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Quantum computers are poised to radically outperform their classical counterparts by manipulating coherent
quantum systems. A realistic quantum computer will experience errors due to the environment and imperfect
control. When these errors are even partially coherent, they present a major obstacle to performing robust
computations. Here, we propose a method for introducing independent random single-qubit gates into the logical
circuit in such a way that the effective logical circuit remains unchanged. We prove that this randomization tailors
the noise into stochastic Pauli errors, which can dramatically reduce error rates while introducing little or no
experimental overhead. Moreover, we prove that our technique is robust to the inevitable variation in errors over
the randomizing gates and numerically illustrate the dramatic reductions in worst-case error that are achievable.
Given such tailored noise, gates with significantly lower fidelity—comparable to fidelities realized in current
experiments—are sufficient to achieve fault-tolerant quantum computation. Furthermore, the worst-case error
rate of the tailored noise can be directly and efficiently measured through randomized benchmarking protocols,
enabling a rigorous certification of the performance of a quantum computer.
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I. INTRODUCTION

The rich complexity of quantum states and processes
enables powerful protocols for processing and communicating
quantum information, as illustrated by Shor’s factoring algo-
rithm [1] and quantum simulation algorithms [2]. However,
the same rich complexity of quantum processes that makes
them useful also allows a large variety of errors to occur.
Errors in a quantum computer arise from a variety of sources,
including decoherence and imperfect control, where the latter
generally lead to coherent (unitary) errors. It is provably
possible to perform a fault-tolerant quantum computation in
the presence of such errors provided they occur with at most
some maximum threshold probability [3–8]. However, the
fault-tolerant threshold probability depends upon the error-
correcting code and is notoriously difficult to estimate or bound
because of the sheer variety of possible errors. Rigorous lower
bounds on the threshold of the order of 10−6 [6] for generic
local noise and 10−4 [9] and 10−3 [10] for stochastic Pauli noise
have been obtained for a variety of codes. While these bounds
are rigorous, they are far below numerical estimates that range
from 10−2 [11,12] and 10−1 [13–15], which are generally
obtained assuming stochastic Pauli noise, largely because the
effect of other errors is too difficult to simulate [16]. While a
threshold for Pauli errors implies a threshold exists for arbitrary
errors (e.g., unitary errors), there is currently no known way
to rigorously estimate a threshold for general noise from a
threshold for Pauli noise.

The “error rate” due to an arbitrary noise map E can be
quantified in a variety of ways. Two particularly important
quantities are the average error rate defined via the gate
fidelity

r(E) = 1 −
∫

dψ〈ψ |E(|ψ〉〈ψ |)|ψ〉 (1)

and the worst-case error rate (also known as the diamond
distance from the identity) [17]

ε(E) = 1
2‖E − I‖� = sup

ψ

1
2‖[E ⊗ Id − Id2 ](ψ)‖1, (2)

where d is the dimension of the system E acts on, ‖A‖1 =√
TrA†A, and the maximization is over all d2-dimensional pure

states (to account for the error introduced when acting on en-
tangled states). The average error rate r(E) is an experimentally
convenient characterization of the error rate because it can be
efficiently estimated via randomized benchmarking [18–22].
However, the diamond distance is typically the quantity used
to prove rigorous fault-tolerance thresholds [6]. The average
error rate and the worst-case error rate are related via the
bounds [23,24]

r(E)d−1(d + 1) � ε(E) �
√

r(E)
√

d(d + 1). (3)

The lower bound is saturated by any stochastic Pauli noise, in
which case the worst-case error rate is effectively equivalent to
the experimental estimates obtained efficiently via randomized
benchmarking [25]. While the upper bound is not known
to be tight, there exist unitary channels such that ε(E) ≈√

(d + 1)r(E)/4, so the scaling with r is optimal [26].
The scaling of the upper bound of Eq. (3) is only saturated

by purely unitary noise. However, even a small coherent
error relative to stochastic errors can result in a dramatic
increase in the worst-case error. For example, consider a
single qubit noise channel with r = 1 × 10−4, where the
contribution due to stochastic noise processes is r = 0.83 ×
10−4 and the remaining contribution is from a small unitary
(coherent) rotation error. The worst-case error for such noise is
ε ≈ 10−2, essentially two orders of magnitude greater than the
infidelity [26].

Here we show that by compiling random single-qubit
gates into a logical circuit, noise with arbitrary coherence
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and spatial correlations can be converted (or “tailored”) into
stochastic Pauli noise. We also prove that our technique is
robust to gate-dependent errors which arise naturally due to
imperfect gate calibration. In particular, our protocol is fully
robust against arbitrary gate-dependent errors on the gates that
are most difficult to implement, while imperfections in the
easier gates introduces an additional error that is essentially
proportional to the infidelity.

Our randomized compiling technique requires only a small
(classical) overhead in the compilation cost, or, alternatively,
can be implemented on the fly with fast classical control.
Stochastic Pauli errors with the same average error rate r as
a coherent error leads to four major advantages for quantum
computation: (i) they have a substantially lower worst-case
error rate; (ii) the worst-case error rate can be directly esti-
mated efficiently and robustly via randomized benchmarking
experiments, enabling a direct comparison to a threshold
estimate to determine if fault-tolerant quantum computation
is possible; (iii) the known fault-tolerant thresholds for Pauli
errors are substantially higher than for coherent errors; and
(iv) the average error rate accumulates linearly with the length
of a computation for stochastic Pauli errors, whereas it can
accumulate quadratically for coherent errors.

Randomizing quantum circuits has been previously pro-
posed in Refs. [27,28]. However, these proposals have specific
limitations that our technique circumvents. The proposal for
inserting Pauli gates before and after Clifford gates proposed
in Ref. [27] is a special case of our technique when the only
gates to be implemented are Clifford gates. However, this
technique does not account for non-Clifford gates whereas
our generalized technique does. As a large number of
non-Clifford gates are required to perform useful quantum
computations [29] and are often more difficult to perform
fault-tolerantly, our generalized technique should be extremely
valuable in practice. Moreover, the proposal in Ref. [27]
assumes that the Pauli gates are essentially perfect, whereas we
prove that our technique is robust to imperfections in the Pauli
gates. Alternatively, Pauli-random-error correction (PAREC)
has been shown to eliminate static coherent errors [28].
However, PAREC involves changing the multiqubit gates in
each step of the computation. As multiqubit errors are currently
the dominant error source in most experimental platforms and
typically depend strongly on the gate to be performed, it is
unclear how robust PAREC will be against gate-dependent
errors on multiqubit gates and consequently against realistic
noise. By way of contrast, our technique is completely robust
against arbitrary gate-dependent errors on multiqubit gates.

II. STANDARDIZED FORM FOR COMPILED
QUANTUM CIRCUITS

We begin by proposing a standardized form for compiled
quantum circuits based on an operational distinction between
“easy” and “hard” gates, that is, gates that can be implemented
in a given experimental platform with relatively small and
large amounts of noise respectively. We also propose a specific
choice of easy and hard gates that is well suited to many
architectures for fault-tolerant quantum computation.

In order to experimentally implement a quantum algorithm,
a quantum circuit is compiled into a sequence of elementary

gates that can be directly implemented or have been specif-
ically optimized. Typically, these elementary gates can be
divided into easy and hard gate sets based either on how many
physical qubits they act on or how they are implemented within
a fault-tolerant architecture. In near-term applications of uni-
versal quantum computation without quantum error correction,
such as quantum simulation, the physical error model and error
rate associated with multiqubit gates will generally be distinct
from, and much worse than, those associated with single qubit
gates. In the long term, fault-tolerant quantum computers will
implement some operations either transversally (that is, by
applying independent operations to a set of physical qubits)
or locally in order to prevent errors from cascading. However,
recent “no-go” theorems establish that for any fault-tolerant
scheme, there exist some operations that cannot be performed
in such a manner [30,31] and so must be implemented via other
means, such as magic-state injection [32] or gauge fixing [33].

The canonical division that we consider is to set the
easy gates to be the group generated by Pauli gates and
the phase gate R = |0〉〈0| + i|1〉〈1|, and the hard gate set to
be the Hardamard gate H , the π/8 gate

√
R, and the two-

qubit controlled-Z gate �(Z) = |0〉〈0| ⊗ I + |0〉〈0| ⊗ Z. Such
circuits are universal for quantum computation and naturally
suit many fault-tolerant settings, including Calderbank-Shor-
Steane (CSS) codes with a transversal T gate (such as the
15-qubit Reed-Muller code), color codes, and the surface code.
While some of the hard gates may be easier than others in a
given implementation, it is beneficial to make the set of easy
gates as small as possible since our scheme is completely
robust to arbitrary variations in errors over the hard gates.

With such a division of the gates, the target circuit can
be reorganized into a circuit (the “bare” circuit) consisting
of K clock cycles, wherein each cycle consists of a round
of easy gates followed by a round of hard gates applied to
disjoint qubits as in Fig. 1(a). To concisely represent the
composite operations performed in individual rounds, we use
the notational shorthand 	A = A1 ⊗ · · · ⊗ An and define Gk to
be the product of all the hard gates applied in the kth cycle. We
also set GK = I without loss of generality, so that the circuit
begins and ends with a round of easy gates.

III. RANDOMIZED COMPILING

We now specify how standardized circuits in the above
form can be randomized in order to average errors in the
implementations of the elementary gates into an effective
stochastic channel, that is, into a channel E that maps any
n-qudit state ρ to

E(ρ) =
∑

P∈P⊗n
d

cP PρP †, (4)

where P⊗n
d is the set of d2n generalized Pauli operators and

the coefficients cP are a probability distribution over P⊗n
d . For

qubits (d = 2), P2 is the familiar set of four Hermitian and
unitary Pauli operators {I,X,Y,Z}.

Let C denote the group generated by the easy gates and
assume that it contains a subset T such that

ET = ET T †ET (5)
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FIG. 1. (a) Example of a bare circuit that is arranged into cycles
wherein each cycle consists of a round of easy single-qubit gates and
a round of hard gates (here, the hard gates are controlled-NOT gates).
(b) A randomized circuit wherein twirling gates have been inserted
before and after every easy gate. (c) A randomized circuit wherein
the twirling gates have been compiled into the easy gates, resulting
in a new circuit that is logically equivalent to the bare circuit and has
the same number of elementary gates.

is a stochastic channel for any channel E , where Exf (x) =
|X|−1 ∑

x∈X f (x) denotes the uniform average over a set X

(typically a gate set implicit from the context). The canonical
example of such a set is P⊗n

d or any group containing P⊗n
d .

We propose the following randomized compiling technique,
where the randomization should ideally be performed indepen-
dently for each run of a given bare circuit. Each round of easy
gates 	Ck in the bare circuit of Fig. 1(a) is replaced with a round
of randomized dressed gates

C̃k = 	Tk
	Ck

	T c
k−1 (6)

as in Fig. 1(b), where the Tj,k are chosen uniformly at random
from the twirling set T and the correction operators are set to
	T c
k = Gk

	T †
k G

†
k to undo the randomization from the previous

round. The edge terms 	T c
0 and 	TK can either be set to the

identity or also randomized depending on the choice of the
twirling set and the states and measurements.

The dressed gates should then be compiled into and
implemented as a single round of elementary gates as in
Fig. 1(c) rather than being implemented as three separate
rounds of elementary gates. In order to allow the dressed gates
to be compiled into a single easy gate, we require 	T c

k ∈ C⊗n

for all 	Tk ∈ T⊗n. The example with T = Pd that has been
implicitly appealed to and described as “toggling the Pauli
frame” previously [11] is a special case of the above technique
when the hard gates are Clifford gates (which are defined to
be the gates that map Pauli operators to Pauli operators under
conjugation), but breaks down when the hard gates include
non-Clifford gates such as the single-qubit π/8 gate. For the
canonical division into easy and hard gates from the previous
section, we set T = P2, C to be the group generated by R

and P2 (which is isomorphic to the dihedral group of order 8)
and the hard gates to be rounds of H ,

√
R, and �(Z) gates.

Conjugating a Pauli gate by H or �(Z) maps it to another Pauli
gate, while conjugating by

√
R maps XxZz to RxXxZz (up to

a global phase). Therefore the correction gates, and hence the
dressed gates, are all elements of the easy gate set.

The tailored noise is not realized in any individual choice
of sequences. Rather, it is the average over independent
random sequences. However, while each term T †ET in the
tailored noise can have a different effect on an input state
ρ, if the twirling gates are independently chosen on each
run, then the expected noise over multiple runs is exactly the
tailored noise. Independently sampling the twirling gates each
time the circuit is run introduces some additional overhead,
since the dressed gates (which are physically implemented)
depend on the twirling gates and so need to be recompiled
for each experimental run of a logical circuit. However, this
recompilation can be performed in advance efficiently on a
classical computer or else applied efficiently “on the fly” with
fast classical control. Moreover, this fast classical control is
exactly equivalent to the control required in quantum error
correction so imposes no additional experimental burden.

We will prove below that our technique tailors noise
satisfying various technical assumptions into stochastic Pauli
noise. We expect the technique will also tailor more general
noise into approximately stochastic noise, though leave a fully
general proof as an open problem.

Robustness to arbitrary independent errors on the hard gates

We now prove that our randomized compiling scheme
results in an average stochastic noise channel for Markovian
noise that depends arbitrarily upon the hard gates but is
independent of the easy gate. Under this assumption, the noisy
implementations of the kth round of easy gates 	Ck and hard
gates Gk can be written as Ee 	C and GkE(Gk) respectively,
where Ee and E(Gk) are n-qubit channels that can include
multiqubit correlations and E(∗) can depend arbitrarily on the
argument, that is, on which hard gates are implemented.

Theorem 1. Randomly sampling the twirling gates 	Tk

independently in each round tailors the noise at each time step
(except the last) into stochastic Pauli noise when the noise on
the easy gates is gate independent.

Proof. The key observation is that if the noise in rounds
of easy gates is some fixed noise channel Ee, then the dressed
gates in Eq. (6) have the same noise as the bare gates and
so compiling in the extra twirling gates in Fig. 2(c) does not
change the noise at each time step, as illustrated in Figs. 2(a)
and 2(d). Furthermore, the correction gates T c

k,j are chosen
so that they are the inverse of the randomizing gates when
they are commuted through the hard gates, as illustrated in
Figs. 2(b) and 2(c). Consequently, uniformly averaging over
the twirling gates in every cycle reduces the noise in the kth
cycle to the tailored noise

Tk = E 	T 	T †E(Gk)Ee 	T , (7)

where for channels A and B, AB denotes the channel whose
action on a matrix M is A[B(M)]. When T = P, the above
channel is a Pauli channel [19]. Moreover, by the definition
of a unitary one-design [21], the above sum is independent
of the choice of T and so is a Pauli channel for any unitary
one-design. �
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C2,k C2,k+1

C3,k C3,k+1
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Ee E(Gk) Gk
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T c
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2,k C2,k+1
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C3,k+1
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FIG. 2. (a) Fragment of a noisy bare circuit with the kth cycle
indicated by the dashed box, where the gate-independent noise
from subsequent cycles are omitted for brevity. (b) An equivalent
fragment where the easy gates have been replaced by the dressed
gates in Eq. (6), which leaves the noise unchanged. (c) The equivalent
fragment where we have expanded out the dressed gates. (d) The
equivalent fragment where we commute the correction gates through
Gk , the round of hard gates. (e) The tailored circuit obtained by
averaging over randomized circuits where Tk is the tailored stochastic
Pauli channel in Eq. (7).

Theorem 1 establishes that the noise in all but the final
cycle can be exactly tailored into stochastic noise (albeit
under somewhat idealized conditions which will be relaxed
below). To account for noise in the final round, we can write
the effect corresponding to a measurement outcome |	z〉 as
A(|	z〉〈	z|) for some fixed noise map A. If P ⊂ C, we can
choose 	TK uniformly at random from P⊗n. A virtual Pauli
gate can then be inserted between the noise map A and the
idealized measurement effect |	z〉〈	z| by classically relabeling
the measurement outcomes to map 	z → 	z ⊕ 	x, where ⊕
denotes entrywise addition modulo 2. Averaging over 	TK

with this relabeling reduces the noise in the final round of
single-qubit Clifford gates and the measurement to

A = E 	P 	PAEe
	P . (8)

This technique can also be applied to quantum nondemolition
measurements on a subset of the qubits (as in, for example,
error-correcting circuits), where the unmeasured qubits have

randomizing twirling gates applied before and after the
measurement.

IV. ROBUSTNESS TO INDEPENDENT ERRORS
ON THE EASY GATES

By Theorem 1, our technique is fully robust to the most
important form of gate dependence, namely, gate-dependent
errors on the hard gates. However, Theorem 1 still requires
that the noise on the easy gates is effectively gate independent.
Because residual control errors in the easy gates will generally
produce small gate-dependent (coherent) errors, we will show
that the benefits of noise tailoring can still be achieved in this
physically realistic setting.

When the noise depends on the easy gates, the tailored noise
in the kth cycle from equation (7) becomes

T GD
k = E 	T1,..., 	Tk

	T †
k E(Gk)E( 	̃Ck) 	Tk, (9)

which depends on the previous twirling gates through 	̃Ck

by Eq. (6). This dependence means that we cannot assign
independent noise to each cycle in the tailored circuit.

However, in Theorem 2 we show that implementing a circuit

with gate-dependent noise E( 	̃Ck) instead of the corresponding
gate-independent noise

ET
k = E 	̃Ck

E( 	̃Ck) = E 	Tk, 	Tk−1
E
( 	Tk

	Ck
	T c
k−1

)
(10)

introduces a relatively small additional error. We show that
the additional error is especially small when T is a group
normalized by C, that is, CT C† ∈ T for all C ∈ C, T ∈ T.
This condition is satisfied in many practical cases, including
the scenario where T is the Pauli group and C is the group
generated by Pauli and R gates. The stronger bound reduces
the contributions from every cycle by orders of magnitude in
parameter regimes of interest (i.e., ε[E(Gk−1)ET

k−1] � 10−2,
comparable to current experiments), so that the bound on the
additional error grows very slowly with the circuit length.

Theorem 2. Let CGD and CGI be tailored circuits with
gate-dependent and gate-independent noise on the easy gates
respectively. Then

‖CGD − CGI‖� �
K∑

k=1

E 	T1,..., 	TK

∥∥E( 	̃Ck) − ET
k

∥∥
�. (11)

When T is a group normalized by C, this can be improved to

‖CGD − CGI‖� �
K∑

k=2

2E 	̃Ck

∥∥E( 	̃Ck) − ET
k

∥∥ε
[
E(Gk−1)ET

k−1

]

+ E 	̃C1

∥∥E( 	̃C1) − ET
1

∥∥
�. (12)

Proof. Let

Ak = GkE(Gk)E( 	̃Ck) 	̃Ck,
(13)

Bk = GkE(Gk)ET
k

	̃Ck,

where Ak and Bk implicitly depend on the choice of twirling
gates. Then the tailored circuits under gate-dependent and
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gate-independent noise are

CGD = EaAK:1,
(14)

CGI = EaBK:1,

respectively, where Xa:b = Xa . . .Xb (note that this product is
noncommutative) with AK:K+1 = B0:1 = I and the expecta-
tion is over all 	Ta for a = 1, . . . ,K . Then by a straightforward
induction argument,

AK:1 − BK:1 =
K∑

k=1

AK:k+1(Ak − Bk)Bk−1:1 (15)

for any fixed choice of the twirling gates. By the triangle
inequality,

‖CGD − CGI‖� =
∥∥∥∥∥Ea

K∑
k=1

AK:k+1(Ak − Bk)Bk−1:1

∥∥∥∥∥
�

� Ea

K∑
k=1

‖AK:k+1(Ak − Bk)Bk−1:1‖�

� Ea

K∑
k=1

∥∥E( 	̃Ck) − ET
k

∥∥
�, (16)

where the second inequality follows from the submultiplica-
tivity

‖AB‖� � ‖A‖�‖B‖� (17)

of the diamond norm and the normalization ‖A‖� = 1 which
holds for all quantum channels A.

We can substantially improve the above bound by evaluat-
ing some of the averages over twirling gates before applying
the triangle inequality. In particular, leaving the average over
	Tk−1 inside the diamond norm in Eq. (16) for every term except
k = 1 gives

‖CGD − CGI‖� �
K∑

k=1

Ea �=k−1‖Ek−1δkγk‖�

+Ea

∥∥E( 	̃C1) − ET
1

∥∥
�, (18)

where

δk = E( 	̃Ck) − ET
k ,

(19)
γk = 	̃CkGk−1E(Gk−1)ET

k−1
	Tk−1,

and δkγk is the only factor of AK:k+1(Ak − Bk)Bk−1:1 that de-
pends on 	Tk−1. Substituting E(Gk−1)ET

k−1 = [E(Gk−1)ET
k−1 −

I] + I in γk gives

Ek−1δk = Ek−1δk
	̃CkGk−1

[
E(Gk−1)ET

k−1 − I
] 	Tk−1

+ Ek−1δk
	Tk

	CkGk−1, (20)

where the only factor in the second term that depends on 	Tk−1

is δk . When T is a group normalized by C,

Ek−1δk = Ek−1E( 	̃Ck) − ET
k

= Ek−1E
( 	Ck[ 	C†

k
	Tk

	Ck] 	T c
k−1

) − ET
k

= E 	T ′E( 	Ck
	T ′) − ET

k = 0 (21)

for any fixed value of 	Tk , using the fact that {hg : g ∈ G} = G
for any group G and h ∈ G and thatE 	T ′E( 	Ck

	T ′) is independent
of 	Tk . Therefore

‖CGD − CGI‖� = ‖Ej (AK:1 − BK:1)‖�

� ‖δ1‖� +
K∑

k=2

Ej �=k−1‖Ek−1δkγk‖�

� ‖δ1‖� +
K∑

k=2

Ej �=k−1‖E 	Tk−1
δk

	̃Ck

×Gk−1
[
E(Gk−1)ET

k−1 − I
] 	Tk−1‖�

�
K∑

k=2

Ej‖δk‖�
∥∥E(Gk−1)ET

k−1 − I
∥∥

� + ‖δ1‖�,

(22)

where we have had to split the sum over k as 	T0 is fixed to the
identity. �

There are two particularly important scenarios in which the
effect of gate-dependent contributions need to be considered
and which determine the physically relevant value of K .
In near-term applications such as quantum simulators, the
following theorem would be applied to the entire circuit,
while in long-term applications with quantum error correc-
tion, the following theorem would be applied to fragments
corresponding to rounds of error correction. Hence under our
randomized compiling technique, the noise on the easy gates
imposes a limit either on the useful length of a circuit without
error correction or on the distance between rounds of error
correction. It is important to note that a practical limit on K

is already imposed, in the absence of our technique, by the
simple fact that even Pauli noise accumulates linearly in time,
so r(Tk) � 1/K is already required to ensure that the output
of any realistic circuit remains close to the ideal circuit.

While Theorem 2 provides a very promising bound, it is

unclear how to estimate the quantities 1
2E 	̃Ck

‖E( 	̃Ck) − ET
k ‖�

without performing full process tomography. To remedy this,
we now provide the following bound in terms of the infidelity,
which can be efficiently estimated via randomized benchmark-
ing. We expect the following bound is not tight as we use the
triangle inequality to turn the deviation from the average noise
into deviations from no noise, which should be substantially
larger. However, even the following loose bound is sufficient to
rigorously guarantee that our technique significantly reduces
the worst-case error, as illustrated in Fig. 3 for a two-qubit gate
in the bulk of a circuit (i.e., with k > 1).

The following bound could also be substantially improved if
the noise on the easy gates is known to be close to depolarizing
(even if the hard gates have strongly coherent errors), as
quantified by the unitarity [34–36]. However, rigorously
determining an improved bound would require analyzing the
protocol for estimating the unitarity under gate-dependent
noise, which is currently an open problem.

Theorem 3. For arbitrary noise,

E 	̃Ck

∥∥E( 	̃Ck) − ET
k

∥∥
� � 2ε

(
ET

k

) + 2

√
E 	̃Ck

ε[E( 	̃Ck)]2. (23)
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FIG. 3. Upper bounds εub on the worst-case error for a two-qubit
hard gate in the bulk of a circuit (e.g., a controlled-NOT gate with
k > 1) as a function of its infidelity r(E) with [dashed black, from
theorems 2 and 3] and without [solid blue, from Eq. (3)] our tailoring
technique under gate-dependent local noise on the single-qubit gates

with infidelity r(ET
j,k) = 10−5, 10−4, 5 × 10−3, 10−3 respectively.

The worst-case error rate achieved by our technique for gate-
independent noise (over the dressed gates) is plotted for comparison
[dotted blue, from Eq. (3)].

For n-qubit circuits with local noise on the easy gates,

E 	̃Ck

∥∥E( 	̃Ck) − ET
k
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� �

n∑
j=1

4
√

6r
(
ET

j,k

)
(24)

for k = 2, . . . ,K , where ET
j.k = EC̃j,k

Ej (C̃j,k) is the local noise
on the j th qubit averaged over the dressed gates in the kth
cycle.

Proof. First note that, by the triangle inequality,
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∥∥E( 	̃Ck) − ET
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�
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(
ET

k

)
. (25)

By the Cauchy-Schwarz inequality,

(
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)2 =
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= E 	̃Ck
ε[E( 	̃Ck)]2, (26)

where # 	̃Ck is the number of different dressed gates in the kth
round.

For local noise, that is, noise of the form E1 ⊗ . . . En where
Ej is the noise on the j th qubit,

ε[E( 	̃Ck)] = 1
2

∥∥∥∥∥∥
n⊗

j=1

Ej (C̃j,k) − I

∥∥∥∥∥∥
�

�
n∑

j=1

1
2‖Ej (C̃j,k) − I‖�

�
n∑

j=1

ε[E(C̃j,k)], (27)

where we have used the analog of Eq. (15) for the tensor
product and

‖A ⊗ B‖� � ‖A‖�‖B‖�, (28)

which holds for all A and B due to the submultiplicativity of the
diamond norm, and the equality ‖A ⊗ I‖� = ‖A‖�. Similarly,

ε
(
ET

k

) =
n∑

j=1

ε
(
ET

j,k

)
, (29)

where ET
j,k = ETj,k−1,Tj,k

E(C̃j,k). We then have
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EC̃j,k
ε[E(C̃j,k)]

�
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√
EC̃j,k

ε[E(C̃j,k)]2, (30)

where the second inequality is due to the Cauchy-Schwarz
inequality as in Eq. (26). Returning to Eq. (25), we have
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2ε
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�
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4
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6r
(
ET

j,k

)
(31)

for local noise, where the second inequality follows from
Eq. (3) with d = 2 and the third from the linearity of the
infidelity. �

V. NUMERICAL SIMULATIONS

Tailoring experimental noise into stochastic noise via our
technique provides several dramatic advantages, which we
now illustrate via numerical simulations. Our simulations are
all of six-qubit circuits with the canonical division into easy
and hard gates. That is, the easy gates are composed of Pauli
gates and the phase gate R = |0〉〈0| + i|1〉〈1|, while the hard
gates are the Hadamard, π/8 gate T = √

R, and the two-
qubit controlled-Z gate �(Z) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z. Such
circuits are universal for quantum computation and naturally
suit many fault-tolerant settings, including CSS codes with a
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FIG. 4. Semilog plots of the error τnoise from Eq. (32) with respect
to computational basis measurement outcomes as a function of the
average gate error r[�(Z)] of the noise on the �(Z) gate in six-qubit
bare (blue circles) and tailored (red squares) circuits. Each data point
corresponds to an independent random circuit with 100 cycles, where
the (gate-dependent) noise on each gates is an over-rotation about the
relevant eigenbasis with infidelity r[�(Z)] for the �(Z) gates and
r[�(Z)]/10 for all single-qubit gates. The data points for the tailored
noise correspond to an average over 103 independent randomizations
of the corresponding bare circuit via Eq. (6). The total error for the
bare and tailored circuits differs by a factor of approximately 2 on a
log scale, mirroring the separation between the worst-case errors for
stochastic and unitary channels from Eq. (3) (although here the error
is not maximized over preparations and measurements).

transversal T gate (such as the 15-qubit Reed-Muller code),
color codes, and the surface code.

We quantify the total noise in a noisy implementation Cnoisy

of an ideal circuit Cid by the variational distance

τnoisy =
∑

j

1
2 |Pr(j |Cnoisy) − Pr(j |Cid)| (32)

between the probability distributions for ideal computational
basis measurements after applying Cnoisy and Cid to a system
initialized in the |0〉⊗n state. We do not maximize over
states and measurements, rather, our results indicate the
effect of noise under practical choices of preparations and
measurements.

For our numerical simulations, we add gate-dependent
over-rotations to each gate, that is, we perturb one of the
eigenvectors of each gate U by eiδU . For single-qubit gates,
the choice of eigenvector is irrelevant (up to a global phase),
while for the two-qubit �(Z) gate, we add the phase to the
|11〉 state.

We perform two sets of numerical simulations to illustrate
two particular properties. First, Fig. 4 shows that our technique
introduces a larger relative improvement as the infidelity
decreases, that is, approximately a factor of 2 on a log scale,
directly analogous to the r/

√
r scaling for the worst case error

(although recall that our simulations are for computational
basis states and measurements and do not maximize the error
over preparations and measurements). For these simulations,
we set δU so that the �(Z) gate has an infidelity of r[�(Z)] and
so that all single-qubit gates have an infidelity of r[�(Z)]/10
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FIG. 5. Plots of the error τnoise from Eq. (32) with respect to
computational basis measurement outcomes as a function of the
average gate error r[�(Z)] of the noise on the �(Z) gate in six-qubit
bare (blue circles) and tailored (red squares) circuits. Each data point
corresponds to an independent random circuit with K cycles, where
the (gate-dependent) noise on each gates is an over-rotation about
the relevant eigenbasis with infidelity 10−3 for the �(Z) gates and
10−5 for all single-qubit gates. The data points for the tailored noise
correspond to an average over 103 independent randomizations of
the corresponding bare circuit via Eq. (6). The error rate grows
approximately linearly with the number of gate cycles, suggesting
that the dominant reason for the error suppression is that the error
at each location is suppressed (where there are a linear number of
total locations), rather than the suppression of possible quadratic
accumulation of coherent errors between locations.

(regardless of whether they are included in the easy or the
hard set). For the bare circuits (blue circles), each data point is
the variational distance of a randomly chosen six-qubit circuit
with a hundred alternating rounds of easy and hard gates,
each sampled uniformly from the sets of all possible easy
and hard gate rounds respectively. For the tailored circuits
(red squares), each data point is the variational distance
between Pr(j |Cid) and the probability distribution Pr(j |Cnoisy)
averaged over 103 randomizations of the bare circuit obtained
by replacing the easy gates with (compiled) dressed gates as in
Eq. (6).

Second, Fig. 5 shows that the typical error for both the bare
and tailored circuits grows approximately linearly with the
length of the circuit. This suggests that, for typical circuits, the
primary reason that the total error is reduced by our technique is
not because it prevents the worst-case quadratic accumulation
of fidelity with the circuit length (although it does achieve
this). Rather, the total error is reduced because the contribution
from each error location is reduced, where the number of
error locations grows linearly with the circuit size. For these
simulations, we set δU so that the �(Z) gate has an infidelity
of 10−3 and the easy gates have infidelities of 10−5. For the
bare circuits (blue circles), each data point is the variational
distance of a randomly chosen six-qubit circuit as above with
K alternating rounds of easy and hard gates, where K varies
from 5 to 100. The tailored circuits (red squares) again give
the variational distance between the ideal distribution and the
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probability distribution averaged over 103 randomizations of
the bare circuit.

VI. DISCUSSION

We have shown that arbitrary Markovian noise processes
can be reduced to effective Pauli processes by compiling differ-
ent sets of uniformly random gates into sequential operations.
This randomized compiling technique can reduce the worst-
case error rate by orders of magnitude and enables threshold
estimates for general noise models to be obtained directly from
threshold estimates for Pauli noise. Physical implementations
can then be evaluated by directly comparing these threshold
estimates to the average error rate r estimated via efficient
experimental techniques, such as randomized benchmarking,
to determine whether the experimental implementation has
reached the fault-tolerant regime. More specifically, the aver-
age error rate r is that of the tailored channel for the composite
noise on a round of easy and hard gates and this can be directly
estimated using interleaved randomized benchmarking with
the relevant choice of group [37,38].

Our technique can be applied directly to gate sets that are
universal for quantum computation, including all elements in a
large class of fault-tolerant proposals. Moreover, our technique
only requires local gates to tailor general noise on multiqubit
gates into Pauli noise. Our numerical simulations in Figs. 4
and 5 demonstrate that our technique can reduce worst-case
errors by orders of magnitude. Furthermore, our scheme should
generally produce an even greater effect as fault-tolerant

protocols are scaled up, since fault-tolerant protocols are
designed to suppress errors, for example, ε → εk for some
scale factor k (e.g., number of levels of concatenation), so any
reduction at the physical level is improved exponentially with
k. However, while the technique can be directly integrated
into fault-tolerant implementations, analyzing the impact
on encoded error rates remains an open problem and will
generally depend on the specific noise and error-correcting
code.

A particularly significant open problem is the robustness of
our technique to noise that remains non-Markovian on a time-
scale longer than a typical gate time. Non-Markovian noise
can be mitigated by techniques such as randomized dynamic
decoupling [39,40], which correspond to applying random
sequences of Pauli operators to echo out non-Markovian
contributions. Due to the random gates compiled in at each
time step, we expect that our technique may also suppress
non-Markovian noise in a similar manner.
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