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Experimental observation of fractional topological phases with photonic qudits
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Geometrical and topological phases play a fundamental role in quantum theory. Geometric phases have been
proposed as a tool for implementing unitary gates for quantum computation. A fractional topological phase has
been recently discovered for bipartite systems. The dimension of the Hilbert space determines the topological
phase of entangled qudits under local unitary operations. Here we investigate fractional topological phases
acquired by photonic entangled qudits. Photon pairs prepared as spatial qudits are operated inside a Sagnac
interferometer and the two-photon interference pattern reveals the topological phase as fringes shifts when local
operations are performed. Dimensions d = 2, 3, and 4 were tested, showing the expected theoretical values.
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Geometrical phases were introduced long ago in a seminal
work on polarization transformations in classical optics [1,2].
Later, geometrical and topological features were demonstrated
to play a fundamental role in the realm of quantum theory
[3,4]. Tomita and Chiao verified experimentally the existence
of Berry’s phase and its topological properties at the classical
level in helically wound optica1 fiber [5]. Geometric phases
were measured by using coincidence detection of photon pairs
produced in parametric down-conversion in conjunction with a
Michelson interferometer [6,7], by changing adiabatically the
polarization state of the photon pairs [8], with single photons
in a mixed state of polarization by using a Mach-Zenhder
interferometer [9] or in a polarization pure state by using a
polarimetric technique [10]. More recently, they have been
proposed as a robust tool for implementing unitary gates
for quantum computation [11,12]. From this perspective, the
geometric phase on entangled bipartite systems and the role of
entanglement in its topological nature have been discussed
both theoretically [13–15] and experimentally [16–18] for
two-qubit systems. Later, they were generalized to pairs of
qudits of any dimension [19,20] and to multiple qubits [21],
showing that the dimension of the Hilbert space plays a
crucial role in determining fractional topological phases in
both cases. A recent review on this rich subject can be found in
Ref. [22]. Although experimental schemes for demonstrating
these fractional values have been proposed [23,24], they have
not been implemented so far. In a broader context, fractional
phases may be revealed in quantum Hall systems, related
to different homotopy classes in the configuration space of
anyons. This nontrivial topology has been conjectured to be a
possible resource for fault tolerant quantum computation [25].

In this work we present experimental results of fractional
topological phase measurements on entangled qudits. A qudit
is a quantum state that belongs to a d-dimensional Hilbert
space (d > 2). A quantum system in a general qudit state
can be written in terms of d states that form a basis in the
d-dimensional Hilbert space. Photonic qudits with dimensions

d = 3 and 4 and qubits (d = 2) were encoded on the transverse
positions of quantum correlated photon pairs generated by
spontaneous parametric down conversion (SPDC). The photon
pair is subjected to local unitary applied to their spatial
degree of freedom using a spatial light modulator (SLM). In
order to eliminate any dynamical phase contribution, these
operations are restricted to SU(d). The topological phases are
measured as the phase shift of an interference pattern with
respect to a reference pattern obtained without the SU(d)
operation. For SU(d) transformations the dynamical phase
vanishes identically. This has been demonstrated in three
other previous theoretical works [19,20,24]. Fractional topo-
logical phases are observed through polarization-controlled
two-photon interference [26,27]. Mukunda and Simon added
an important contribution to the understanding of geometric
phases in terms of a kinematic approach [28]. When applied to
a pair of d-dimensional entangled systems (qudits A and B),
following a cyclic evolution under local unitary operations,
this approach allows the derivation of a general formula,
φg = 2nπ

d
− √

C2
m − C2 (�A + �B) (n ∈ N), where C is the

I concurrence, Cm its maximum value [Cm = √
2(d − 1)/d],

and �A(B) is a phase contribution dependent on the whole
evolution history of qudit A(B) [19,20]. For example, for
qubits, this phase contribution encompasses the usual Bloch
sphere solid angle. Note that Bloch sphere representation
is restricted to SU(2), so that it does not apply to higher
dimensions (d > 2). For maximally entangled states (C =
Cm), only the fractional values 2nπ/d can appear under local
unitary evolutions. Our results show clear evidence of the 2π/d

(n = 1) theoretical prediction. The term fractional phases is
used here in analogy to the phase acquired by the quantum
state of identical particles when they are interchanged. In three
dimensions we have 0 for bosons and π for fermions. However,
the quantum state of identical particles in two dimensions can
acquire fractional phases of the form 2π

n
when the particles are

interchanged. This is usually referred to as fractional statistics
and the corresponding particles are called anyons. It has

2469-9926/2016/94(5)/052305(5) 052305-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.052305


A. A. MATOSO et al. PHYSICAL REVIEW A 94, 052305 (2016)

FIG. 1. Scheme for measuring the fractional topological phase of
qudit state in the transversal path degree of freedom. Two photons
entangled in their transversal paths with orthogonal polarization are
split by a polarizing beam splitter (PBS) in two different longitudinal
path. Each photon crosses a half wave plate (HWP) and propagates
in a superposition of vertical and horizontal polarization states. A
local unitary operation Us is then applied to the transversal path
degree of freedom of one of the photons conditioned to the horizontal
polarization component.

potential applications to quantum Hall effect and fault tolerant
quantum computation as mentioned above. There is already a
quite extensive literature on these subjects [29–34]. However,
the connection between fractional topological phases and high
dimensional entangled states is recent and the results shown
here represent an experimental demonstration.

Measurement of the topological phase for qudits is a
challenging task. First we have to prepare a two-qudit photonic
entangled state close to a maximum entangled state. Then, it
is necessary to apply a suitable local unitary operation to one
of the qudits of the pair. The third requirement is to set an
interferometer with two possible arms where the two-qudit
initial state interferes with the same state transformed by
the SU(d) operation. Figure 1 shows schematically how we
measured the topological phase. Two photons entangled in
their transversal paths with orthogonal polarization are split by
a polarizing beam splitter (PBS) in two different longitudinal
paths. After each photon crosses a half wave plate (HWP)
they propagate in a superposition of vertical and horizontal
polarization states. A local unitary operation Us is then applied
to the transversal path degree of freedom restricted to the
horizontal component of one of the photons. Now the two
photons exit the second PBS, have their polarizations rotated
by 45◦, and are detected in coincidence after their horizontal
components are filtered by a polarizer (not shown in Fig. 1).
We detect the interference between the entangled two-photon
state in path variables and the same state after the application
of a local unitary operation to the path degrees of freedom.

The qudits are encoded in the transverse paths of the photon
pairs generated by SPDC and therefore the photon transverse
paths must be well defined during their propagation inside the
interferometer. Polarization is used as an ancillary degree of
freedom for conditional operation on the qudits. Fractional
topological phases are obtained from the fringe displacement
caused by local SU(d) operations applied to the spatial qudits.
The experimental setup is shown in Fig. 2. A spherical lens
Lp, placed before the crystal, focuses the pump laser beam
on the multislit plane, dictating the spatial correlations of
the down-converted photons [35–37]. The slits are placed
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FIG. 2. Experimental setup for measuring fractional topological
phases: a 355-nm CW (Continuous wave) laser beam is focused by
a 30-cm focal length lens (Lp) and pumps a 1-mm β-barium borate
(BBO) crystal, generating collinear 710-nm photon pairs in a type-II
phase matching configuration. A dichroic mirror (DM) reflects the
pump beam, while the photon pairs cross a multiple slit placed at the
focal plane of Lp . The slits are 100 μm wide and their separation is
250 μm. A set of four thin (∼1 mm) quartz plates compensates the
optical path difference between the orthogonally polarized photons
exiting the BBO. Orthogonally polarized photons enter a Sagnac
interferometer with a PBS as the input-output port. The SLM and
the wave plates inside the interferometer allow the application of the
local unitary transformations. The phase-shifter (Ph-Sh) is composed,
from the right to the left, of a quarter wave plate (QWP) at 45◦, a half
wave plate (HWP) at φ, another HWP at φ + θ , and another QWP
at 45◦. A 5-cm focal length cylindrical lens (Lc) placed before the
interferometer and two others in a telescope configuration inside it
are used to image the slits on the SLM. Interference filters of 10 nm
bandwidth centered at 710 nm are placed before the single-photon
detectors D1 and D2. Microscope lenses couple the photons into
multimode fibers coupled to the detectors. Coincidence counts are
registered in a time window of 5 ns.

after the crystal as shown in Fig. 2. The number of slits set
the dimension of the photon path states. A slide containing
different multiple-slit arrays (lower inset in Fig. 2) can be
displaced vertically such that a two-qudit state with a different
dimension can be prepared without modifying the setup.
Quartz plates introduced after the multiple-slit correct the
delay between the orthogonally polarized photons providing
indistinguishable photon states in longitudinal space-time
variables [38–40]. The three cylindrical lenses Lc in the setup
are essential to keep the transverse paths well defined.

After the photon pair enters the interferometer, the two-
photon state is written as

|�0〉 = i

d∑
m,n=1

αmn|mH 〉s |nV 〉i , (1)

where αmn is the probability amplitude for the horizontally
polarized photon (H) to cross slit m and the vertically polarized
phton (V) to cross slit n . By focusing the pump beam on
the plane of the slits, we produce antisymmetric maximally
entangled states [35–37]. For example, for d = 3 the only
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amplitudes different from zero in Eq. (1) are α13 = α22 =
α31 = 1/

√
3 [35]. The SLM in the Sagnac interferometer

modulates only the phase of horizontally polarized photons,
acting as a regular mirror for vertically polarized photons.

Signal and idler photons are labeled with horizontal and
vertical polarizations, respectively. After crossing the PBS,
the signal photon passes through a HWP that rotates its
polarization by 45◦, making |mH 〉s → (|mH 〉s + |mV 〉s)/

√
2

. Then, it follows through a phase shifter (Ph-Sh) composed
by two quarter wave plates (QWPs) oriented at 45◦, one HWP
at a fixed angle φ, and another HWP at a variable angle
φ + θ (upper right inset of Fig. 2). The Ph-Sh introduces
a 4θ phase difference between the horizontal and vertical
polarization components [41], making (|mH 〉s + |mV 〉s) →
(|mH 〉s + e4iθ |mV 〉s). At the SLM, a unitary operation US =∑d

k=1 eiξk |k〉〈k| is applied to the horizontal polarization
component, making (|mH 〉s + e4iθ |mV 〉s) → (eiξm |mH 〉s +
e4iθ |mV 〉s). ξk is the path phase added to the photons that
cross the slit k. This operation is implemented by addressing
d rectangular windows on the SLM (upper left inset of Fig. 2),
each one matching a given slit image with a specific gray
scale related to the corresponding value of ξm . The phase
response of the reflecting SLM varies with the gray scale on
the liquid-crystal screen [42]. The discrete topological phases
are expected for unitary transformations restricted to SU(d),
which in this case means

∑
k ξk = 0 . The SLM is controlled

to fulfill this condition. For example, for qutrits (d = 3) this
operator is a diagonal 3 × 3 matrix [exp iφ1, exp iφ2, exp iφ3],
and the SLM is programed to make φ1 + φ2 + φ3 = 0 such that
the operator performed is SU(3) (unit determinant).

The idler photon has vertical polarization, being insensitive
to the SLM. After the Ph-Sh and the HWP, the idler
state components follow the sequence |nV 〉i → e2iθ |nH 〉i →
e2iθ (|nH 〉i − |nV 〉i)/

√
2 . At the output of the Sagnac inter-

ferometer, the photons are recombined by the PBS in the
two-qudit quantum state |�1〉 = 1

2

∑d
m,n=1 αmn(eiξm |mH 〉s +

e4iθ |mV 〉s) ⊗ e2iθ (|nH 〉i − |nV 〉i). An irrelevant overall
phase factor is acquired by the idler photon in the Ph-
Sh. Note that only the |mH 〉s |nH 〉i and |mV 〉s |nV 〉i
components will contribute to the coincidence counts,
since in those cases the photons will exit in dif-
ferent ports. The state post selected by the coinci-
dence detection is |�2〉 = 1√

2

∑d
m,n=1 αmn(eiξm |mH 〉s |nH 〉i −

e4iθ |mV 〉s |nV 〉i). This state cannot exhibit interference be-
cause the spatially modulated and the nonmodulated com-
ponents are identified by the photon’s polarization. In order
to erase the polarization information, a HWP and a PBS are
placed before each detector. The HWPs rotate the polarization
components by ±45◦ and the PBSs project all components on
the horizontal polarization before detection.

The coincidence count on detectors D1 and D2

is proportional to the correlation function C(r1,r2) =
〈E−

1 (r1)E−
2 (r2)E+

2 (r2)E+
1 (r1)〉 integrated over the detectors’

areas, where Ej
+ (Ej

−) is the positive (negative) frequency
component of the electric-field operator on detector Dj (j =
1,2). In terms of the field operators before the HWPs we have
E1

+ = 1√
2
(iEsV

+ + EiH
+), and E2

+ = 1√
2
(EsH

+ + iEiV
+),

where Esμ
+ (Eiν

+) is the positive frequency component of
the signal (idler) vector field operator for different polar-

izations (μ,ν = H,V ) [23]. Each polarization component is
expanded in terms of the slit mode functions ηp(r) as Esμ

+ =∑
p apμηp(rs), Eiν

+ = ∑
q bqνηq(ri), where the annihila-

tion operators apμ and bqν act on signal and idler Fock states,
respectively, as apμbqν |mσ 〉s |nε〉i = δpmδμσ δqnδνε |0〉s |0〉i .
Photons are guided by lenses and focused into multimode
fibers coupled to D1 and D2. This corresponds to integrate
the correlation function over the spatial variables. Using the
orthonormality condition of the slit modes, we obtain the
normalized function C = 1

4

∑
m,n |αmn eiξm − e4iθαnm|2.

As the Ph-Sh’s angle θ is varied, the coincidence counts
show interference fringes that depend on the photon path
state being prepared by the slits (αmn) and on the SLM
operation (ξm). The discrete topological phases are manifested
when SU(d) operations are performed on maximally entangled
states with antisymmetric coefficients αm,d−m+1 = 1/

√
d and

αmn = 0 for n 
= d − m + 1. The SLM was programed to
assume different configurations parametrized by t , satisfying∑

m ξm(t) = 0 and ξm(0) = 0 ∀ m. With these settings, the
coincidence function becomes

C(θ,t) = 1

d

d∑
m=1

sin2

[
ξm(t) − 4θ

2

]
. (2)

For different SLM operations the interference pattern C(θ,t)
displaces and changes the visibility. Fractional topological
phases are observed as the phase shifts of the interference
fringes when the maximal visibility is recovered. We have
tested the discrete phases for two entangled qubits (d = 2),
qutrits (d = 3), and ququarts (d = 4). Photon pairs exiting
a double slit are prepared in a spatial two-qubit state. The
state prepared is characterized by the coefficients α12 = α21 =
1/

√
2 . Inside the Sagnac interferometer, the SLM is set for

ξ1(t) = −ξ2(t) = πt (0 � t � 1). (3)

The control parameter t is kept constant at each scan of the
Ph-Sh’s angle θ . We use the parameter t for condensing the
notation. It is interesting to visualize that the cyclic SU(d)
transformation implemented by the SLM is continuous and
different unitary operations can be done in a cycle. The
experimental results are shown in Fig. 3(a). The visibility of
the two-photon interference curve decreases with t , reaching
a minimum value at t = 0.5, and returns to the original value
when the full cycle is completed at t = 1 . The interference
curve is then shifted by (182 ± 7)◦ which confirms the
theoretical value of 180◦ expected for qubits. The experimental
shift value was obtained from the fits shown in Fig. 3. The
theoretical expression used for the experimental fit was C(θ ) =
1
2 (1 − v cos [aθ + b]), where v, a, and b are fit parameters.
In the second case, a three-slit array prepares the two-qutrit
entangled state [43,44]. The SLM was programed with

ξ1 = 2π

3

[
2t − (2t − 1)H

(
t − 1

2

)]
,

ξ2 = −4π

3
t, ξ3 = 2π

3
(2t − 1)H

(
t − 1

2

)
, (4)

with t ∈ [0,1] and H (t ′) is the Heaviside function. The
resulting measurements for t = 0, t = 0.5, and t = 1 are
shown in Fig. 3(b). The reference curve was obtained with
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FIG. 3. Two-photon interference fringes detected at the exit of
the interferometer for (a) qubits (d = 2), (b) qutrits (d = 3), and (c)
ququarts (d = 4). The experimental results are shown as dots with
error bars and the numerical fits as lines. The results correspond to the
unitary operations given by Eqs. (3)–(5) for three values of t : t = 0
(black squares and black line), t = 0.5 (red circles and red dashed
line), and t = 1 (blue triangles and blue dot line). The measured
topological phases obtained from the experimental fits are (182 ± 7)◦

for the qubits, (126 ± 3)◦ for qutrits, and (94 ± 3)◦ for ququarts.
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FIG. 4. Measured fractional topological phases (squares) and the
expected theoretical values (balls) in terms of the dimension of the
different prepared qudit states.

t = 0. For t = 0.5, the interference visibility decreases be-
cause the resulting evolution is not cyclic. A cyclic evolution
is achieved for t = 1, when the visibility recovers its initial
value and the measured fringes are shifted by (126 ± 3)◦. This
value was obtained from the fits and is in good agreement with
the theoretical prediction for qutrits (φtop = 2π/3).

In the last example, a spatial two-ququart state is pre-
pared. The SLM is programed to implement the following
operation:

ξ1 = π

2
t, ξ2 = −π

2
t + π (1 − 2t)H

(
t − 1

2

)
,

ξ3 = 3π

2
t − π (1 − 2t)H

(
t − 1

2

)
, ξ4 = −3π

2
t. (5)

The resulting interferences are shown in Fig. 3(c). We see
that the visibility for t = 0.5 is close to zero, and for t = 1
the initial visibility is recovered. The observed phase shift
was (94 ± 3)◦ as expected for d = 4. Single count oscillations
in all measurements are very small (less than 3% ) and are
not responsible for the interference patterns measured by
the coincidences. Figure 4 shows the plot of the measured
fractional topological phases and the expected theoretical
values in terms of the dimension of the different qudit states.

Notice in Fig. 3 that the visibilities of the measured interfer-
ence patterns for t = 0 and t = 1 are lower than the predicted
visibilities of 1.0 [17]. These visibilities are independent of the
dimension of the qudit states and are between 0.3 and 0.4. We
checked for possible causes. Signal and idler temporal indis-
tinguishability was tested by measuring a Hong-Ou-Mandel
dip [38,39] with photons exiting the crystal and after they
exit the interferometer. Dips with visibilities 0.93 ± 0.01 and
0.88 ± 0.03 were measured by following the method described
by Di Giuseppe et al. in Ref. [40] after the crystal and at the exit
of the interferometer, respectively. Another cause is the mode
mismatching between the transverse modes of photons exiting
the slits and the coupled modes to the optical fibers that connect
the interferometer exit and the detectors. This was tested with
an attenuated He-Ne laser beam that crossed the interferometer
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and the measured visibility was 0.42 ± 0.03. The phase shifter
was tested independently and oscillations with visibilities near
1.0 were obtained. Therefore the main cause of the discrepancy
between the predicted visibilities and the measured ones is
the imperfect transverse and longitudinal mode matching.
This discrepancy does not affect the measurement of the
topological phase for qudits. The measured phase is obtained
from the interference pattern displacement [SU(d) operation
applied; t = 1] when compared to a reference interference
pattern [no SU(d) operation applied; t = 0] as shown in Fig. 3.
The interference pattern displacements are independent of the
pattern visibilities.

In conclusion, we have measured the fractional topological
phases acquired by entangled qudits following cyclic evolu-
tions under local SU(d) transformations. We have designed

an experiment for measuring the topological phase acquired
by qudits, when the photonic spatial structure is efficiently
operated by a spatial light modulator. The results for maximally
entangled states are conclusive. The experimental two-photon
interference patterns confirm that under local SU(d) opera-
tions, maximal visibility can only be attained with fractional
phase shifts multiples of 2π/d . The doors are now open to the
experimental realization of qudit gates based on topological
phases for implementing quantum algorithms.
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National Institute of Science and Technology in Quantum
Information, and the Science without Borders Program (Capes
and CNPq, Brazil). X.S.-L. acknowledges financial support
from CONACyT-Mexico.

[1] S. Pancharatnam, Proc. Indian Acad. Sci. 44, 247 (1956).
[2] Edited by G. W. Series, Collected Works of S. Pancharatnam

(Oxford University Press, London, 1975).
[3] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[4] M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).
[5] A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986).
[6] P. G. Kwiat and R. Y. Chiao, Phys. Rev. Lett. 66, 588 (1991).
[7] J. Brendel, W. Dultz, and W. Martienssen, Phys. Rev. A 52, 2551

(1995).
[8] D. V. Strekalov and Y. H. Shih, Phys. Rev. A 56, 3129 (1997).
[9] M. Ericsson, D. Achilles, J. T. Barreiro, D. Branning, N. A.

Peters, and P. G. Kwiat, Phys. Rev. Lett. 94, 050401 (2005).
[10] O. Ortı́z, Y. Yugra, A. Rosario, J. C. Sihuincha, J. C. Loredo, M.

V. Andrés, and F. De Zela, Phys. Rev. A 89, 012124 (2014)
[11] J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, Nature

(London) 403, 869 (2000).
[12] L. M. Duan, J. I. Cirac, and P. Zoller, Science 292, 1695 (2001).
[13] P. Milman, Phys. Rev. A 73, 062118 (2006).
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