitary used, and then apply her estimation on Bob’s qubit
before returning to him. Subsequent to Alice’s disclosure,
Eve’s gain would only be 1/3 while inducing an equal amount
of error. While obviously a more involved strategy should be
considered, for an error less than 1/2 between Alice and Bob,
Eve’s gain would never achieve unity due to the inability to dis-
tinguish between MUUBs perfectly for a single use. A proper
security analysis is, however, beyond the scope of this work.

VI. CONCLUSION

Generalizing the notion of MUUBs formalized in Ref. [11],
we provide a definition for sets of unitary transformations
forming bases for subspaces of M(d,C), such that the elements
in one basis are mutually unbiased with respect to elements in

another. The essence of the definition is in capturing the notion
of distinguishability between unitary transformations based on
their actions on quantum states. We explicitly construct such
bases for the qubit case and show how such a construction
gives the maximal number of such bases as three for the
four-dimensional vector space of M(2,C) and two for a
two-dimensional subspace of M(2,C). Subsequent to that,
we consider the case for unitary operators acting on prime
numbered dimensional systems and prove the nonexistence
of MUUBs for subspaces of M(d,C) of dimensionality other
than d or d2. Subscribing to a simple numerical search, we
construct MUUBs for qutrits in all possible subspaces.

In a bid to see MUUBs in action beyond their construction,
we note that in the case for qubits, estimating a unitary
selected randomly from the full set of MUUBs is equivalent
to the estimation of a maximally entangled states selected
randomly from the maximal number of MUBs with the average
estimation fidelity as 1/2, i.e., equal to the case for estimating
a completely unknown maximally entangled state or a com-
pletely unknown unitary from SU(2). We then consider this
in a QKD setup. These in fact would be beyond the role that
MUUBs have been shown to play in unitary 2-designs [11].

There are obviously various other interesting directions
this work may be extended to, including an information-
disturbance tradeoff in the estimation of such unitaries (or its
isomorphic equivalent of maximally entangled states), a more
specific scenario of Refs. [9,26]), and a proper understanding
of possible entropic bounds in such estimations. Immediate
applications of such studies include a possibly more thorough
study of quantum cryptography as described in Sec. V. More
immediate issues would include a deeper understanding of
MUUBs acting on higher-dimensional quantum systems.
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[3] A. Acı́n, E. Jané, and G. Vidal, Phys. Rev. A 64, 050302(R)
(2001).

[4] G. Chiribella, G. M. D’Ariano, P. Perinotti, and M. F. Sacchi,
Phys. Rev. Lett. 93, 180503 (2004).

[5] K. Boström and T. Felbinger, Phys. Rev. Lett. 89, 187902
(2002).

[6] M. Lucamarini and S. Mancini, Phys. Rev. Lett. 94, 140501
(2005).

[7] M. Lucamarini and S. Mancini, Theor. Comput. Sci. 560, 46
(2014).

[8] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. Lett.
101, 180504 (2008).

[9] A. Bisio, G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys.
Rev. A 82, 062305 (2010).

[10] J. S. Shaari, Phys. Lett. A 378, 863 (2014).
[11] A. J. Scott, J. Phys. A 41, 055308 (2008).
[12] A. Roy and A. J. Scott, Des., Codes Cryptogr. 53, 1 (2009).
[13] G. M. D’Ariano, P. Lo Presti, and M. F. Sacchi, Phys. Lett. A

272, 32 (2000).
[14] G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, Phys. Rev.

Lett. 87, 270404 (2001).
[15] G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, J. Opt. B 4,

S273 (2002).
[16] S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).
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