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Distillability of non-positive-partial-transpose bipartite quantum states of rank four
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We show that a bipartite quantum state of rank four is distillable if its partial transpose has at least one negative
eigenvalue; that is, the state is a non-positive-partial transpose (NPT). For this purpose we prove that if the partial
transpose of a two-qutrit NPT state has at least two non-positive eigenvalues, then the state is distillable. We
further construct a parametrized two-qutrit NPT state of rank five which is not 1-distillable and show that it is
not n-distillable for any given n when the parameter is sufficiently small. This state has the smallest rank among
all 1-undistillable NPT states. We conjecture that the state is not distillable.
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I. INTRODUCTION

Many quantum-information tasks require entangled pure
states as a necessary resource. In entanglement theory, a
long-standing open problem is whether bipartite non-positive-
partial transpose (NPT) states can be asymptotically converted
into pure entangled states under local operations and classical
communication (LOCC). This is the well-known distillability
problem [1,2] which is related to the superactivation of bound
entanglement and zero-capacity quantum channels.

In spite of much effort being devoted to it in recent years,
the distillability problem is still far from a solution due to
the rapidly increasing number of parameters in the density
matrices of states. A method of avoiding this difficulty is to
convert, by LOCC, the states into the Werner states containing
only one parameter [1]. Thus to solve the distillability problem,
it suffices to distill Werner states. In recent years there were
several attempts to do that [1,3–8]. On the other hand, progress
towards distilling entangled states of given dimensions or
deficient rank has been made steadily. In contrast to the
Werner states, in the case of states of deficient rank, one
can make use of more fruitful features of density matrices
such as the existence of product vectors in the kernel or the
range. Entangled states of ranks two and three [9–11], 2 × N

NPT states [2], and M × N entangled states of rank at most
max(M,N ) [9,12] have been proven to be distillable.

In this paper we show that if the partial transpose of an
NPT two-qutrit state has at least two non-positive eigenvalues,
counting multiplicities, then the state is distillable. This is
presented in Theorem 1. In part (a) of Theorem 2 we show that
if the kernel of a two-qutrit NPT state contains a product vector,
then the state is 1-distillable. In part (b) of the same theorem
we further show that, in any bipartite system, any NPT state
of rank four is distillable. Since entangled states of rank of at
most three are distillable [9,10], any NPT state of rank at most
four is distillable. So the distillable entanglement measure is
positive for these states [13]. Based on these facts, we give in
Corollary 1 some necessary conditions for a bipartite state not
to be 1-distillable. We construct a two-qutrit NPT state ρ of
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rank five [see Eq. (7)] depending on a parameter ε > 0, which
is not 1-distillable. This is achieved by using the positive-
partial-transpose (PPT) entangled edge states constructed in
[14]. Since any NPT state of rank at most four is 1-distillable,
ρ has the smallest rank among all 1-undistillable NPT states.
We further show in Lemma 4 that for any given integer n and
sufficiently small ε > 0, ρ is n-undistillable. This is based
on some estimates for many-copy separable Werner states,
presented in Lemma 3. We conjecture that ρ is not distillable
for small ε > 0.

In the literature many results for two-qutrit states of rank
four have been found by using the PPT states constructed
from the unextendible product bases (UPB) [15]. Next, any
such states were proved to be constructed by UPB up to
stochastic LOCC (SLOCC) [16]. Further, a necessary and
sufficient condition for the separability of states of rank four
has been proposed in [12]. All these results are about the
PPT states. In contrast, our results show the distillability of
two-qutrit NPT states of rank four.

The rest of the paper is organized as follows. In Sec. II
we introduce the mathematical formulation of the distillability
problem and the notation used in the paper. In Sec. III we
present the conditions for 1-distillable and 1-undistillable two-
qutrit NPT states. In Theorem 2 we prove our main result
that, in any bipartite system, all NPT states of rank four are
1-distillable. We also construct 1-undistillable two-qutrit NPT
states of rank five. In Sec. IV we construct n-undistillable
two-qutrit NPT states of rank five for any integer n. We give
our conclusions in Sec. V.

II. PRELIMINARIES

In this section we introduce the notation and recall facts of
the distillability problem which will be used throughout the
paper. Let H = HA ⊗ HB be the bipartite Hilbert space with
dimHA = M and dimHA = N . We shall work with bipartite
quantum states ρ on H. We shall write Ik for the identity k × k

matrix. We denote by R(ρ) and ker ρ the range and kernel
of a linear map ρ, respectively. From now on, unless stated
otherwise, the states will not be normalized. We shall denote
by {|i〉A : i = 0, . . . ,M − 1} and {|j 〉B : j = 0, . . . ,N − 1}
orthonormal bases of HA and HB , respectively. The partial
transpose of ρ with respect to the system A is defined as
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LIN CHEN AND DRAGOMIR Ž. ÐOKOVIĆ PHYSICAL REVIEW A 94, 052318 (2016)

ρ� := ∑
i,j |j 〉〈i| ⊗ 〈i|ρ|j 〉. We say that ρ is PPT if ρ� � 0.

Otherwise, ρ is NPT; that is, ρ� has at least one negative
eigenvalue. The NPT states are always entangled due to the
Peres-Horodecki criterion for separable states [17].

The distillability problem requires many-copy states, so we
introduce the notion of a composite system. Let ρAiBi

be an
Mi × Ni state of rank ri acting on the Hilbert spaceHAi

⊗ HBi
,

i = 1,2. Suppose ρ of systems A1,A2 and B1,B2 is a state
acting on the Hilbert space HA1 ⊗ HB1 ⊗ HA2 ⊗ HB2 , such
that TrA1B1 ρ = ρA2B2 and TrA2B2 ρ = ρA1B1 . By switching
the two middle factors, we can consider ρ a composite
bipartite state acting on the Hilbert space HA ⊗ HB , where
HA = HA1 ⊗ HA2 and HB = HB1 ⊗ HB2 . In that case we
shall write ρ = ρA1A2:B1B2 . So ρ is an M1M2 × N1N2 state
of rank not larger than r1r2. In particular for the tensor product
ρ = ρA1B1 ⊗ ρA2B2 , it is easy to see that ρ is an M1M2 × N1N2

state of rank r1r2.
The above definition can be easily generalized to the tensor

product of N states ρAiBi
,i = 1, . . . ,N . They form a bipartite

state on the Hilbert space HA1,...,AN
⊗ HB1,...,BN

. It is written
as H⊗n when HAi

⊗ HBi
= H. Using this terminology, we

introduce the definition of distillable states [1].
Definition 1. A bipartite state ρ is n-distillable under LOCC

if there exists a Schmidt-rank-two state |ψ〉 ∈ H⊗n such that
〈ψ |(ρ⊗n)�|ψ〉 < 0. Otherwise, we say that ρ is n-undistillable.
We say that ρ is distillable if it is n-distillable for some n � 1.
If an entangled state ρ is not distillable, then we say that it is
bound entangled.

It is immediately clear from this definition that no PPT
state is distillable. Hence PPT entangled states are bound
entangled states. The distillability problem asks whether a
bound entangled state can be NPT.

It is also immediately clear from the same definition that
the set of k-distillable states is open in the set of all states; that
is, if ρ is a k-distillable state, then there exists ε > 0 such that
every state ρ ′ satisfying ‖ρ ′ − ρ‖ < ε is k-distillable.

Let us recall some basic methods for proving the separabil-
ity, distillability, and PPT properties of bipartite states. We say
that two bipartite states ρ and σ are equivalent under SLOCC if
there exists an invertible local operator (ILO) A ⊗ B such that
ρ = (A† ⊗ B†)σ (A ⊗ B) [18]. It is easy to see that any ILO
transforms distillable, PPT, entangled, or separable states into
the same kind of states. We often use ILOs to simplify the den-
sity matrices of states. A subspace which contains no product
state is referred to as a completely entangled subspace (CES).

III. 1-DISTILLABILITY OF NPT STATES

For convenience, we denote by sr(x) the Schmidt rank of a
state |x〉 ∈ H. If |x〉 = ∑

i,j ξij |i,j 〉, 0 � i < M , 0 � j < N ,
we say that [ξij ] is the matrix of |x〉. By definition, sr(x) is the
ordinary rank of [ξij ]. The following lemma gives a necessary
condition for the 1-distillability of quantum states.

Lemma 1. If ρ is a bipartite state and 〈ψ |ρ�|ψ〉 < 0 for
some vector |ψ〉, then |ψ〉 is entangled. �

Proof. Assume that |ψ〉 = |x,y〉. Then 〈ψ |ρ�|ψ〉 =
〈x∗,y|ρ|x∗,y〉 � 0 gives a contradiction.

The following result generalizes [12, Lemma 4], and their
proofs are also similar.

Lemma 2. Let ρ be a bipartite state such that ρ� has a
principal 2 × 2 submatrix of negative determinant. Then ρ is
distillable.

Proof. Let ρ = ∑
i,j |i〉〈j | ⊗ σij and the 2 × 2 submatrix

be [ a b

b∗ c]. We have ρ� = ∑
i,j |i〉〈j | ⊗ σji . Since σii � 0,

the diagonal entries a and c must belong to different diagonal
blocks, say, σkk and σll . Let P be the orthogonal projector onto
the two-dimensional subspace of HA spanned by |k〉 and |l〉.
Then the projected state (P ⊗ IB)ρ(P ⊗ IB) is an NPT state
on the 2 × N system. Hence it is distillable, and ρ is also
distillable. �

We can now prove the main results of this section.
Theorem 1. If ρ is a two-qutrit NPT state and ρ� has at least

two non-positive eigenvalues counting multiplicities, then ρ is
1-distillable.

Proof. By the hypothesis, there exist two eigenvectors of ρ� ,
say, |α〉 and |β〉, with matrices A and B, such that ρ�|α〉 =
λ|α〉, λ < 0, ρ�|β〉 = μ|β〉, μ � 0, and 〈α|β〉 = 0. If A is not
invertible, then its rank is 2, and so ρ is 1-distillable. From now
on we assume that A is invertible and also that B is invertible
if μ < 0.

If N := A−1B is not nilpotent, then det(I3 + tN ) is a
nonconstant polynomial in t , and we can choose t so that this
determinant is zero. Thus A + tB is singular, and |φ〉 := |α〉 +
t |β〉 satisfies 〈φ|ρ�|φ〉 = λ‖α‖2 + μ|t |2‖β‖2 < 0. Hence ρ is
1-distillable.

If N is nilpotent, we must have μ = 0. We can choose
|α′〉, with matrix A′, close to |α〉 such that 〈α′|ρ�|α′〉 < 0
and N ′ := (A′)−1B is not nilpotent. We choose t so that A′ +
tB is singular. For |φ′〉 := |α′〉 + t |β〉 we have 〈φ′|ρ�|φ′〉 =
〈α′|ρ�|α′〉 < 0 and sr(φ′) = 2. Hence ρ is 1-distillable. �

Using this result, we show that the existence of product
vectors in the kernel is related to 1-distillability.

Theorem 2. (a) If the kernel of a two-qutrit NPT state ρ

contains a product vector, then ρ is 1-distillable. (b) Any
bipartite NPT state ρ of rank four is 1-distillable.

Proof. (a) We can assume that |0,0〉 ∈ ker ρ. Consequently,
the first diagonal entry of ρ is zero, and the same is true for
ρ� . If the first column of ρ� is not zero, then ρ is 1-distillable
by [12, Lemma 4]. Otherwise, |0,0〉 ∈ ker ρ� , and ρ is 1-
distillable by Theorem 1. We have proved the first assertion.

(b) To prove the second assertion, we recall that M × N

NPT states of rank four are 1-distillable when max(M,N ) �
4 [9,12] or min(M,N ) = 2. It remains to consider the case
M = N = 3. Since dim ker ρ = 5, ker ρ contains a product
vector. Hence the first assertion implies the second in this
case.

Our results show that if we can convert, by LOCC, an
entangled state ρ into an NPT state of rank four, then ρ

is distillable. This provides a new way of attacking the
distillability problem. Let us mention that the result proved in
[10] is the special case of this theorem when r = 3 and that [12,
Theorem 28] follows from the case r = 4. It is immediately
clear from the definition of bad states in [19] that the kernel of
such a state contains at least one product vector. Consequently,
all bad two-qutrit NPT states are 1-distillable.

Given any bipartite NPT state σ of rank four, we can further
construct 1-distillable states ρ of any rank r > 4. This follows
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from the fact that σ itself is 1-distillable and the observation
made earlier that the set of 1-distillable states is open.

In spite of these results, there exist 1-undistillable two-qutrit
NPT states of rank five.

Corollary 1. If ρ is a 1-undistillable two-qutrit NPT state,
then ker ρ is a CES, and ρ� has exactly one negative and
eight positive eigenvalues. Consequently, rank ρ > 4 and
det ρ� 	= 0.

One can verify that the 1-undistillable two-qutrit NPT
Werner states satisfy the conditions of this corollary. They have
full rank, nine. Here we analytically construct an example of
such ρ of rank five. By Corollary 1, this is the minimum rank
for 1-undistillable NPT states.

We use the fact [14] that there exists a two-parameter family
of two-qutrit edge-entangled states σ� with rank σ = 5 and
rank σ� = 8. Explicitly, they are given by

σ := 1

3(2 cos θ + b + 1/b)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 cos θ 0 0 0 − cos θ 0 0 0 − cos θ

0 1
b

0 −e−iθ 0 0 0 0 0
0 0 b 0 0 0 −eiθ 0 0
0 −eiθ 0 b 0 0 0 0 0

− cos θ 0 0 0 2 cos θ 0 0 0 − cos θ

0 0 0 0 0 1
b

0 −e−iθ 0
0 0 −e−iθ 0 0 0 1

b
0 0

0 0 0 0 0 −eiθ 0 b 0
− cos θ 0 0 0 − cos θ 0 0 0 2 cos θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

and thus

σ� = 1

3(2 cos θ + b + 1/b)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 cos θ 0 0 0 −eiθ 0 0 0 −e−iθ

0 1
b

0 − cos θ 0 0 0 0 0
0 0 b 0 0 0 − cos θ 0 0
0 − cos θ 0 b 0 0 0 0 0

−e−iθ 0 0 0 2 cos θ 0 0 0 −eiθ

0 0 0 0 0 1
b

0 − cos θ 0
0 0 − cos θ 0 0 0 1

b
0 0

0 0 0 0 0 − cos θ 0 b 0
−eiθ 0 0 0 −e−iθ 0 0 0 2 cos θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where the two parameters b and θ are subject to the constraints
b > 0 and 0 < |θ | < π/3. We have the spectral decomposition

σ� =
8∑

i=1

pi |ϕi〉〈ϕi |, (3)

where pi are the positive eigenvalues of σ� . Let the eigenvalues
be in the ascending order, i.e., pj � pj+1. By a computation,
we find that

p1 = 1

3(2 cos θ + b + 1/b)
min

{
3 cos θ −

√
3| sin θ |,

1 + b2 − √
1 + b4 + 2b2 cos 2θ

2b

}
. (4)

Equation (2) implies that ker σ� is spanned by the two-qutrit
maximally entangled state

|�〉 := 1√
3

(|00〉 + |11〉 + |22〉). (5)

R(σ ) contains the normalized product state

|f,g〉 := 1

b
1
2 + b− 1

2

(|0〉 + b
1
2 e

i
2 θ |1〉)(|0〉 − b− 1

2 e− i
2 θ |1〉).

(6)

One can verify that |f ∗,g〉 	∈ R(σ�). For ε = p1/3, the matrix

ρ = σ − ε|f,g〉〈f,g| (7)

is positive semidefinite and has rank five. So ρ is a non-
normalized quantum state. Since |f ∗,g〉 /∈ R(σ�), the partial
transpose ρ� = σ� − ε|f ∗,g〉〈f ∗,g| is not positive semidefi-
nite. So ρ is NPT.

Let |ψ〉 be a normalized pure state of Schmidt rank at most
two. Since σ� � 0 and its kernel is spanned by |�〉, we have
〈ψ |σ�|ψ〉 > 0. By [1, Lemma 3] we have

max
ψ

|〈�|ψ〉|2 = 2
3 , (8)

and Eq. (3) implies that

〈ψ |σ�|ψ〉 =
∑

i

pi〈ψ |ϕi〉〈ϕi |ψ〉 � p1

∑
i

〈ψ |ϕi〉〈ϕi |ψ〉

= p1〈ψ |(I9 − |�〉〈�|)|ψ〉 � p1

3
. (9)

As |〈f ∗,g|ψ〉| < 1, we have 〈ψ |ρ�|ψ〉 = 〈ψ |(σ� −
ε|f ∗,g〉〈f ∗,g|)|ψ〉 > p1/3 − ε = 0. Hence ρ is
1-undistillable.

IV. THE n-DISTILLABILITY OF NPT STATES

In this section we investigate the n-distillability of NPT
states. In Lemma 4, we will construct a parametrized family
of two-qutrit NPT states of rank five. These states are not n-
distillable when the parameter is small enough. This is similar
to the n-undistillable Werner states presented in [1–3], while
our states have a smaller rank. For this purpose we present a
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preliminary lemma. We denote by srk the set of normalized
bipartite pure states of Schmidt rank k.

Lemma 3. Let ρs = 1
8 (I9 − |�〉〈�|) and σ be the state (1),

with p1 and p8 being, respectively, the smallest and the largest
positive eigenvalues of σ� . We have

8p8ρs � σ� � 8p1ρs, (10)

max
ψ∈sr1

〈ψ |(ρs)
⊗n|ψ〉 = max

ψ∈sr2

〈ψ |(ρs)
⊗n|ψ〉 = 1

8n
, (11)

1

2

1

12n
� min

ψ∈sr1 ∪ sr2

〈ψ |(ρs)
⊗n|ψ〉 � 1

24n
, (12)

min
ψ∈sr1

〈ψ |(ρs)
⊗n|ψ〉 = 1

12n
. (13)

Proof. Equation (3) implies (10). Next, (11) follows
from the fact that ρ⊗n

s is a normalized projector of
rank 8n, and the maximum is achieved when |ψ〉 =
|0 · · · 0〉A1···An

⊗ |1 · · · 1〉B1···Bn
or |ψ〉 = |0 · · · 0〉A1···An−1 ⊗

|1 · · · 1〉B1···Bn−1 ( |01〉+|10〉√
2

)AnBn
. Third, the first equality of (12) is

achieved when |ψ〉 = 1√
2
(|00〉 + |11〉)A1B1 ⊗ (⊗n

j=2|00〉Aj Bj
).

So we have proved the first inequality of (12). Below we
prove the second inequality of (12) by induction. Equation
(8) implies that the inequality holds for n = 1. Suppose it
holds for n − 1, namely, minψ 〈ψ |(ρs)⊗(n−1)|ψ〉 � 1

24n−1 . It
is known that ρs is the partial transpose of a two-qutrit
separable Werner state [20], and we note that rank ρs = 8.
Let ρs = ∑

i qi |ai,bi〉〈ai,bi |, where qi > 0,
∑

i qi = 1, and
any |ai,bi〉 is a unit vector. We have

〈ψ |(ρs)
⊗n|ψ〉 = 〈ψ |(ρs)

⊗(n−1)⊗
(∑

i

qi |ai,bi〉〈ai,bi |
)

AnBn

|ψ〉

=
∑

i

qi‖〈ai,bi |ψ〉‖2〈ψi |(ρs)
⊗(n−1)|ψi〉

�
∑

i

qi‖〈ai,bi |ψ〉‖2 1

24n−1

= 〈ψ |(ρs)AnBn
|ψ〉 1

24n−1
� 1

24n
. (14)

Here |ψi〉 = 〈ai ,bi |ψ〉
‖〈ai ,bi |ψ〉‖ ∈ HA1···An−1 ⊗ HB1···Bn−1 is a normal-

ized bipartite state of Schmidt rank at most two. The first
inequality in (14) follows from the induction assumption.
To prove the last inequality in (14) we assume that |ψ〉 =√

λ|w,x〉 + √
1 − λ|y,z〉 is the Schmidt decomposition, where

|w〉 =
∑

j

√
αj |j,εj 〉A1···An−1,An

, (15)

|x〉 =
∑

k

√
βk|k,ζk〉B1···Bn−1,Bn

, (16)

|y〉 =
∑

j

√
γj |j,ιj 〉A1···An−1,An

, (17)

|z〉 =
∑

k

√
δk|k,κk〉B1···Bn−1,Bn

, (18)

and 〈w|y〉 = 〈x|z〉 = 0. For |ϕjk〉 := √
λαjβk|εj ,ζk〉 +√

(1 − λ)γj δk|ιj ,κk〉 and its normalization |ϕ′
jk〉, we have

〈ψ |(ρs)AnBn
|ψ〉 =

∑
j,k

〈ϕjk|ρs |ϕjk〉

=
∑
j,k

‖ϕjk‖2〈ϕ′
jk|ρs |ϕ′

jk〉

�
∑
j,k

‖ϕjk‖2 min
μ

〈μ|ρs |μ〉

= min
μ

〈μ|ρs |μ〉 = 1

24
, (19)

where |μ〉 is an arbitrary bipartite pure state of Schmidt rank
at most two. So the last inequality in (14) holds, and we have
proved the second inequality in (12). One can similarly prove
(13), where the minimum is attained at |ψ〉 = |0 · · · 0〉A1···An

⊗
|1 · · · 1〉B1···Bn

. This completes the proof. �
Using Lemma 3 we have the following.
Lemma 4. For any integer n and sufficiently small ε =

ε(n) > 0, the two-qutrit NPT state ρ in (7) is n-undistillable.
Proof. For any pure state |ψ〉 of Schmidt rank two, we have

〈ψ |(ρ�)⊗n|ψ〉 = 〈ψ |(σ� − ε|f ∗,g〉〈f ∗,g|)⊗n|ψ〉

:= 〈ψ |(σ�)⊗n|ψ〉 +
n∑

k=1

ckε
k, (20)

where ck are real numbers. The definition of σ implies that
σ� � p1(I9 − |�〉〈�|) � 0, where p1 is the smallest positive
eigenvalue of σ� . Hence

〈ψ |(ρ�)⊗n|ψ〉 � pn
1 〈ψ |(I9 − |�〉〈�|)⊗n|ψ〉 +

n∑
k=1

ckε
k.

(21)

By Lemma 3, the first summand is positive. Since it is
independent of ε, the claim follows. �

V. CONCLUSION

We have proposed methods to detect the 1-distillability of
two-qutrit NPT states under LOCC. By using them, we have
proved that bipartite NPT states of rank four are 1-distillable.
(It is known that this is also true when the rank is less than
four.) So they are a useful resource for quantum information
tasks. The bound four is sharp; that is, there exist bipartite
NPT states of rank five which are not 1-distillable. We give
concrete examples of such states. We conjecture that these
states are not distillable and so are related to the distillability
problem. The next step is to investigate these states and study
their 2-distillability.
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