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Temperature determines the relative probability of observing a physical system in an energy state when that
system is energetically in equilibrium with its environment. In this paper we present a theory for engineering the
temperature of a quantum system different from its ambient temperature. We define criteria for an engineered
quantum bath that, when coupled to a quantum system with Hamiltonian H , drives the system to the equilibrium
state e−H/T

Tr(e−H/T )
with a tunable parameter T . This is basically an analog counterpart of the digital quantum metropolis

algorithm. For a system of superconducting qubits, we propose a circuit-QED approximate realization of such
an engineered thermal bath consisting of driven lossy resonators. Our proposal opens the path to simulate
thermodynamical properties of many-body quantum systems of size not accessible to classical simulations. Also
we discuss how an artificial thermal bath can serve as a temperature knob for a hybrid quantum-thermal annealer.
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I. INTRODUCTION

How can we change the temperature of a physical system? A
quick answer is by changing the temperature of its surrounding
environment. For many applications this is an impractical
option. For instance, a superconducting quantum processor
is kept in a fridge at a few millikelvin. Raising the temperature
of the fridge would excite various sources of noise annihilating
the quantumness of the system. This article proposes an
alternative solution: an artificial temperature. A tunable
temperature allows physical simulation of thermodynamics
of many-body quantum systems [1], and it also serves as a
computational knob for a processor performing the annealing
method of optimization [2,3].

Calculating the thermal state or partition function of a
many-body physical system is a fundamental computational
problem in, and a bridge across, statistical physics [4], quantum
computation [2,3], and machine learning [5]. In statistical
physics, estimating the partition function of a many-body
quantum system is known to be computationally hard [6,7].
Quantum metropolis algorithms have been proposed as a
solution, although they demand a fault-tolerant universal
digital quantum computer [8–12]. Therefore, it is of paramount
importance to realize quantum simulators to generate the
thermal equilibrium state of physical systems, e−HS/T

Tr(e−HS/T )
.

Such a simulator should have two features: a programmable
Hamiltonian HS and a tunable temperature T .

Another paradigm that requires a tunable temperature is an
analog annealing processor. Annealing is a general purpose
method of optimization where the solution of a computational
problem is encoded in the ground state of a system Hamiltonian
HS . System starting in an excited state is gradually guided to
lower energy states and eventually to the ground state which
carries the optimal solution. Classical annealing uses thermal
fluctuations to explore the optimization landscape, and the
energy is reduced by lowering the temperature [3]. Therefore,
a Gibbs state simulator can in principle be used as a classical
annealer when the temperature T (t) is time-dependent. A
zero-temperature paradigm of annealing, known as quantum
annealing, employs quantum fluctuation to drive the system
toward the ground state. However, there is theoretical evidence
that annealing at nonzero temperature or in the presence of

noise can be computationally more powerful than a zero
temperature quantum annealer [13–18]. These findings suggest
that future quantum annealing processors should be equipped
with a temperature knob, basically making them a hybrid
quantum-classical annealer.

Here we present a realization of an artificial temperature by
quantum bath engineering. We reference the method of cavity
cooling, which addresses a similar question for a single-mode
harmonic oscillator [19,20], a system of noninteracting qubits
[21], and a Bose-Hubbard chain with known energy structure
[22]. Here we avoid any hypothetical assumption such as
bath eigenstate thermalization in Ref. [23]. Quantum bath
engineering, as a powerful resource for quantum engineering,
has been recently applied to other applications such as quantum
state preparation [24–26] and realizing a chemical potential for
photons [27]. In the following, we first define the notion of a
universal thermal bath and derive the microscopic conditions
for engineered thermalization. Then we give a detailed
proposal for realization of such a bath for superconducting
qubits.

II. UNIVERSAL QUANTUM THERMAL BATH

We begin with an operational definition of temperature
since we consider temperature as a knob for an analog
computation. Given a quantum system S with Hamiltonian HS ,
we say the system is at temperature T if its state is represented
by the density matrix e−HS/T

Tr(e−HS/T )
. Correspondingly, we define a

universal artificial quantum thermal bath as a quantum system
B that, when coupled to the system S, sets its temperature with
the following criteria:

(1) The bath Hamiltonian and system-bath interaction are
independent of the system Hamiltonian.

(2) The bath internal dynamics is tunable.
(3) The strength of system-bath interaction is tunable.
Condition (1) carries the notion of universality by ensuring

that as the system Hamiltonian changes (e.g., programming
problem Hamiltonian of an annealer) the bath thermalization
functionality is intact. Conditions (2) and (3), as described
below, correspond to tunability of the temperature and rate of
thermalization.
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A. Microscopic theory

The theory of open quantum systems offers a detailed
description of how quantum systems thermalize when coupled
to a natural thermal bath [28]. Here the word “natural” refers
to the surrounding environment and distinguishes it from an
engineered bath. In this case, the bath itself is assumed to be
at temperature Tenv in state e−HB /Tenv

Tr(e−HB /Tenv ) . If the bath is weakly
and linearly coupled to the system and its fluctuations satisfy
the Kubo-Martin-Schwinger (KMS) condition, the equilibrium
state of the system is guaranteed to be e−HS/Tenv

Tr(e−HS/Tenv )
[28], obeying

thermodynamic laws. A natural thermal bath is not universal
as there is no switch to turn it off.

We develop a theory for an analog quantum thermal bath
based on engineering the bath’s dynamical fluctuations and
KMS conditions. We begin with the derivation of a quantum
master equation for a bath out of thermal equilibrium with
time-dependent system-bath interaction. We consider system
S as weakly coupled to an auxiliary quantum system (bath) B.
In superconducting systems, the bath can consist of resonators
[29–32], qubits, or metamaterials [33–35]. For a total system-
bath Hamiltonian HSB = HS + HB + HI (t), dynamics are
described by

dρ̃SB

dt
= −i[H̃I (t),ρ̃SB(t)], (1)

where ∼ refers to the interaction picture.
For weak system-bath interaction, the second-order pertur-

bative solution of the dynamics yields

dρ̃S

dt
= −i TrB[H̃I (t),ρSB(0)]

−
∫ t

0
ds TrB[H̃I (t),[H̃I (s),ρ̃SB(s)]]. (2)

Here we neglect the first term on the RHS, assuming
TrB[H̃I (t),ρSB(0)] = 0. We will discuss this assumption in
Sec. II C.

The next assumption we use is the Markovian approxima-
tion. For this we need the auxiliary system B to be strongly
attracted to an equilibrium state ρSS

B (t) such that, after any
perturbative kick by the system, it quickly relaxes back to
its equilibrium state. In general, the bath steady state can
be time dependent. An example of such an auxiliary system
that we propose below is a strongly lossy resonator in a
coherent equilibrium state. As a result of the Born-Markov
approximation we have ρ̃SB(t) ≈ ρ̃S(t) ⊗ ρ̃SS

B (t) and arrive at

dρ̃S

dt
= −

∫ ∞

0
dsTrB[H̃I (t),[H̃I (t − s),ρ̃S(t) ⊗ ρ̃SS

B (t)]].

(3)

Next we consider system-Bath interaction terms of the
form HI = ∑

α gαSα ⊗ Bα(t) (with Hermitian operators Sα

and Bα). Given projective decomposition HS = ∑
ε ε�(ε),

we define the system operators as

Sα(ω) =
∑

ε′−ε=ω

�(ε)Sα�(ε′). (4)

We apply the rotating-wave approximation by constraining the
coupling strengths gα such that the resulting thermalization

rate is weaker than the minimum system frequency �S =
min(ε′ − ε). Applying this approximation to (3), we obtain
the Lindblad equation

dρ̃S

dt
= D(ρ̃S) =

∑
ω,α,α′

γαα′(ω,t)

×
[
Sα′ (ω)ρ̃SS

†
α(ω) − 1

2
{S†

α(ω)Sα′ (ω),ρ̃S}
]

(5)

with fluctuation coefficients

γαα′ (ω,t) = gαgα′

∫ ∞

−∞
dseiωsTr

[
Bα(t)Bα′(t − s)ρSS

B (t)
]
.

(6)

The Born approximation translates to |γαα′ | � �S,γB

where �S and γB are the system’s minimum energy gap and
bath relaxation rate, respectively. In the case of annealing
dynamics such that the system Hamiltonian HS(t) varies
over time, we need the further assumption of slow annealing
to apply the master equation in terms of the instantaneous
eigenenergies, HS(t) = ∑

ε εt�(ε,t) [36]. Next we discuss
how to engineer the bath fluctuations to realize a universal
thermal bath.

B. Thermalization condition

The following relation is a sufficient condition on the
dynamics (5) having the Gibbs state ρth = e−HS/T

Tr(e−HS/T )
as the

steady state:

γαα′ (−ω,t) = e−ω/T γα′α(ω,t). (7)

For time-homogenous fluctuations where γαα′ is time-
independent, the uniqueness of the steady state of (5) guar-
anteed if any two energy levels {|ε〉,|ε′〉} are coupled either
directly through an operator Sα (〈ε|Sα|ε′〉 
= 0) or indirectly
via intermediate levels {|εj 〉} (〈ε|Sj |εj 〉...〈εj ′ |Sj ′ |ε′〉 
= 0).
See Appendix A for details of the thermalization condition.
Condition (7) is a generalization of the KMS condition, which
is automatically satisfied if the bath steady state is thermal,
ρSS

B = e−HB /T

Tr(e−HB /T ) [28]. The Lindblad generator (5) that satisfies
the thermalization condition is known as the Davies map
[37,38]. We next discuss how to engineer the KMS condition
(7) with a nonthermal bath.

1. Approximate thermalization condition

Here we propose one approach to engineering the KMS
condition by using a collection of engineerable baths (Fig. 1).
Consider bath modes Bν coupled to the system via the
interaction Hamiltonian HI = ∑

α Sα ⊗ ∑
ν gα,νBν with time-

homogenous bath fluctuations:


νν ′ (ω) =
∫ ∞

−∞
dseiωsTr

[
B̃ν(s)B̃ν ′(0)ρSS

ν

]
. (8)

We engineer baths such that collectively satisfy condition (7)
to a certain precision:

γαα′(ω) =
∑
ν,ν ′

gα,νgα′,ν ′
νν ′ (ω),

such that γαα′ (−ω) ≈ e−ω/T γα′α(ω) (9)
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FIG. 1. A cartoon of a thermal bath, a discrete set of baths that
collectively satisfy the KMS condition (7).

with ρSS
ν is the νth bath steady state. This condition should

hold in a relevant range of energies [ωmin,ωmax].
Next, we analyze the required precision of this engineering

approach as any engineered KMS condition would inevitably
be an approximation to condition (7).

2. Precision analysis

An approximate condition (9) on bath fluctuations guar-
antees an approximate preparation of a thermal state. We
make this statement explicit by proving the following bound
on the distance between a target thermal state ρth and the
actual engineered equilibrium state ρeq. Consider a system with
Hilbert space dimension d coupled to a bath with engineered
fluctuations γαα′(ω); then we have

||ρeq − ρth||1 � 6
log(d) + 1

λ
G2(d) max

α,α′,ω∈[−ωmax,−ωmin]

× |eω/T γα′α(−ω) − γαα′ (ω)|, (10)

where for an arbitrary system Hamiltonian G(d) = 1
2d(d +

1); however, for an Ising Hamiltonian G(d) = 1
2 [log2(d) +

log(d)] that means quadratic with the number of qubits.
The factor λ is the gap of Davies map that we introduce
in Appendix B to derive inequality (10). The Davies map
corresponding to the Lindblad superoperator (5) is defined
by fluctuation functions γ ∗

αα′ (ω) = γαα′ (ω) for ω � 0, and
γ ∗

α′α(ω) = γα′α(−ω)eω/T for ω < 0. The parameter λ is the
first nonzero eigenvalue, which is of course negative and
determines the rate of thermalization. The distance is measured
by trace norm ||.||1. See Appendix B for the derivation of the
bound (10).

The inequality (10) is a powerful tool that relates the
accuracy of preparing a target Gibbs state to the precision in
the bath engineering. Basically if a design requires accuracy
ε, i.e., ||ρeq − ρth||1 � ε, that translates into engineering bath
fluctuations with precision

|eω/T γα′α(−ω) − γαα′(ω)| � ελ

6[log(d) + 1]G2(d)
(11)

for −ωmax � ω � −ωmin. This bound can become explicit
further by using the results of Ref. [38] on lower bounds for
the gap λ based on the elements of the superoperator (5).

C. Initial conditions for simulation and annealing modes

In the early steps of deriving master equation (3), we
assumed the following initial state condition

TrB[H̃I (t),ρSB(0)] = Tr[B̃(t)ρB(0)][S̃(t),ρS(0)] = 0, (12)

which can be guaranteed in the following two ways:
(1) Quantum simulation mode: Here the goal is to generate

a Gibbs state for a time-independent Hamiltonian HS . In this
case the condition (12) can be simply satisfied by initializing
the system in a maximally mixed state, i.e., ρS(0) ∝ IS . We
can prepare such an initial state by applying white noise to
the qubits, since a maximally mixed state is the fixed point of
random unitary transformations [39,40].

(2) Quantum annealing mode: In this mode, the Hamil-
tonian is time-dependent HS(t). A common example is
transverse-Ising model

HS(t) = a(t)
∑

Xi + b(t)
∑

JijZiZj , (13)

where Zi and Xi are Pauli operators and the coefficient
function a(b) is decreasing (increasing) in time. In a hybrid,
quantum-thermal approach, we want to vary the temperature
during the evolution therefore we cannot reinitialize the system
in a maximally mixed state as in the simulation mode. Instead,
we achieve condition (12) by redefining the system-bath
interaction such that Tr[B̃(t)ρB(0)] = 0:

HSB = HS +
∑

α

Sα ⊗ Bα(t) + HB

= H̃S +
∑

α

Sα ⊗ [Bα(t) − 〈Bα(t)〉] + HB. (14)

This transformation modifies the system Hamiltonian H̃S =
HS + ∑

α Sα〈Bα(t)〉, which as discussed below does not
undermine the performance of the annealer. We consider mode
II in the following device proposal. However, we consider only
a time-independent system Hamiltonian HS , as ideally we want
to have thermalization much faster than the rate of Hamiltonian
time variation in a quantum annealing protocol. Therefore we
just care about the instantaneous Hamiltonian of the system.

III. A CIRCUIT-QED PROPOSAL

Here we propose realizing a thermal bath by a set of
driven lossy microwave resonators. Consider a system of
superconducting qubits with Hamiltonian HS collectively
coupled to Nr resonators with the same mode frequency {ωr}:

HSB = HS +
∑

gανSα(aν + a†
ν) + ωr

Nr∑
ν=1

a†
νaν. (15)

The system operator Sα is a local operator on qubit α. In
general, for each qubit we should have a coupling to the bath
via two noncommuting operators {S1

α,S2
α} so that at least one

of them is noncommuting with the system Hamiltonian. We
comment here that, in practice, each resonator can be coupled
to a finite group of qubits. Therefore, for a large system, the
bath would consist of local patches of resonators. Here for the
ease of presentation we consider the case of a single collective
coupling (15).
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We classically drive each resonator mode ωr with amplitude
Eν and at frequency ων

d with detuning �ν = ων
d − ωr . Also

each resonator has photon leakage at rate κν . The steady state
of such a driven lossy resonator is a coherent state |αν〉 =
| Eν

�ν+i κν
2
〉. The resonators are driven in their steady states before

coupling to the system. The number of photons stored in this
resonator, N̄ν = a†

νaν , fluctuates as [19]

〈N̄ν(t)N̄ν(t − s)〉 − 〈N̄ν(t)〉〈N̄ν(t − s)〉 = e(i�ν+κν )s |αν |2
(16)

with Loretzian spectrum


ν(ω) = |αν |2κν

(ω + �ν)2 + κ2
ν

. (17)

Using the transformation introduced in Ref. [41], we rewrite
the Hamiltonian in the dispersive regime where the resonators
are detuned from system frequencies that are stronger than
their coupling. Explicitly, for a system spectral decomposition
HS = ∑

j j |j 〉〈j |, the dispersive regime is defined as

|〈j |
∑

α

gανSα|k〉| � |ωr − (k − j )|. (18)

Biasing the resonator in this regime requires some knowledge
about the largest energy scale in the system. Assuming single-
qubit Pauli operators Sα , a general but loose upper bound is

|〈j |
∑

α

gανSα|k〉| <
∑

α

gαν � max
k,j

|ωr − (k − j )|.

(19)

For a graph of spins coupled with Ising Hamiltonian,
i.e., HS = ∑

JijZiZj , the energy differences k − j can
be upper-bounded by the maximum of each node’s degree
of connectivity times the largest edge strength, which is
computable in a time linear in the number of spins.

In this regime, as we discuss in the Appendix D, the system
resonator Hamiltonian is

HD
SB ≈ H ∗

S +
∑

ν

ωra
†
νaν +

∑
ν

Ŝν(a†
νaν − 〈a†

νaν〉). (20)

The system Hamiltonian is perturbatively modified as

H ∗
S = HS −

∑
α,ν

gα,ν

2
{[(1 + |αν |2)A†

ν − Aν]Sα + H.c.}

(21)

with Aν = ∑
α gανRα where Rα = ∑

jk
〈j |Sα |k〉

ωr+j −k
|j 〉〈k|, and

system operators

Ŝν = 1

2

∑
α

gα,ν[Sα,A†
ν − Aν], (22)

which yields system resonator coupling

HI =
∑
αβ

[Sα,R
†
β − Rβ]

∑
ν

gανgβν

2
(a†

νaν − 〈a†
νaν〉)︸ ︷︷ ︸

Bαβ

. (23)

FIG. 2. A schematic for transmon qubits coupled to a resonator
acting as a thermal bath.

The correlation function generated by Bαβ bath operators
is

γαβ,α′β ′(ω) = 1

4

Nr∑
ν=1

gανgβνgα′νgβ ′ν
ν(ω). (24)

In order to complete the design, the resonators should be
driven such that satisfy the thermalization condition (9). In
order to find the best parameters setting, the precision bound
(10) suggests solving the following optimization problem:

min
Nr ,Eν ,κν ,ω

ν
d

max
ω

|eω/T γα′β ′,αβ(−ω) − γαβ,α′β ′ (ω)| (25)

However, for the example presented in the following,
we found the following optimization yields better numerical
results,

min
Nr ,Eν ,κν ,ω

ν
d

∫ ωmax

ωmin

dω

∣∣∣∣γα′β ′,αβ (−ω)

γαβ,α′β ′ (ω)
− e−ω/T

∣∣∣∣, (26)

for a given temperature T . Solving (26) determines the
design parameters: number of required resonators Nr and
for each resonator its drive amplitude Eν , frequency ων

d , and
leakage rate κν . The number of resonators would be eventually
limited by the fabrication constraints, while other parameters
{Eν,ω

ν
d,κν} can be tuned on chip. Among these the only one

that requires extra hardware for on-chip tuning is the leakage
rate κν , for which Ref. [42] presents one particular design. In
Appendix C, we show that the optimization problem (26) can
be solved to a desired precision following the kernel properties
of the Lorentzian function [43–45].

A. Qubit chain example

Here we discuss a basic experimental realization of the
thermal bath proposal for a chain of superconducting qubits
coupled to a single mode resonator. Figure 2 is a sketch for the
experiment with transmon qubits described by the Hamiltonian

HSB = HS +
∑

gαXα(a + a†) + ωra
†a, (27)

HS =
∑

α

ωαZα + JαZαZα+1, (28)

where Zα and Xα are Pauli operators and real numbers Jα

are nearest-neighbor coupling strengths. For this system, the
thermal bath should operate within energy interval

[ωmin,ωmax] = 2[min
α

(ωα − Jα − Jα−1),

max
α

(ωα + Jα + Jα−1)]. (29)

In the numerics we consider parameters ωα = 2.5 GHz,
gα = 300 MHz, and an ensemble of random Hamiltonians
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FIG. 3. Average rate of cooling, heating, and sweeping for
frequency range [4.6,5.4] GHz. Solid blue (red) is heating (cooling)
rate for single photon drive. Dashed blue (red) is an upper bound for
heating (cooling) rate. The green line corresponds to the annealing
sweep rate also at the single-photon level.

with coupling Jα ∈ [−100,100] MHz. We examine the limits
of the proposal by choosing values for the resonator parameters
in the range supported by the theory. Namely, the Born
approximation is valid when the qubit-resonator coupling
g2

α/(ωr + �), from Eq. (23), is weaker than ωmin and the
Markovian assumption holds when the transition rates γ (ω)
is weaker than the resonator reset rate which is the rate of
photon leakage κr . Additionally, we need to have κr � ωr

for Markovian photon leakage, and gα � ωmin − ωr for the
dispersive approximation. From master equation (5), we find
the rate of cooling and heating between levels with energy
difference  are γ () and γ (−) where

γ (ω) = N̄κr

(ω + �)2 + (
κr

2

)2

(
2ωg2

ω2
r − ω2

)2

. (30)

Here N̄ is the average photon number stored in the res-
onator, which is proportional to the incident power. The
only parameter that we optimize in condition (26) is the
drive detuning � such that the Gibbs state is prepared with
above 95% fidelity. We use MATLAB’s fmincon function to
perform this optimization. All drives are red detuned, i.e.,
� < 0. Figure 3 shows the average rate of cooling and heating
for range  ∈ [ωmin,ωmax]. The solid blue and red lines are
rates of heating and cooling per single photon N̄ = 1 for
different target temperatures. As we drive the resonator more
strongly, the rates increase. Plots of dotted blue and red lines
show the maximum possible rates before the perturbative
assumptions of Eq. (5) fail. Specifically, we consider the limit
setting of ωr = ωmin − 5gα and κr = 0.2ωr , which gives the
values ωr = 3.1 GHz and κr = 620 MHz. Then we choose
the maximum allowed cooling rate (the straight line upper
bound) to be γ () = 62 MHz, a factor of 10 smaller than κr

in order to ensure the Markovianity of dynamics. This is just a
crude estimate. In practice, the resonator enters its regime
of nonlinearity for strong drives, restricting the maximum

achievable heating and cooling rates. We also plot in green
the summation of heating and cooling rate that corresponds to
the all-spin sweep rate in simulated thermal annealing [46].
Since the Hamiltonian is Ising and bath operations are spin
flips, within current technology the relevant imperfection is
the presence of dissipation with a T1 time scale of about
6.2 kHz [47].

As explained in Appendix D, one perturbative effect due
to dispersive corrections is the presence of an effective
decoherence similar to the Purcell effect. This effect is
negligible in the regime of parameters for the above example,
therefore we ignore it as we expect small corrections to the
plots in Fig. 3. However, this factor may need to be accounted
for other physical scenarios as it perturbs the final equilibrium
state of the system.

IV. LIMITATIONS OF THE CIRCUIT-QED PROPOSAL

Here we discuss some potential limitations of the above
proposal from hardware and application perspectives. In a
device implementation, we would be able to couple a qubit to a
finite number of resonators, and therefore strictly speaking, this
proposal is not scalable. We examined that driving resonators
with a multifrequency input rather than a single-frequency
field does not help reducing the number of required number
of resonators Nr . The reason is that a multifrequency drive
yields a time-dependent spectrum making it nontrivial to
satisfy the thermalization condition (7). We expect a scalable
design would be possible with metamaterial with a continuum
of modes [33,34], instead of a discrete set of resonators.
However, the current theory for metamaterials (both design and
dynamical response) is very limited and requires fundamental
developments before we can apply it to design a thermal bath.

The rate of thermalization, given finite coherence times,
is an important factor for any useful artificial thermal bath
proposal. In Sec. III A, we numerically evaluated the ther-
malization rate for a one-dimensional chain problem. This
rate, in general, can be increased by raising the strength
of system-bath coupling; however, in the above formulation,
increasing gαν , also perturbs the system Hamiltonian due to the
dispersive corrections. Specifically, both modifications to the
system Hamiltonian ||H ∗

S − HS ||1 and system-bath couplings
are proportional to max | gανgβν

ωr+j −k
|. In the context of annealing,

this Hamiltonian perturbation is not a problem since we turn
off the system-bath coupling towards the end of annealing.
However, this Hamiltonian perturbation becomes a limitation
in simulation mode. In this mode, system equilibrates at

the state e
−H∗

S
/T

Tr(e−H∗
S

/T )
instead of e−HS/T

Tr(e−HS/T )
. This error in state

preparation can be related to Hamiltonian modification with∣∣∣∣
∣∣∣∣ e−βH1

Tr(e−βH1 )
− e−βH2

Tr(e−βH2 )

∣∣∣∣
∣∣∣∣
1

� 2(eβ||H1−H2||1 − 1), (31)

which means exponential sensitivity, and therefore a limitation
of our proposal to achieve high fidelities for low-temperature
simulations. There is a trade-off between the accuracy of
simulations versus rate of equilibration that is inversely
proportional to the total simulation time. A technical note
is that we used Von Neumann’s trace inequality to derive this
bound [48].

052301-5



ALIREZA SHABANI AND HARTMUT NEVEN PHYSICAL REVIEW A 94, 052301 (2016)

V. A BATH OF SUPERCONDUCTING QUBITS

In the earliest proposal for realizing a quantum thermal
state, Ref. [8], Terhal and Divincenzo suggested a simple way
to engineer the bath: preparing a number of ancilla qubits
in their thermal state and repetitively interacting them with
the main system for a short period. In this scheme, after
each time of interaction the ancilla need to be reinitialized
in their thermal state. The corresponding dynamics would
be described with a thermalizing Lindblad equation (5). This
proposal has certain limitations that make it challenging for
practical purposes. A qubit’s initialization in a thermal state can
be a relatively slow process as it would involve a nonunitary
dissipative dynamics, for instance, tens of nanoseconds for
superconducting qubits. Therefore a few iterations would take
longer than the coherence time of the qubits. It would be
an interesting topic of research to resolve this limitation by
engineering fast qubit reset dynamics or tunable strongly
resistive elements.

VI. CONCLUSION

Engineering a quantum simulator to simulate the thermo-
dynamical properties of a many-body quantum system has
been a fundamental problem in quantum computation. In this
paper we propose an analog implementation of a quantum

simulator that mimics a thermalization process. In contrast to
the quantum Metropolis algorithm that requires a universal
fault-tolerant quantum computer, our analog proposal allows
an approximate simulation on a midsize quantum system. We
also discussed that an engineered thermal bath has applications
in quantum annealing. A quantum annealing processor with an
artificial temperature knob allows running annealing process
at nonzero temperatures in a controllable fashion. In this
paper, we examined our proposal for a simple one-dimensional
spin system. Finally, we should emphasize that this paper
is intended to present the physics principles and not an
ultimate hardware design. However, any modified version of
this proposal would follow the principle of a universal thermal
bath defined in this paper.
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APPENDIX A: PROOF OF THERMALIZATION
CONDITION

In order to prove that Eq. (7) suffices for the Gibbs state
to be a fixed point, we need to show D(ρth) = 0 holds
assuming (7). Using the identities ρthSα(ω) = eω/T Sα(ω)ρth

and S†
α(ω) = Sα(−ω), we find

D(ρth) =
∑

ω>0,α,α′
γαα′(ω,t)[e−ω/T Sα′ (ω)Sα(−ω) − Sα(−ω)Sα′ (ω)]ρth

+ γ ∗
αα′ (ω,t)[e−ω/T Sα(ω)Sα′ (−ω) − Sα′ (−ω)Sα(ω)]ρth

+ γαα′ (−ω,t)[eω/T Sα′ (−ω)Sα(ω) − Sα(ω)Sα′(−ω)]ρth

+ γ ∗
αα′ (−ω,t)[eω/T Sα(−ω)Sα′ (ω) − Sα′ (ω)Sα(−ω)]ρth.

Next we use thermal condition γαα′ (−ω,t) = e−ω/T γα′α(ω,t):

D(ρth) =
∑

ω>0,α,α′
γαα′(ω,t)[e−ω/T Sα′ (ω)Sα(−ω) − Sα(−ω)Sα′ (ω)]ρth

+ γ ∗
αα′ (ω,t)[e−ω/T Sα(ω)Sα′ (−ω) − Sα′ (−ω)Sα(ω)]ρth

+ γα′α(ω,t)[Sα′(−ω)Sα(ω) − e−ω/T Sα(ω)Sα′(−ω)]ρth

+ γ ∗
α′α(ω,t)[Sα(−ω)Sα′ (ω) − e−ω/T Sα′ (ω)Sα(−ω)]ρth,

which shows that this last summation is also zero.
Now we consider the uniqueness of the fixed point, which

is guaranteed by ergodicity of the dynamics. The Davies-
Frigiero-Spohn criterion [49] states that given Lindblad dy-
namics with diagonal form ρ̇ = −i[H,ρ] + ∑

j 2LjρL
†
j −

L
†
jLjρ − ρL

†
jLj , the necessary and sufficient condition for

the uniqueness of a steady state is {Lj ,L
†
j ,HS}′ = c1, where

{·}′
indicates the commutant and c is a constant. The Lindblad

equation (5) is not in diagonal form, and in the laboratory
frame ρ̇ = −i[HS,ρ] + ∑

ω,α,α′ γαα′ (ω,t)[2Sα′ (ω)ρS†
α(ω) −

{S†
α(ω)Sα′ (ω),ρ}]. Here we consider only time-homogenous

dynamics. The coefficients γαα′ change continuously as we
change the effective temperature; meanwhile the Davies-
Frigiero-Spohn criterion for the diagonalized form of our
Lindblad equation should hold for any values of γαα′ . In this
situation, following some simple linear algebra, the necessary
and sufficient condition for uniqueness of Gibbs state as a fixed
point is

{Sα(ω),S†
α(ω),HS}′ = c1. (A1)

We can justify this condition as follows: for an element T of
the commutant set we have [T ,HS] = 0, (HS = ∑

j j |j 〉〈j |),
therefore T = ∑

j tj |j 〉〈j | for some numbers tj . T should also
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commute with Sα(ω), so that

[T ,Sα(ω)] =
⎡
⎣∑

j

tj |j 〉〈j |,
∑

ε′−ε=ω

�(ε)Sα�(ε′)

⎤
⎦

=
∑

ε′−ε=ω

(tε − tε′)�(ε)Sα�(ε′) = 0. (A2)

This dictates a block-diagonal form of each proportional to
identity, T = ⊕qcqIq . The unique fixed point condition is
satisfied if T reduces to a single block or cq = c∀q. Such
a condition holds for any two energy levels {|ε〉,|ε′〉} iff either
there exist operators {Sαj

} and intermediate levels {|εj 〉} such
that either 〈ε|Sα|ε′〉 
= 0 or 〈ε|Sαj

|εj 〉...〈εj ′ |Sαj ′ |ε′〉 
= 0. This
has a simple physical interpretation, which is that population
can be transferred between all levels via coupling to the bath.

APPENDIX B: PRECISION OF THE APPROXIMATE
THERMALIZATION CONDITION

In practice any engineered thermal bath can only approxi-
mately satisfy the thermalization condition

γαα′(−ω)

γα′α(ω)
≈ e−ω/T ; (B1)

therefore we need to address the required precision in this
approximation. We use the result in Ref. [50] on the stability
of quantum Markov processes to derive a bound on the
error of Gibbs state preparation ||ρeq − ρth||1; here ρeq is the
equilibrium engineered state and ρth = e−HS/T

Tr(e−HS/T )
is the target

thermal state. Here we use trace norm for the operator where
||X||1 = Tr[

√
X†X] is the trace norm. The norm that we use

for operator maps is

||Q||1→1 := sup
X∈Mr (C)

||Q(X)||1
||X||1 . (B2)

We first express the following theorem as the result of
theorem 6 and corollary 7 from Ref. [50].

Theorem 1. Consider two Lindblad maps L1,L2 acting on a
d-dimensional Hilbert space, Md (C). Furthermore assume L1

has a unique fixed point corresponding to the zero eigenvalue,
and the first nonzero eigenvalue λ determines the rate of
equilibration as ||T t − T ∞||1→1 � Ke−λt . Here K < d is a
constant. If ρ1 is the unique fixed state of L1 and ρ2 is the
fixed point of the map L2, then we find the following bounded
distance between the fixed points of the two map L1 and L2:

||ρ1 − ρ2||1 � log(d) + 1

λ
||L1 − L2||1→1. (B3)

We use this theorem to derive the robustness of the
approximate thermalization condition. Suppose we engineer
a thermal bath approximately satisfying the thermalization
condition (B1),

dρ̃S

dt
= D(ρ̃S) =

∑
ω,α,α′

γαα′ (ω)

×
[
Sα′ (ω)ρ̃SS

†
α(ω) − 1

2
{S†

α(ω)Sα′(ω),ρ̃S}
]
, (B4)

with the fixed point ρeq. Now we construct a master equation
that satisfies the exact thermalization condition and therefore
has a fixed point ρth = e−HS/T

Tr(e−HS/T )
:

dρ̃S

dt
= D∗(ρ̃S) =

∑
ω,α,α′

γ ∗
αα′(ω)

×
[
Sα′ (ω)ρ̃SS

†
α(ω) − 1

2
{S†

α(ω)Sα′ (ω),ρ̃S}
]
, (B5)

where γ ∗
αα′ (ω) = γαα′ (ω) for ω � 0, and γ ∗

α′α(ω) =
γα′α(−ω)eω/T for ω < 0. We find the distance between
Markovian semigroup generators D and D∗:

||D∗ − D||1→1 =
∣∣∣∣∣
∣∣∣∣∣ ∑
ω<0,α,α′

[γ ∗
αα′ (ω) − γαα′(ω)]

×
[
Sα′ (ω).S†

α(ω)−1

2
{S†

α(ω)Sα′ (ω),.}
]∣∣∣∣

∣∣∣∣
1→1

�
∑

ω<0,α,α′
|γ ∗

αα′ (ω) − γαα′(ω)|
∣∣∣∣
∣∣∣∣Sα′ (ω).S†

α(ω)

− 1

2
{S†

α(ω)Sα′(ω),.}
∣∣∣∣
∣∣∣∣
1→1

. (B6)

The dots denote unspecified input to a mathematical map.
Using the operator norm inequalities, we find

||Sα′(ω).S†
α(ω) − 1

2 {S†
α(ω)Sα′ (ω),.}||1→1

� 2||Sα(ω)||1→1||Sα′(ω)||1→1. (B7)

The form of Sα(ω) was given in the paper: Sα(ω) =∑
ε′−ε=ω �(ε)Sα�(ε′). Consider that system energy gaps have

degeneracy Gen(ω) that is basically the number of terms in the
summation

∑
ε′−ε=ω. Note that Gen(ω) is automatically zero

when �(ε)Sα�(ε′) = 0 and that is the case when the system
operator makes no transition between states |ε〉 and |ε′〉. Then
we have

||Sα(ω)||1→1 � Gen(ω) max
ε′−ε=ω

|〈ε|Sα|ε′〉|2, (B8)

where �(ε) = |ε〉〈ε| and �(ε′) = |ε′〉〈ε′|. If we further con-
sider the general model of single-qubit coupling to the bath,
Sα ∈ {X,Y,Z}, we find ||Sα(ω)||1→1 � Gen(ω). Plugging this
into Eq. (B6),

||D∗−D||1→1 � 2
∑

ω<0,α,α′
Gen2(ω)|γ ∗

αα′(ω) − γαα′ (ω)|

� 6

[∑
ω<0

Gen(ω)

]2

max
ω<0,α,α′

|γ ∗
αα′(ω)−γαα′ (ω)|.

(B9)

The summation Gen(ω) is simply the total number of energy
level transitions corresponding to a nonzero 〈ε|Sα|ε′〉. For
an arbitrary n-qubit system Hamiltonian

∑
ω<0 Gen(ω) =

d(d−1)
2 = 22n−1 − 2n−1. However, for an Ising system Hamilto-

nian and Sα = X,〈ε|Sα|ε′〉 is nonzero only for |ε〉 and |ε′〉 with
only a single-bit flip distance. In this case

∑
ω<0 Gen(ω) =

log2(d)+log(d)
2 = n(n+1)

2 . Now we can relate the precision in ther-
mal bath preparation with the accuracy of the thermalization
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condition:

||ρeq − ρth||1 � 6
log(d) + 1

λ

[∑
ω<0

Gen(ω)

]2

× max
ω<0,α,α′

|γ ∗
αα′(ω) − γαα′ (ω)|

= 6
log(d)+1

λ

[∑
ω<0

Gen(ω)

]2

max
α,α′,ω∈[−ωmax,−ωmin]

× |eω/T γα′α(−ω) − γαα′ (ω)|. (B10)

APPENDIX C: APPROXIMATING WITH A SUM OF
LORENTZIANS

In order to argue that a set of resonators with Lorentzian
fluctuation functions can approximate the thermalization con-
dition, we consider the following scenario. Split the resonators
in two groups a and b, and for simplicity consider qubit-
resonator couplings have the same strength, i.e., gαν = gβν =
g, then the collective spectrum is

γ a(ω) = g4

4

∑
ν∈a


ν(ω), γ b(ω) = g4

4

∑
ν∈b


ν(ω). (C1)

Consider the following particular way to satisfy the thermal-
ization condition by setting

γ a(ω) ≈ eω/T F (ω), γ b(ω) ≈ 0 (C2)

for ω ∈ [−ωmax,−ωmin] and

γ a(ω) ≈ 0, γ b(ω) ≈ F (ω) (C3)

for ω ∈ [ωmin,ωmax], and for some even function F (ω).
Since any analytic function can be approximated arbitrarily
accurately with a sum of Lorentzian functions [45], we can tune
bath mode groups a and b independently such that relations
(C2) and (C3) are simultaneously satisfied, and thus the

thermalization condition. Note that this is mere a mathematical
argument and not necessarily the way to use resonators in a
real implementation. Solving optimizations (25) or (26) is what
should be considered in a design.

APPENDIX D: DISPERSIVE REGIME DISCUSSION

The detailed derivation of the modifications due to dis-
persive transformation is given in Ref. [41]. Start with the
Hamiltonian in Eq. (12):

HSB = HS +
∑

gανSα(aν + a†
ν) +

∑
ν

ωra
†
νaν. (D1)

Apply the dispersive transformation UD = exp[
∑

Aνa
†
ν −

A†
νaν], where Aν = ∑

jk

|〈j | ∑α gανSα |k〉|
ωr+j −k

|j 〉〈k|. Assuming dif-
ferent modes are driven in off-detuned frequencies we drop
the cross-mode coupling terms a†

νaν ′ induced by the dispersive
transformation and arrive at

HD
SB = UDHSBU

†
D ≈ HD

S +
∑

ν

ωra
†
νaν +

∑
ν

Sνa
†
νaν,

(D2)

where the modified system Hamiltonian is HD
S = HS −

1
2

∑
α,ν gα,ν(A†

νSα + SαAν), and the new system operators for
resonator couplings are Sν = 1

2

∑
α gα,ν[Sα,A†

ν − Aν]. Cavity
leakage causes additional system decoherence (Purcell-like
effect). Following Eq. (4) in Ref. [41], it is caused by a virtual
coupling between the system and the outside reservoir. The

corresponding decoherence rate is κν
g2

α,ν

[ωr−(j −k)]2 , which we
can ignore in comparison with the heating rate Eq. (25) when
N̄ > 1

4 (1 + �


). The drive Hamiltonians are also modified
under the dispersive transformation: the system drive term at
frequency ωd

r is far off-resonance so that it does not excite
the system, and this still holds when corrections of order

gα,ν

ωr−(j −k ) are added.
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