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Nonadiabatic holonomic quantum computation provides the means to perform fast and robust quantum gates
by utilizing the resilience of non-Abelian geometric phases to fluctuations of the path in state space. While the
original scheme [E. Sjöqvist et al., New J. Phys. 14, 103035 (2012)] needs two loops in the Grassmann manifold
(i.e., the space of computational subspaces of the full state space) to generate an arbitrary holonomic one-qubit
gate, we propose single-loop one-qubit gates that constitute an efficient universal set of holonomic gates when
combined with an entangling holonomic two-qubit gate. Our one-qubit gate is realized by dividing the loop into
path segments, each of which is generated by a �-type Hamiltonian. We demonstrate that two path segments
are sufficient to realize arbitrary single-loop holonomic one-qubit gates. We describe how our scheme can be
implemented experimentally in a generic atomic system exhibiting a three-level �-coupling structure by utilizing
carefully chosen laser pulses.
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I. INTRODUCTION

Holonomic quantum computation (HQC) is the idea that
quantum information processing can be performed by means
of non-Abelian geometric phases. It was first proposed [1] for
adiabatic holonomies [2] and subsequently generalized [3] to
nonadiabatic non-Abelian geometric phases [4]. An important
feature of HQC is the inherent robustness of geometric phases
under fluctuations of the path in state space [5,6].

A key ingredient of HQC is the removal of dynamical
phase effects during the execution of quantum gates. In the
nonadiabatic case, which is the focus of the present paper, this
is achieved in a three-level � system, where the two levels
encoding a qubit are coupled to an excited state by external
field pulses. Nonadiabatic HQC in this configuration has
been realized experimentally for a superconducting artificial
atom [7], NMR [8], and nitrogen-vacancy (NV) centers in
diamond [9,10]. The �-system-based HQC has been combined
with decoherence-free subspaces [11–16], noiseless subsys-
tems [17], and dynamical decoupling [18]. The nonadiabatic
property makes it possible to shorten the exposure to undesired
external influences [3,19].

The essential geometric structure of nonadiabatic HQC is
the complex Grassmann manifold G(N ; K), i.e., the space
of K-dimensional subspaces of an N -dimensional state
space [20]. A loop in the Grassmannian generates a holonomic
quantum gate acting on the target computational subspace
encoded at the common start and end point.

The �-system-based holonomic gates in Ref. [3] utilize
resonant laser pulses. Here, two distinct loops in the cor-
responding Grassmannian G(3; 2) are needed to perform an
arbitrary holonomic one-qubit gate. Experimentally, the two
loops correspond to two consecutive laser pulse pairs of
arbitrary shape.

The need for two loops in order to implement an arbitrary
holonomic one-qubit gate is an apparent drawback as it doubles
the exposure time to various error sources. This motivates
attempts to try to reduce the number of loops. It has recently
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been shown [21,22] that an arbitrary one-qubit gate can be
achieved for a single loop by using off-resonant laser pulses.
However, this off-resonant scheme has two disadvantages.
First, it requires square pulses, a restriction that blocks the
possibility to optimize robustness by tailoring the pulse shape;
second, the small-rotation-angle limit would correspond to
either very short pulses or small field amplitudes, both of
which would lead to unstable gate operations.

Here, we demonstrate that these problems can be resolved.
To this end, we propose a single-loop multiple-pulse scheme,
in which the loop is divided into segments. Our scheme is con-
ceptually akin to the “orange-slice” path on the Bloch sphere
commonly used when observing the Abelian geometric phase
in quantum optics experiments [23–26]. We demonstrate that
our proposed scheme is able to perform arbitrary holonomic
one-qubit gates for fewer loops in the Grassmannian than
in the original scheme [3], while keeping the full flexibility
concerning the choice of laser pulse shape and pulse duration.
Universal HQC can be achieved by combining our holonomic
one-qubit gate with an entangling holonomic two-qubit gate
(e.g., [3,27]).

The outline of the paper is as follows. The next section
reviews earlier versions of �-system-based holonomic gates.
Section III outlines our single-loop multiple-pulse scheme,
first by describing the general idea and thereafter by demon-
strating that an arbitrary holonomic one-qubit gate can be
realized by dividing the loop into just two path segments.
In Sec. IV, we delineate how our scheme can be implemented
experimentally. The paper ends with the conclusions.

II. HOLONOMIC GATES IN THE � SYSTEM

In the � configuration, a laser pulse pair induces transitions
between the qubit states |0〉 and |1〉 and the excited state
|e〉 of a generic three-level system. This is described by the
Hamiltonian (we set � = 1 from now on)

H(t) = �0 |0〉 〈0| + �1 |1〉 〈1| + ϒ0(t) |e〉 〈0|
+ϒ1(t) |e〉 〈1| + H.c., (1)

where we have used the rotating-wave approximation in the
interaction picture. The complex-valued ratio ϒ0(t)/ϒ1(t)
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FIG. 1. The � system. In the left panel, we see how the qubit states |0〉 and |1〉, defining our target computational subspace, are controlled
by the laser parameters �(t)ω0 and �(t)ω1, respectively. The dynamics can be understood as Rabi oscillations between the bright state
|b〉 = ω∗

0 |0〉 + ω∗
1 |1〉 and excited state |e〉, while the dark state |d〉 = −ω1 |0〉 + ω0 |1〉 decouples from the system, as shown in the right panel.

describes the relative amplitude and phase between the laser
pulses; �p, with p = 0,1, are detunings.

Holonomic quantum information processing in the �

system is implemented by applying the laser pulses simultane-
ously and on resonance [3]. In other words, ϒp(t) = �(t)ωp

and �p = 0. Here, �(t) is real valued and has nonvanishing
support over the duration τ of the pulse pair. The time-
independent ωp are assumed to satisfy the normalization
relation |ω0|2 + |ω1|2 = 1.

To see how these parameter choices implement a purely
holonomic gate acting on Span{|0〉 , |1〉}, it is convenient first
to express the Hamiltonian in terms of the dark and bright
states |d〉 = −ω1 |0〉 + ω0 |1〉 and |b〉 = ω∗

0 |0〉 + ω∗
1 |1〉, re-

spectively. One thereby finds

H(t) = �(t)(|e〉 〈b| + |b〉 〈e|) ≡ �(t)H, (2)

which shows that the evolution can be understood as Rabi
oscillations between |b〉 and |e〉 with frequency �(t), while |d〉
decouples from the system. The � configuration in the |0〉 , |1〉
and |d〉 , |b〉 representations is shown in Fig. 1. The Hamilto-
nian in Eq. (2) moves the qubit subspace Span{|0〉 , |1〉} in
the full state space Span{|0〉 , |1〉 , |e〉}, a process that can be
viewed as a path in the GrassmannianG(3; 2). Each point along
the path in G(3; 2) is spanned by the vectors

|ψd (a)〉 = U(a,0) |d〉 = |d〉,
(3)

|ψb(a)〉 = U(a,0) |b〉 = cos(a) |b〉 − i sin(a) |e〉,
where

a =
∫ t

0
�(t ′)dt ′ (4)

is the pulse area and U(a,0) = exp(−iaH ) is the time-
evolution operator. A full loop Cn in the Grassmannian is
realized when a ≡ a1 = π . The transformation on the one-
qubit subspace is purely holonomic (i.e., depends only on Cn)
as the dynamical matrix elements 〈ψk(a)|H(t) |ψl(a)〉, with
k,l = b,d, all vanish for a ∈ [0,π ]. Explicitly, one finds [3,28]

U (Cn) = U(π,0)P(0) = ie−i 1
2 πn·σ = n · σ , (5)

where n = (sin θ cos φ, sin θ sin φ, cos θ ) is a unit vector
defined by ω0/ω1 = −eiφ tan θ

2 , P(0) = |d〉 〈d| + |b〉 〈b| =

|0〉 〈0| + |1〉 〈1| is the projection operator on the target com-
putational subspace encoding the qubit, and σ = (σx,σy,σz)
are the standard Pauli operators expressed in the |0〉 , |1〉 basis.
The resulting unitary transformation U (Cn) is the holonomic
one-qubit gate associated with the loop Cn.

The holonomy in Eq. (5) shows that a single pulse pair can
generate only traceless one-qubit gates. To achieve arbitrary
holonomic gates, it is necessary to apply two consecutive
laser pulse pairs, each with pulse area π , which corresponds
to traversing two loops in the Grassmannian. To see this,
assume that the two pulse pairs generate loops Cn1 and
Cn2 , characterized by laser parameters that correspond to
unit vectors n1 and n2; the resulting composite holonomy
transformation becomes

U (C) = U (Cn2 )U (Cn1 )

= n1 · n2 P(0) − i(n1 × n2) · σ . (6)

This is an arbitrary SU(2) transformation that rotates the qubit
by an angle 2 arccos(n1 · n2) around the normal of the plane
spanned by n1 and n2.

The need for two loops is an apparent drawback as it doubles
the exposure time to various error sources. Thus, it is desirable
to find methods that can realize holonomic one-qubit gates for a
single loop in the Grassmannian. It was recently shown [21,22]
that off-resonant, equally detuned laser pulses can be used to
implement arbitrary single-loop holonomic one-qubit gates.
This is described by the Hamiltonian

H�(t) = � |e〉 〈e| + �(t)(|e〉 〈b| + |b〉 〈e|), (7)

with a trivial shift of the zero-point energy and � being the
detuning [29]. In order to preserve the geometric character
of the evolution, the Hamiltonian needs to commute with
itself during the pulse, which implies that �(t) must be square
shaped; that is, �(t) = �0 for 0 � t � τ and zero otherwise.
The evolution becomes cyclic, corresponding to a loop Cn;�

in the Grassmannian if

τ = 2π√
�2 + 4�2

0

. (8)

One finds

U (Cn;�) = ei 1
2 (π−χ)e−i 1

2 (π−χ)n·σ , (9)
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where

χ = π�√
�2 + 4�2

0

. (10)

The gate U (Cn;�) is an arbitrary holonomic one-qubit gate as
the rotation angle π − χ can be varied between zero and π by
decreasing �/(2�0) from infinity to zero. As a consistency
check, we may note that U (Cn;�) reduces to U (Cn) in the
�/(2�0) → 0 limit.

Although U (Cn;�) covers all one-qubit gates, it suffers from
two disadvantages. First, if � 	= 0, then the pulse must be
square shaped in order to preserve the geometric character of
the gate, which is a practical limitation as full shape flexibility
is an important feature needed to optimize robustness to
different kinds of errors (see, e.g., [30]). Second, the small-
rotation-angle limit is achieved for large �/(2�0). This can
be reached either by using a large � and thereby a small τ ,
which makes the gate highly unstable to small perturbations in
the run time [31], or by using a small �0, which introduces an
instability similar to fluctuations in the field amplitude. In the
following section, we demonstrate a multiple-pulse method to
realize arbitrary single-loop holonomic one-qubit gates, which
avoids these disadvantages.

III. SINGLE-LOOP MULTIPLE-PULSE SCHEME

A. General setting

Consider a path in G(3; 2) divided into L segments
C1, . . . ,CL, generated by L pulse pairs with pulse areas
a1, . . . ,aL. Figure 2 schematically depicts such a division

when C1 ∗ · · · ∗ CL is a loop and L = 3. The process of
dividing the path can be described as the following iterative
procedure:

(i) The first path segment starts at the target computational
subspace Span{|b〉 , |d〉} = Span{|0〉 , |1〉} and is generated
by the zero-detuned (resonant) Hamiltonian H1(t), which is
identical to H(t) in Eq. (2).

(ii) The initial point Span{|ψn;b(0)〉 , |ψn;d (0)〉} of
the nth path segment coincides with the final point
Span{|ψn−1;b(an−1)〉 , |ψn−1;d (an−1)〉} of the (n − 1)th path
segment for n = 2, . . . ,L.

(iii) The resonant Hamiltonian driving the evolution along
the nth path segment reads

Hn(t) = �n(t)[|ψn;e(0)〉 〈ψn;b(0)|
+ |ψn;b(0)〉 〈ψn;e(0)|] ≡ �n(t)Hn, (11)

where

|ψn;k(0)〉 = Vn |ψn−1;k(an−1)〉 , k = b,d, (12)

and an−1 = ∫ τn−1

0 �n−1(t)dt , with τn−1 being the correspond-
ing run time. Here, the basis transformation Vn acts unitarily
on the final subspace of the (n − 1)th segment, which further
implies that Vn |ψn−1;e(an−1)〉 = |ψn−1;e(an−1)〉. Physically,
Vn defines the discrete changes of the external laser fields
when moving from Cn−1 to Cn.

The time-evolution operator along the nth path segment
evaluated at pulse area an takes the form [19]

Un(an,0) = e−ianHn = |ψn;d (0)〉 〈ψn;d (0)|
+ cos an[1̂ − |ψn;d (0)〉 〈ψn;d (0)|]

FIG. 2. The single-loop multiple-pulse scheme in the � system. The left panel shows the case of a loop generated by a single pulse pair. The
initial point in the Grassmannian G(3; 2) spanned by the vectors |k〉, k = b,d , where |b〉 = ω∗

0 |0〉 + ω∗
1 |1〉 and |d〉 = −ω1 |0〉 + ω0 |1〉, makes

one full revolution by following the path generated by the � Hamiltonian H(t) = �(t)(|e〉 〈b| + |b〉 〈e|). This induces the holonomic one-qubit
transformation |k〉 
→ |ψk〉 = U (Cn) |k〉, with n being determined by the laser parameters ω0 and ω1. The closing of the path is ensured by
choosing pulse area a ≡ a1 = ∫ τ

0 �(t)dt = π . The right panel visualizes the multiple-pulse scheme, in which the loop is divided into path
segments. Here, the initial subspace moves along the first path segment C1 under H1(t) = H(t) to a point spanned by |ψ1;k(a1)〉 by choosing
pulse area a1 	= π . A unitary transformation, |ψ1;k(a1)〉 
→ |ψ2;k(0)〉 and |ψ1;e(a1)〉 
→ |ψ2;e(0)〉 = |ψ1;e(a1)〉, defines a new � Hamiltonian
H2(t) = �2(t)[|ψ2;e(0)〉 〈ψ2;b(0)| + |ψ2;b(0)〉 〈ψ2;e(0)|] that generates the second path segment C2. This procedure is repeated L times (here,
the L = 3 case is shown). If the final point of the Lth segment coincides with Span{|b〉 , |d〉} = Span{|0〉 , |1〉}, then C1 ∗ · · · ∗ CL forms a
loop. In this case, the resulting transformation |k〉 
→ |ψL;k(aL)〉 = U (C1 ∗ · · · ∗ CL) |k〉 is unitary and constitutes our holonomic single-loop
multiple-pulse one-qubit gate.
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− i sin an[|ψn;e(0)〉 〈ψn;b(0)|
+ |ψn;b(0)〉 〈ψn;e(0)|]. (13)

Due to the � structure of Hn, it follows that the evolution of
the computational subspace is purely geometric along all path
segments. We thus find the holonomy [28]

U (C1 ∗ · · · ∗ CL) = UL(aL,0) · · ·U1(a1,0)P(0). (14)

By carefully choosing laser parameters so that C1 ∗ · · · ∗ CL

forms a loop, U (C1 ∗ · · · ∗ CL) is a unitary operator acting on
Span{|0〉 , |1〉}. In such a case, U (C1 ∗ · · · ∗ CL) is our one-
qubit gate.

B. L = 2 holonomic gates

We now demonstrate that two pulse pairs (L = 2) with
a1 = a2 = π/2 are sufficient to construct an arbitrary holo-
nomic one-qubit quantum gate by traversing a single loop in
G(3; 2).

Our starting point is |ψ1;e(0)〉 = |e〉, |ψ1;b(0)〉 = |b〉, and
|ψ1;d (0)〉 = |d〉, where the two latter vectors span the target
computational subspace. By directly evaluating the time-
evolution operator in Eq. (13) at a1 = π/2, we obtain

U1(π/2,0) = |d〉 〈d| − i(|e〉 〈b| + |b〉 〈e|), (15)

which yields

|ψ1;e(π/2)〉 = U1(π/2,0) |e〉 = −i |b〉,
|ψ1;b(π/2)〉 = U1(π/2,0) |b〉 = −i |e〉,
|ψ1;d (π/2)〉 = U1(π/2,0) |d〉 = |d〉. (16)

The next step is to find the vectors |ψ2,k(0)〉 spanning the initial
point of the second path segment C2. We can make a nontrivial
choice of these vectors so that the final point of C2 coincides
with the initial point of C1, i.e., so that C1 ∗ C2 forms a loop.
The choice is

|ψ2;e(0)〉 = V2 |ψ1;e(π/2)〉 = −i |b〉,
|ψ2;b(0)〉 = V2 |ψ1;b(π/2)〉 = −ieiη |e〉, (17)

|ψ2;d (0)〉 = V2 |ψ1;d (π/2)〉 = e−iη |d〉,
as given by the basis transformation

V2 = |ψ1;e(π/2)〉 〈ψ1;e(π/2)|
+ eiη |ψ1;b(π/2)〉 〈ψ1;b(π/2)|
+ e−iη |ψ1;d (π/2)〉 〈ψ1;d (π/2)|

= |b〉 〈b| + eiη |e〉 〈e| + e−iη |d〉 〈d|. (18)

The resulting Hamiltonian for the second pulse thus reads

H2(t) = �2(t)(e−iη |b〉 〈e| + eiη |e〉 〈b|)
≡ �2(t)H2, (19)

which generates the time-evolution operator

U2(π/2,0) = |d〉 〈d| − i(e−iη |b〉 〈e| + eiη |e〉 〈b|) (20)

when evaluated at a2 = π/2. By taking into account the
explicit form of the bright state, we see that H2(t) is equivalent
to a shift of the two laser parameters ωp by the same phase η,
i.e., ωp 
→ eiηωp.

Consecutive application of U1(π/2,0) and U2(π/2,0) gen-
erates a loop C1 ∗ C2 in the Grassmannian. Thus,

U (C1 ∗ C2) = U2(π/2,0)U1(π/2,0)P(0) (21)

is unitary and constitutes the holonomic one-qubit quantum
gate. By inserting Eqs. (15) and (20) into Eq. (21), we obtain

U (C1 ∗ C2) = |d〉 〈d| − e−iη |b〉 〈b|
= ei 1

2 (π−η)e−i 1
2 (π−η)n·σ . (22)

The factor ei 1
2 (π−η) is a global phase factor that can be

ignored. The operator e−i 1
2 (π−η)n·σ corresponds to a rotation

around n by an angle π − η, which should be compared to
the rotation around n1 × n2/|n1 × n2| by the angle 2 arccos
(n1 · n2) obtained by traversing two loops in the original π

pulse scheme, as given by Eq. (6).
The holonomic gate U (C1 ∗ C2) reaches all possible one-

qubit transformations by separately varying the phase shift η

and the laser parameters n. In contrast to the off-resonant
scheme proposed in Refs. [21,22], our gate preserves its
geometric character for any pulse shape. It is essential in the
proposed L = 2 scheme that the two pulse pairs both have
area π/2 in order for the two path segments to form a loop
in the Grassmannian [32]. We further note that the rotation
angle π − η is independent of the duration of the pulses,
which implies that the small-angle limit is achievable without
violating the rotating-wave approximation. Thus, we conclude
that our holonomic one-qubit gate resolves the problems of the
off-resonant scheme [21,22], still maintaining the single-loop
advantage over the original proposal of Ref. [3].

IV. EXPERIMENTAL IMPLEMENTATION

The L = 2 holonomic gates can be implemented exper-
imentally in electric dipole transitions generated by four
appropriately phase shifted laser pulses in a generic atomic
three-level systems. The four laser pulses should be applied
as two consecutive pairs, as shown in Fig. 3. The first
pair is given by the oscillating electric fields E1;p(t) =
εpg1(t) cos(fpt + ϕp), with p = 0,1 and g1(t) being the
envelope function describing the common shape and duration
of the pulses. Similarly, the second pulse pair is given by
E2;p(t) = εpg2(t) cos(fpt + ϕp + η) and should not overlap
with the first pulse pair [thus, g1(t) and g2(t) should be
mutually nonoverlapping but have the same shape]. The
polarization εp is chosen so as to allow for only the |p〉 ↔ |e〉
transition by utilizing appropriate selection rules. The ratio
|ε0|2/|ε1|2 describes the relative intensity of the two laser
pulses. We assume that the oscillation frequencies fp are tuned
on resonance with the transition frequencies νep, given by the
bare Hamiltonian Hbare = −νe0 |0〉 〈0| − νe1 |1〉 〈1|, for which
the energy of the excited state is taken as the zero point.

Now, in the interaction picture, we find

H̃1(t) = �1(t)[ω0(1 + e−2iνe0t ) |e〉 〈0|
+ω1(1 + e−2iνe1t ) |e〉 〈1| + H.c.],

H̃2(t) = �2(t)[ω0(eiη + e−2iνe0t−iη) |e〉 〈0|
+ω1(eiη + e−2iνe1t−iη) |e〉 〈1| + H.c.]. (23)
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FIG. 3. Laser pulses that implement L = 2 holonomic gates. The first (second) pulse pair is shown in the left (right) panel. The pulses
within each pair are applied simultaneously, while the pairs are mutually nonoverlapping in time but have the same shape. The oscillating
solid lines are the pulses E1;p(t) = g1(t) cos(fpt + ϕp) ∝ |E1;p(t)| and E2;p(t) = g2(t) cos(fpt + ϕp + η) ∝ |E2;p(t)|, p = 0,1, restricted by
the dashed curves ±g1(t) and ±g2(t), respectively. These pulses realize an L = 2 holonomic one-qubit gate provided the area of the envelope
functions gn(t), n = 1,2, is chosen so as to implement π

2 pulses.

Here, �n(t)ωp = eiϕp 〈e| μ · εp |p〉 gn(t)/2, with n = 1,2 and
μ being the electric dipole operator, which determine the polar
angles θ and φ of n according to

ei(ϕ0−ϕ1) 〈e| μ · ε0 |0〉
〈e| μ · ε1 |1〉 = −eiφ tan

θ

2
. (24)

By neglecting the rapidly oscillating terms e±2iνept and
e±i(2νept+η) (rotating-wave approximation), we see that H̃n(t)
coincides with Hn(t), thus demonstrating that the holonomic
one-qubit gate in Eq. (22) can be realized in this physical
setting.

The superconducting artificial atom experiment in Ref. [7]
used pulse durations τ on the order of 40 ns and transition
frequencies νep/(2π ) on the order of 8 GHz, which is well
within the rotating-wave-approximation regime [2π/(νepτ ) ≈
0.003 � 1]. A multiple-pulse variant of this experiment
can therefore implement stable holonomic gates. For in-
stance, a phase-shift gate |x〉 
→ eixζ |x〉, where x = 0,1,
in this setup could be implemented by applying two π/2
laser pulse pairs with ω0 = 1, where the second pulse pair
is phase shifted by η = π − ζ relative to the first pulse
pair.

We note that the phase shift η has only physical significance
as a relative phase shift between the two pulse pairs. In other
words, if the same phase shift had been applied in the original
single-loop scheme of Ref. [3], no physical effect would
have been seen. In fact, the only parameters that matter for
the evolution in the original scheme are the pulse area and
the ratio ω0/ω1, where the latter is clearly unchanged under
the phase shift ωp 
→ ωpeiη.

V. CONCLUSIONS

Nonadiabatic holonomic quantum computation can be
implemented by tailoring amplitude, phase, and area of

laser pulses driving a � system. Here, we have proposed
a single-loop multiple-pulse scheme that implements holo-
nomic gates in this system. Specifically, we have demon-
strated that the simplest nontrivial case corresponding to
two pulse pairs (L = 2) is sufficient to realize an arbi-
trary single-loop one-qubit gate. By combining our one-
qubit gate with an entangling holonomic two-qubit gate,
an efficient universal set of holonomic gates can be
realized.

Our scheme avoids the drawbacks of earlier versions of
nonadiabatic holonomic quantum computation. It minimizes
the exposure time to errors but keeps the full flexibility
concerning the choice of laser pulse shape and pulse duration.
We have further outlined an experimental setting involving a
combination of carefully chosen laser pulses.

We note that the L = 2 gates involve control of two new
parameters: the phase shift η and an additional pulse area.
Thus, an optimal strategy uses the multiple-pulse one-loop
scheme only to implement one-qubit gates with nonvanising
trace (such as phase shifts); for gates with vanishing trace (such
as bit flip and Hadamard) the original π scheme of Ref. [3] is
preferable.

The L = 2 case can be extended to any number of pulse
pairs. The resulting paths would explore larger regions of the
underlying Grassmann manifold G(3; 2) and may therefore
provide further insight into the geometrical structure of the
G(3; 2) holonomy. Thus, from a fundamental point of view,
experimental and theoretical study of the L � 3 case is of
interest.
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