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There is growing belief that the next decade will see the emergence of sensing devices based on the laws of
quantum physics that outperform some of our current sensing devices. For example, in frequency estimation,
using a probe prepared in an entangled state can, in principle, lead to a precision gain compared to a probe
prepared in a separable state. Even in the presence of some forms of decoherence, it has been shown that the
precision gain can increase with the number of probe particles N . Usually, however, the entangled and separable
state preparation and readout times are assumed to be negligible. We find that a probe in a maximally entangled
(GHZ) state can give an advantage over a separable state only if the entangled state preparation and readout times
are lower than a certain threshold. When the probe system suffers dephasing, this threshold is much lower (and
more difficult to attain) than it is for an isolated probe. Further, we find that in realistic situations the maximally
entangled probe gives a precision advantage only up to some finite number of probe particles Ncutoff that is lower
for a dephasing probe than it is for an isolated probe.
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I. INTRODUCTION

In quantum metrology the goal is often to estimate some
unknown parameter ω by measuring a probe system whose
quantum state ρ̂ω depends on that parameter [1,2]. Usually,
the dependence comes about through some ω-dependent
dynamics. It is well known that under ideal conditions,
entanglement in the probe can be exploited to increase the
precision of the estimate [3–5]. To determine the extent of the
precision gain in practice, it is important to consider realistic,
nonideal conditions. Here we investigate the effect of including
measurement and readout times in quantum metrology.

A quantum metrology protocol has four main steps: (i)
[preparation] the probe system is initialized; (ii) [sensing] the
probe system evolves in time, picking up a dependence on
the unknown parameter ω; (iii) [readout] the probe system
is measured to extract the information about the parameter
ω; (iv) [estimation] the parameter ω is estimated based on
the measurement results. Steps (i)–(iii) may be repeated ν

times before the final processing of the measurement results
in the estimation step. If each repeat of steps (i)–(iii) takes
time t to complete, the total time for the protocol is T = νt .
The protocol is illustrated in Fig. 1. The error δω of the
final estimate depends on the state that is prepared in step
(i). For example, in the case of frequency estimation using
a probe consisting of N two-level systems, a separable state
can give—at best—a sensitivity that scales as δω ∼ 1/

√
N

(standard quantum scaling), while entangled states (such as
GHZ states) can, in principle, give sensitivity δω ∼ 1/N

(Heisenberg scaling) [3–5]. This is a significant improvement
when N is a large number. When decoherence is taken into
account the precision gain using entangled states is somewhat
diminished: With parallel Markovian dephasing we have a
return to standard quantum scaling δω ∼ 1/

√
N [6–8], but

with parallel non-Markovian dephasing we can achieve δω ∼
1/N3/4 [9,10], and with transverse Markovian dephasing the
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scaling δω ∼ 1/N5/6 is possible with entangled probe states
[11]. These results suggest that we should use the preparation
stage to generate an entangled state that is sensitive to the
ω-dependent dynamics in the sensing period. However, we
note that it is usually assumed that the preparation and readout
steps take a negligible amount of time.

The error δω also typically decreases with the amount of
time given to the sensing stage [12], which we denote τ . This
suggests that we should maximize the sensing time. However,
when the preparation stage takes a non-negligible amount of
time this leads to a tradeoff: We can use the preparation stage
to generate a state that is sensitive to small changes in the
unknown parameter, but the time taken to prepare this state
is then unavailable for sensing. In practice, the situation is
further complicated by the fact that the time t available for each
prepare-sense-readout round is always limited by decoherence
of the probe system. Here we investigate this tradeoff via the
prototypical example of frequency estimation.

II. MODEL

A probe consisting of N two-level systems is initialized in
a state ρ̂prep, which requires a preparation time τprep. This state
then evolves for a sensing time τ by the Hamiltonian Ĥω =
�ω
2

∑N
i=1 σ̂ (i)

z where ω is the parameter to be estimated. During
the sensing period each particle in the probe also interacts
with a bath leading to dephasing of the probe state by the
quantum channel �⊗N where for the ith particle the action of
the channel is �[ρ̂(i)] = 1+e−	(τ )

2 ρ̂(i) + 1−e−	(τ )

2 σ̂ (i)
z ρ̂(i)σ̂ (i)

z . Here
	(τ ) is a real function of the sensing time that is determined
by the details of the bath (see Appendix A). We can think of
the dephasing channel �⊗N and the unitary evolution operator
Ûω = exp[−iτ Ĥω/�] as operating simultaneously during the
sensing period, since the dynamics due to �⊗N and Ûω

commute with each other. After the sensing period has ended,
the probe is in the ω-dependent state ρω = Ûω�⊗N [ρ̂prep]Û †

ω.
The final readout takes a time τmeas so that the total time for
a single prepare-sense-readout round is t = τprep + τ + τmeas.
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FIG. 1. Illustration of the main steps of a quantum metrology
protocol. The preparation, sensing, and readout steps may be repeated
ν times before the final estimation step. Usually the state preparation
time τprep and the readout time τmeas are assumed to be negligible. In
practice, however, they are always finite.

This is repeated a number of times ν � 1, so that the total
experiment time is T = νt . Denoting τ̃ = τprep + τmeas for
convenience, we have t = τ̃ + τ .

The error in the estimate of ω is bounded by the quantum
Cramer-Rao inequality [13]:

δω � 1√
νF(ρ̂ω,τ )

= 1√
TF(ρ̂ω,τ )/(τ̃ + τ )

, (1)

where

F(ρ̂ω,τ ) = 2
∑
i,j

1

λi + λj

∣∣∣∣〈φj |dρ̂ω

dω
|φi〉

∣∣∣∣
2

(2)

is the quantum Fisher information of the state ρ̂ω with
eigenvalues {λi} and eigenstates {|φi〉}. We have explicitly
written the dependence on the sensing time τ in the argument
of F . Maximizing the quantity F(ρ̂ω,τ )/(τ̃ + τ ) on the right
hand side of Eq. (1) over the sensing time τ gives the optimum
precision:

δω � δωopt = 1√
T maxτ [F(ρ̂ω,τ )/(τ̃ + τ )]

= 1√
T [F(ρ̂ω,τopt)/(τ̃ + τopt)]

, (3)

for a given prepared state ρ̂prep, where τopt is the optimal
sensing time. We note that by using the quantum Fisher
information we implicitly assume that the optimal POVM can
be implemented at the readout stage.

We would like to compare δωopt for two different choices
of the prepared state ρ̂prep:

(1) the separable state |ψ sep〉 = [ 1√
2
(|0〉 + |1〉)]⊗N

,

(2) the maximally entangled GHZ state |ψent〉 =
1√
2
(|0〉⊗N + |1〉⊗N ).

The states |0〉 and |1〉 here are the eigenstates of σ̂z for each
two-level system. For the separable state (ρ̂sep

prep = |ψ sep〉〈ψ sep|)
we denote the preparation and readout time, the sensing time,
and the optimal precision as τ̃ = τ̃ sep, τopt = τ

sep
opt and δωopt =

δω
sep
opt , respectively (i.e., with the superscript “sep”). This

notation allows us to distinguish these from the corresponding
quantities τ̃ = τ̃ ent, τopt = τ ent

opt , and δωopt = δωent
opt when the

entangled state (ρ̂ent
prep = |ψent〉〈ψent|) is prepared. For a fair

comparison, we assume that in both cases the physical
resources N and T are the same. We note that we have
assumed that the state preparation is ideal, that is, the states
ρ̂

sep
prep = |ψ sep〉〈ψ sep| and ρ̂ent

prep = |ψent〉〈ψent| can be prepared
with perfect fidelity. The precision that can be achieved with

these two prepared states can then be compared with the ratio
[10]:

r = (
δω

sep
opt/δω

ent
opt

)2

= maxτ

[
F

(
ρ̂ent

ω ,τ
)
/(τ̃ ent + τ )

]
maxτ

[
F

(
ρ̂

sep
ω ,τ

)
/(τ̃ sep + τ )

] . (4)

If r � 1 there is no advantage in preparing the maximally
entangled GHZ state. If r > 1 there is an advantage in
preparing the entangled GHZ state, even taking the preparation
and readout time τ̃ = τprep + τmeas into account.

To derive an explicit expression for r the first step is to
calculate the quantities F(ρ̂sep

ω ,τ ) and F(ρ̂ent
ω ,τ ) via Eq. (2).

In the separable case, finding the eigenvalues and eigenvectors
of the state ρ̂

sep
ω = Ûω�⊗N [ρsep

prep]Û †
ω is relatively easy since

it is a tensor product of N identical two-dimensional mixed
states. Using these eigenvalues and eigenvectors in Eq. (2)
we obtain F(ρ̂sep

ω ,τ ) = Nτ 2e−2	(τ ). Similarly, the eigenstates
and eigenvalues of ρ̂ent

ω = Ûω�⊗N [ρent
prep]Û †

ω are easy to cal-
culate since the state evolves in a two-dimensional subspace
(spanned by |0〉⊗N and |1〉⊗N ) of the whole 2N -dimensional
state space. The quantum Fisher information in this case is
F(ρ̂ent

ω ,τ ) = N2τ 2e−2N	(τ ). The next step is to find the optimal
sensing times τ ent

opt and τ
sep
opt that maximize the numerator and

denominator of Eq. (4), which leads to:

r =N

(
τ̃ sep + τ

sep
opt

τ̃ ent + τ ent
opt

)(
τ ent

opt

τ
sep
opt

)2

exp
[−2N	

(
τ ent

opt

) + 2	
(
τ

sep
opt

)]
.

(5)

These optimal sensing times depend on the form of the function
	(τ ), which itself depends on the details of the bath. We first
consider an isolated probe.

III. ISOLATED PROBE

When the probe is isolated from its environment during
the sensing period we have 	(τ ) = 0 for all times τ so that
ρ̂ω = Ûωρ̂prepÛ

†
ω. In this case both

F
(
ρ̂

sep
ω ,τ

)
τ̃ + τ

= Nτ 2

τ̃ + τ
(6)

and

F
(
ρ̂ent

ω ,τ
)

τ̃ + τ
= N2τ 2

τ̃ + τ
(7)

are increasing functions of τ so that the optimal sensing times
τ

sep
opt and τ ent

opt are the maximum available sensing time, limited
only by the total measurement time T , i.e., τ sep

opt = T − τ̃ sep and
τ ent

opt = T − τ̃ ent. However, this is unrealistic since, in practice,
the time t available for each measurement is always limited by
decoherence. Thus—although the probe is isolated from the
environment—we assume that each run is limited to at most the
probe system coherence time tc, which gives τ

sep
opt = tc − τ̃ sep

and τ ent
opt = tc − τ̃ ent. Substituting into Eq. (5) gives:

r = N

(
1 − τ̃ ent/tc

1 − τ̃ sep/tc

)2

. (8)
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For the entangled state strategy to be advantageous we require
r > 1. It is straightforward to show that r is a decreasing
function of τ̃ ent/tc. In other words, as the entangled state
preparation and readout time τ̃ ent/tc increases (with τ̃ sep/tc
and N held fixed) the metrological gain r decreases. This can
be seen in Fig. 2(a), where r is plotted against τ̃ ent/tc and
τ̃ sep/tc for a fixed value of N , and in Fig. 2(b), where r is
plotted against τ̃ ent/tc and N for a fixed value of τ̃ sep/tc. Since
r is a decreasing function of τ̃ ent/tc we can find a critical value
of τ̃ ent/tc above which the separable state strategy outperforms
the entangled state strategy. From Eq. (8) we obtain:

r > 1 ⇒ τ̃ ent

tc
< 1 − 1 − τ̃ sep/tc√

N
. (9)

This threshold is plotted in Figs. 2(a) and 2(b) as the black
lines labeled r = 1 that divide the red (r > 1) and blue (r < 1)
regions.

From Eq. (8) we see that when τ̃ sep = τ̃ ent = 0 we recover
the familiar result r = N , indicating the Heisenberg scaling
advantage. When τ̃ sep = τ̃ ent 	= 0 we still have r = N , though
care must be taken to distinguish between absolute Heisen-
berg scaling δωent

opt ∝ 1/N and relative Heisenberg scaling
r ∝ N (which does not necessarily imply δωent

opt ∝ 1/N ).
Indeed, we note that Fig. 2(a) apparently shows a region of
super-Heisenberg relative sensitivity (r > N) when τ̃ ent/tc <

τ̃ sep/tc, although the absolute sensitivity δωent
opt cannot exceed

the Heisenberg limit.
Equation (8) also shows that relative Heisenberg scaling

r ∝ N is achieved if τ̃ ent/tc and τ̃ sep/tc are both independent
of the number of particles N . In general, however, the state
preparation and readout times will depend on N . For instance,
suppose that we start with the pure state |1〉⊗N , which for

simplicity we assume can be generated in a negligible time.
The separable state |ψ sep〉 is straightforwardly prepared from
this state by a π

2 rotation of each two-level system in its Bloch
sphere. Often, this can be done in a time that is independent
of N by applying the same rotation to each of the two-level
systems simultaneously. For the entangled state, the time
required to prepare |ψent〉 from |1〉⊗N depends on the particular
GHZ-state generation scheme. One common proposal is to
evolve by the Hamiltonian Ĥint = �χ

∑
i,j σ̂ (i)

x ⊗ σ̂
(j )
x since,

after an evolution time τ ent
prep = π/8χ , this leads to a GHZ

state. There are some proposed implementations of Ĥint for
which the coupling parameter χ (and hence the GHZ state
preparation time τ ent

prep = π/8χ ) is independent of N , but such
schemes often depend on the capabilities of the particular
physical implementation, for example, the intrinsic interaction
of Bose-Einstein condensates [14] or the precise tunability
of parameters in superconducting circuits [15]. For many
other implementations (e.g., Refs. [16–19]) χ is a decreasing
function of N so that the preparation time τ ent

prep = π/8χ is
increasing with N . Assuming that τ̃ ent/tc is increasing in
N , with τ̃ sep/tc staying constant, we find that the entangled
state strategy is always outperformed by the separable state
strategy for large enough N , that is, there is always a finite
cutoff value Ncutoff such that r < 1 for N > Ncutoff. For
example, in Fig. 2(b) we plot r as a function of N for
three different types of scaling for τ̃ ent/tc: logarithmic scaling
τ̃ ent/tc = (1 + log2 N )τ̃ sep/tc (the dotted white line), square-
root scaling τ̃ ent/tc = √

Nτ̃ sep/tc (the dashed white line), and
linear scaling τ̃ ent/tc = Nτ̃ sep/tc (the solid white line). In each
case, the white line eventually crosses the r = 1 threshold as
N increases, although the value of Ncutoff can change by orders
of magnitude depending on the N scaling of τ̃ ent/tc. However,

FIG. 2. Metrological gain r is a function of three variables τ̃ ent/tc, τ̃ sep/tc, and N . The top row shows r plotted against τ̃ ent/tc and τ̃ sep/tc
with the third variable fixed at N = 10. The bottom row shows r plotted against τ̃ ent/tc and N with the third variable fixed at τ̃ sep/tc = 0.03.
Animated versions of each of the plots above, with the third parameter varying in the time axis, are available by clicking on the plots above
(online only).
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we note that when there is a cutoff value Ncutoff there will
also be a smaller number of particles Nmax that maximizes the
metrological gain r , i.e., maxN r(N ) = r(Nmax). For a large
number N � Nmax of two-level systems one can maintain
a constant gain ∼r(Nmax) by dividing the ensemble of N

systems into ∼N/Nmax subensembles, each one prepared in a
maximally entangled state of size Nmax. A widely used figure
of merit to assess metrological schemes is the asymptotic
N -scaling advantage in sensitivity using entangled states.
These results indicate that it may be unrealistic to expect such
an advantage when state preparation and readout times are
taken into account—even for an isolated probe.

IV. INTERACTION WITH THE ENVIRONMENT

In the previous discussion we assumed that the system
was isolated from the bath, and we artificially included the
effect of decoherence by simply limiting the total per-round
interrogation time to t � tc. A more realistic model is to
include the effect of dephasing due to interaction with the
bath. When 	(τ ) > 0 the optimal separable state sensing time
τ

sep
opt is found by solving the equation:

2τ
sep
opt

d	(τ )

dτ

∣∣∣∣
τ=τ

sep
opt

= 1 + t̃ sep

t̃ sep + τ
sep
opt

, (10)

(which comes from differentiating F(ρ̂sep
ω ,τ )/(τ̃ ent + τ ) with

respect to τ and setting the result equal to zero). Similarly, the
optimal entangled state preparation time is found by solving:

2Nτ ent
opt

d	(τ )

dτ

∣∣∣∣
τ=τ ent

opt

= 1 + t̃ent

t̃ent + τ ent
opt

. (11)

From a microscopic model with each probe particle linearly
coupled to a bath of harmonic oscillators one can derive
different forms for 	(τ ) depending on the details of the bath
(see Appendix A). Following Refs. [9,10], we consider two
different limits: the Markovian limit and the non-Markovian
limit.

A. Markovian limit

For a Markovian bath one can show that 	(τ ) = γ τ , with
the corresponding single-spin coherence time tc = 1/γ (see
Appendix A). These dynamics can be modeled by the master
equation ρ̇ = − i

�
[Ĥω,ρ] + γ

2

∑N
i=1 (σ̂ (i)

z ρσ̂ (i)
z − ρ). Estima-

tion of ω with this form of dephasing was studied by Huelga
and co-workers [6] who found that r = 1 (without taking the
preparation and readout times τ̃ sep and τ̃ ent into account). Using
other entangled states instead of maximally entangled GHZ
states (e.g., squeezed states) can give an improvement, but
only up to a constant factor r � e ≈ 2.7 [7].

Taking into account the preparation and measurement times
τ̃ sep and τ̃ ent we find [by solving Eqs. 10 and 11 for 	(τ ) = γ τ ]
that:

τ
sep
opt = 1

4γ
+

√(
τ̃ sep

2
+ 1

4γ

)2

+ τ̃ sep

2γ
− τ̃ sep

2
, (12)

and

τ ent
opt = 1

4Nγ
+

√(
τ̃ ent

2
+ 1

4Nγ

)2

+ τ̃ ent

2Nγ
− τ̃ ent

2
. (13)

Substituting these expressions into Eq. (5) gives r as a
function of three variables: the entangled state preparation and
readout time τ̃ ent/tc = γ τ̃ ent, the separable state preparation
and readout time τ̃ sep/tc = γ τ̃ sep, and the number of spins N .

In Appendix C we show that, as in the case of the isolated
probe, r is a decreasing function of τ̃ ent/tc = γ τ̃ ent (with
τ̃ sep/tc held fixed). The question then is to find the point at
which this decreasing function crosses the r = 1 threshold for
metrological gain. By substituting τ̃ ent = τ̃ sep/N into Eqs. (5),
(12), and (13) it is straightforward to verify that this is the
crossing point. The τ̃ ent = τ̃ sep/N threshold is plotted in
Figs. 2(c) and 2(d) as the black lines labeled r = 1. When
τ̃ sep = τ̃ ent = 0 this condition is satisfied and we reclaim the
r = 1 result of Huelga and co-workers [6]. A more interesting
case, however, is when τ̃ sep 	= 0, since the preparation and
readout times are always nonzero in practice. In this case the
condition τ̃ ent = τ̃ sep/N tells us the preparation and readout
of the entangled state should be a factor of N times faster
than for the separable state to achieve r = 1. In an experiment
this may be difficult, especially since pure separable states
are often prepared as a first step towards generating entangled
states. Realistically speaking we have τ̃ ent > τ̃ sep/N which
implies that the optimal precision using the entangled state is
worse than the optimal precision using the separable state, i.e.,
r < 1. We again consider the three cases: logarithmic scaling,
square-root scaling, and linear scaling of τ̃ ent/tc. The results
are plotted in Fig. 2(d) in the dotted, dashed, and solid gray
lines. We see that—in each case—as N increases the entangled
state strategy becomes progressively worse compared to the
separable state strategy.

These results indicate that for a probe that undergoes
parallel Markovian dephasing, a non-negligible preparation
and readout time is more damaging to the entangled state
strategy than it is to the separable state strategy. This raises
questions about whether nonzero preparation and readout
times might destroy the gain that is possible for non-
Markovian dephasing when preparation and readout times
are negligible [9,10]. We now consider the non-Markovian
case.

B. Non-Markovian limit

For a static or low-frequency bath one can show that 	(τ ) =
ητ 2, with a corresponding single-spin coherence time tc =
1/

√
η (see Appendix A). Without taking measurement and

preparation times into account a scaling advantage r ∝ N1/2

can be achieved in this case [9,10]. Including measurement
and preparation times, the optimal sensing times τ

sep
opt and τ ent

opt

are found by solving Eqs. (10) and (11) for 	(τ ) = ητ 2. The
expressions are given in Appendix B. Using these solutions,
r is again a function of the three variables τ̃ sep/tc = √

ητ̃ sep,
τ̃ ent/tc = √

ητ̃ ent, and N . We plot the behavior of r with respect
to these variables in Figs. 2(e) and 2(f). We have numerically
verified that r is a decreasing function of τ̃ ent/tc for N in the
range 1 − 1010 and τ̃ sep/tc in the range 0–10. We have not been
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able to derive an analytic expression for the r = 1 threshold in
terms of N and τ̃ sep/tc, but Fig. 2(e) suggests that it is of the
form τ̃ ent/tc = m(N )τ̃ sep/tc + c(N ) for some functions m(N )
and c(N ). The animation of Fig. 2(e) [available by clicking
on the figure (online only)] shows that as N increases the
region of metrological gain (the red region) increases in size.
This is in contrast to the Markovian case where the region
of metrological gain shrinks rapidly as N increases [see the
animation corresponding to Fig. 2(c)]. However, this argument
assumes that τ̃ ent is independent of N . In Fig. 2(f) the dotted,
dashed, and solid white lines show the trajectory of r for
the logarithmic, square-root, and linear N scalings of τ̃ ent in
the non-Markovian case. It is clear that a modest precision
gain is possible, but only up to a cutoff value N < Ncutoff

that depends on the form of the N scaling of the entangled
state preparation and readout time. However, as mentioned
previously, in this case a constant gain can be maintained by
grouping the N particles into entangled subensembles of the
optimal size Nmax. Finally, one can show that τ̃ ent = τ̃ sep/

√
N

implies that r = √
N [the labeled black line in Fig. 2(e)]. Since

it is very difficult to prepare and readout the entangled state
a factor of

√
N times more quickly than the separable state,

this suggests that a precision gain r = √
N would be very

challenging in practice.

V. CONCLUSION

To determine whether quantum sensors in entangled states
can give a precision gain it is important to carefully consider
the practical details of metrological schemes. We find that
when state preparation and readout times are taken into
account, a maximally entangled GHZ state can only give
an advantage over a separable state if the entangled state
preparation and readout time is lower than a certain threshold
that depends on the number of probe particles N and on the
separable state preparation and readout time τ̃ sep. Often, the
entangled state preparation and readout times will increase
with the number of particles N . In this case the entangled
state strategy will give an advantage only up to some finite
number of probe particles Ncutoff. The conditions to achieve
a precision gain with the entangled state strategy are more
difficult to achieve if dephasing is taken into account. The
basic reason for the decrease in performance of the entangled
state strategy in the presence of dephasing is that τ ent

opt decreases
as N increases, with τ ent

opt → 0 in the large N limit, while τ
sep
opt

is independent of N . This means that when N is large there are
many more prepare-sense-readout rounds in the total time T

for the entangled state strategy than there are for the separable
state. There are thus many more preparation and readout
periods that take away from the portion of T that is available
for sensing. We expect our conclusions to be valid for any
metrological scheme in which τ ent

opt → 0 in the large N limit,
for example, frequency estimation with spin squeezed states
[20,21], or frequency estimation in the presence of transversal
Markovian dephasing with GHZ states [11] or with one-axis
twisted spin-squeezed states [22].

However, the prospects for frequency estimation with
entangled probes are not completely negative, even taking
preparation and readout times into account. We have shown
that some gain is possible with non-Markovian dephasing and,

as discussed at the end of Sec. III, the metrological gain r can
be maintained at its maximum value by dividing the N probe
particles into entangled subensembles. Also, depending on the
specifics of the entangled state generation and readout scheme,
small improvements in r should be possible by preparing a
partially entangled state instead of a maximally entangled
GHZ state. Such states may be more robust to decoherence
than the GHZ state so that their optimal sensing times would
be longer and, moreover, it is likely that partially entangled
states can be prepared and measured more quickly than GHZ
states. Finally, there are various methods that may enhance the
metrological gain that can be achieved using the GHZ state
such as quantum error correction [23–26], adaptive feedback
schemes [12,27–29], or fast preparation [15,21,30,31] and
readout of entangled states. We leave investigation of these
as future work.
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APPENDIX A: MICROSCOPIC MODEL FOR THE BATH

We assume that each two-level system interacts with an
independent thermal bath of harmonic oscillators. The total
Hamiltonian is

∑N
i=1 Ĥ (i) where the Hamiltonian for the ith

two-level system and ith bath is [32,33]:

Ĥ (i) = �ω

2
σ̂ (i)

z + �

∑
k

�kâ
(i)†
k â

(i)
k

+ �σ̂ (i)
z ⊗

∑
k

(
gkâ

(i)†
k + g∗

k â
(i)
k

)
. (A1)

Choosing a continuous Ohmic spectral density of the form
J (�) = ∑

k |gk|2δ(� − �k) = 4α�e−�/�c where �c is a cut-
off frequency and α is a dimensionless constant, and assuming
that β�c � 1 where β is the inverse temperature of the bath,
gives a decay exponent [33]:

	(τ ) = α

2
ln

(
1 + �2

cτ
2) + α ln

[
sinh(πτ/β)

πτ/β

]
. (A2)

If τ � β then the second term of Eq. (A2) dominates and we
have [33] 	(τ ) ≈ γ τ where γ = απ/β. The condition τ � β

can be satisfied either by long times τ or by high temperature
1/β. The form 	(τ ) ∝ τ is also obtained by an alternative
analysis where one makes a Markovian assumption for the
bath [33]. For this reason 	(τ ) = γ τ is called the Markovian
limit.

When τ � β and �cτ � 1 the first term of Eq. (A2) domi-
nates. Approximating ln(1 + �2

cτ
2) ≈ �2

cτ
2 gives 	(τ ) ≈ ητ 2

where η = α�2
c/2. Since 	(τ ) 	∝ τ we call these dynamics

non-Markovian. The condition τ � β is satisfied for short
times or for low bath temperature, while the condition �cτ �
1 is satisfied for short times or for interaction with primarily
low-frequency bath modes (i.e., low cutoff frequency �c).
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APPENDIX B: OPTIMAL SENSING TIMES
IN THE NON-MARKOVIAN CASE

For the non-Markovian case, the optimal sensing times τ
sep
opt

and τ ent
opt are found by solving Eqs. (10) and (11) in the main

text, with 	(τ ) = ητ 2. The resulting solutions are:

τ
sep
opt = zsep

3
− 1

3zsep

(
τ̃ sep2 + 3

4η

)
− τ̃ sep

3
, (B1)

τ ent
opt = zent

3
− 1

3zent

(
τ̃ ent2 + 3

4Nη

)
− τ̃ ent

3
, (B2)

where

zsep = ei4π/3

⎡
⎣τ̃ sep3 − 45τ̃ sep

8η

+
√(

τ̃ sep3 − 45τ̃ sep

8η

)2

−
(

τ̃ sep2 + 3

4η

)3
⎤
⎦

1/3

,(B3)

zent = ei4π/3

⎡
⎣τ̃ ent3 − 45τ̃ ent

8Nη

+
√(

τ̃ ent3 − 45τ̃ ent

8Nη

)2

−
(

τ̃ ent2 + 3

4Nη

)3
⎤
⎦

1/3

. (B4)

APPENDIX C: OUTLINE OF A PROOF THAT r
DECREASES WITH τ̃ ent/ tc IN THE MARKOVIAN CASE

We would like to show that r is a decreasing function of
τ̃ ent/tc ≡ γ τ̃ ent in the Markovian case when 	(τ ) = γ τ . For
clarity, we denote the variable of interest as x = τ̃ ent/tc, and we

also write the expression for r as r(x) = cr1(x)r2(x) where c =
N (γ τ̃ sep + γ τ

sep
opt )e2γ τ

sep
opt /(γ τ

sep
opt )2 is a non-negative number

that is independent of x and r1(x) = γ τ ent
opt (x)/(x + γ τ ent

opt (x))

and r2(x) = γ τ ent
opt (x)e−2Nγ τ ent

opt (x) are both non-negative
functions of x. Here

γ τ ent
opt (x) = 1

4N
+

√(
x

2
+ 1

4N

)2

+ x

2N
− x

2
(C1)

is easily shown to be an increasing function of x. If we can
show that r1(x) and r2(x) are both decreasing functions, then
this would prove that r is a decreasing function because dr

dx
=

c dr1
dx

r2 + cr1
dr2
dx

� 0 (since c,r1,r2 � 0). We see that r2(x)
is a decreasing function since it is the composition r2(x) =
f (τ ent

opt (x)) of the increasing function τ ent
opt (x) and the function

f (y) = γye−2Nγy , which is decreasing for y � 1/2γN . Since
τ ent

opt (x) � 1/2γN for any x we see that r2 is decreasing.

To show that r1(x) is a decreasing function we observe
that it can be written in the form r1(x) = 1−g(x)

1+g(x) where g(x) =
2Nx

1+
√

(2Nx+1)2+8Nx
. Differentiating r1 with respect to x gives

dr1
dx

= − dg(x)/dx

1+g(x) [1 + 1−g(x)
1+g(x) ]. Since 1 ± g(x) > 0 we see that

r1 is a decreasing function of x if dg(x)
dx

� 0. We find that

dg(x)

dx
= 2N

1 +
√

(2Nx + 1)2 + 8Nx

×
[

1− 4N2x2+6Nx

4N2x2+12Nx+1+
√

(2Nx + 1)2+8Nx

]
,

(C2)

which is always non-negative (since the term in square brackets
is always non-negative).
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