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Recent experiments in hybrid-quantum systems facilitate the potential realization of one of the most
fundamental interacting Hamiltonian-reservoir systems, namely the single-site Bose-Hubbard model coupled
to two reservoirs at different temperatures. Using Redfield equations in a Born-Markov approximation, we
compute nonequilibrium average particle number, energy, and currents beyond linear response regime, both time
dynamics and steady state, and investigate its dependence on various tunable parameters analytically. We find
interesting scaling laws in high-temperature regimes that are independent of choice of bath spectral functions.
We also demonstrate that the system shows very interesting particle and energy current rectification properties
which can be controlled via the relative strength of interaction and temperatures, as well as via the degree
of asymmetry in system-bath coupling. Specifically, we find inversion of direction of energy rectification as a
function of the relative strength of the interaction strength and the temperatures. We also show that, in the limit
of low-temperature and high interaction strength, our results are consistent with the nonequilibrium spin-Boson
model. Our results are experimentally relevant not only to hybrid quantum systems but also in other areas such

as molecular junctions.
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I. INTRODUCTION

Far-from-equilibrium systems beyond the paradigm of
linear response has been a subject of growing theoretical
and experimental interest [1-8]. Such studies are important
from a fundamental perspective and from the point of view
of device applications. In particular, understanding the role
of interactions is of great interest. Important fundamental
problems to explore include the role of far-from-equilibrium
physics in physical quantities of interest and the intricate
interplay between system and bath degrees of freedom when
interactions are involved. Some of the main consequences
of interactions range from fundamental physics (such as the
phenomenon of the Kondo effect [9,10]) to device applications
(such as diodes and rectifiers [11-13]). Even though the role
of interaction in device applications in fermionic systems is
well studied [14-16], the corresponding bosonic setups are
much less explored. However, with the advent of the relatively
new field of photonics, bosonic setups for device applications
such as a potential optical diode are gaining popularity
[17-19]. With recent cutting-edge technology in hybrid quan-
tum systems, it is now possible to design interacting bosonic
Hamiltonians and reservoirs [8,20-25]. There has been not
only progress in fabricating Hamiltonian-reservoir systems
but also great advances in measuring physical quantities of
interest such as photon number, photon statistics [26], and
photon current [27].

One of the most basic interacting bosonic Hamiltonian
system that one can think of is a single bosonic site with
Bose-Hubbard interaction, hereafter called the single-site Bose
Hubbard (SSBH) model. In optics, such an interaction is often
called the Kerr interaction strength. In the field of hybrid
quantum systems a Hamiltonian with such an interaction
can be potentially experimentally realized in more than
one way. The Jaynes-Cummings model, an experimentally
realized light-matter system, can be tuned to the dispersive
regime where it behaves like a SSBH model. The photon-spin
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interaction in this limit can be integrated out “pertubatively” to
generate a nonlinear Bose-Hubbard like interaction between
photons [21,28]. Alternatively there are interesting potential
realizations of Bose-Hubbard interactions between photons
which involve four-level atoms in an optical cavity [29,30].
These realizations offer large tunability of parameters. Specifi-
cally, while the former realization involving Jaynes-Cummings
model has a small interaction strength compared to the linear
term, the later realizations have very large interaction strength.

Another area of applicability for such interacting bosonic
Hamiltonians, which is perhaps more suited to nonequilibrium
measurements, are the fields of molecular thermoelectrics and
nanophononics. These fields typically deal with molecular
junctions connecting two reservoirs, experimentally, which
are often two large chemical compounds [31-36]. The role
of interactions in phononic transport through such systems is
of interest both experimentally and theoretically [37].

There has been a large amount of work on such a SSBH
model with a finite interaction strength coupled to a single
bath [38-43]. On the other hand, the nonequilibrium spin
boson (NESB) model, which corresponds to the limit of very
large interaction strength, has been well studied in out-of-
equilibrium setups [10,44-48] and is of growing experimental
significance. The conductance of an anharmonic junction
with quartic anharmonicity has been studied recently [49,50].
However, there is essentially no investigation of the SSBH
model with finite interaction strength in a far-from-equilibrium
setup via connection with multiple reservoirs. In this paper, we
investigate the SSBH model weakly coupled to two bosonic
baths at different temperatures beyond the linear response
regime.

The organization of our paper is as follows: In Sec. II, we
describe our setup. In Sec. III, we give the Redfield quantum
master equation for our setup and, in Sec. IV, we find the
nonequilibrium steady-state (NESS) properties. In Sec. V, we
look at scaling behavior of average particle number and energy
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at NESS and, in Sec. VI, we discuss the scaling behavior
and rectification of NESS particle and energy currents. In
Sec. VII, we present results for time dynamics of various
physical quantitites, which has become of growing recent
interest. Finally, in Sec. VIII, we summarize our main results
along with an outlook.

II. MODEL AND SETUP

We consider a single site with Bose-Hubbard interaction
connected to two bosonic baths in nonequilibrium. The baths
are taken to be quadratic and the system-bath couplings are
taken to be bilinear. Thus our setup is given by the full
system+bath Hamiltonian

H = Ag+ Hp + Hsp
Hg = Qoa'a + x(a'a)
o0

2
A=Y Y QBUR,
(=1

r=1

2
Hsp = EZZ(KWB,“&"‘KZ&T&Z)’ (1)
=1 r

where a correspond to bosonic annihilation operators and
B! to those of ¢th bath (¢ = {1,2}). Note that N = a'a is a
conserved quantity with respect to the system Hamiltonian Hy.
The energy spectrum of the system Hamiltonian can be easily
written down and it has the nonlinear form £ = QoN + x N2,
The baths are quadratic and have infinite degrees of
freedom. ¢ is a dimensionless parameter that controls system
bath coupling. We assume that, initially, there is no coupling
between the system and the baths, and the two baths are at
thermal equilibrium with their own inverse temperature S
and B, and chemical potential | and w,. Thus the initial bath
correlation functions satisfy the thermal properties:
(B) =0, (BB, = ni(2)o.. @

r

where ny(w) = [ef@~#) — 117! is the bosonic distribution
function. We also introduce the bath spectral functions:

Ti(@) =271 Z licer 128 (w — 220). (3)

We will assume
Je(w) =T J(w), “4)

i.e., the two baths have same density of states, but the system-
bath coupling differs in general. I, has dimensions such that
Ji(w) has dimensions of energy.

The quantitative nature of the results will depend on our
choice of spectral function. We assume a general spectral
function which is commonly used in bosonic systems:

J(@) = w'e /", )

where w, gives the cutoff frequency. The cutoff frequency is
considered very large so the system energy levels near the edge
of the bath spectrum correspond to extremely high energies,
which do not really contribute to the system properties at
the chosen set of temperatures and chemical potentials. This
is satisfied when w, > Qo,x,ﬂfl,ﬂz_l,m,uz. Also, we are
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concerned with a photonic or phononic system, so we will set
w1 = uo = 0 finally.

III. THE QUANTUM MASTER EQUATION

We want to investigate this setup without any restrictions
on the interaction strength . So, we adopt the method of the
quantumm master equation (QME) under the Born-Markov
approximation, which is only valid when system-bath coupling
is weak and gives results only to leading order in system-
bath coupling. The microscopically derived Redfield QME for
our system coupled to single bath was first written down in
Ref. [39]. It is straighforward to generalize to two baths. Let
us define p = Trg(Prn) With pgy being the full density matrix
of system+bath and Trp(..) implying trace taken over bath
degrees of freedom. The weak-coupling Redfield equation for
the density matrix of the system p of our setup is given by

aA r A Ty A SNA A A A\NA A
== ip.As] - E(pF(B)aal) + (0. G(@)as) + He,
©)

o= Qo+ x2N + 1),
F(&) = Fi(®) + F2(&), G(&) = G (&) + G2d)
do Ji(w)n(w)
27 w—o
do Ji(@)(ny(w) + 1)
2 w—&

. 1 N n e
M@=3ﬂ@M@—W/

N ! 2 N e
Gw)= 5 T(@)m(@)+1) — iP/

)

and H.c. stands for Hermitian conjugate. Note that the Redfield
equation assumes & < 1 and keeps terms only up to O(g?),
i.e., only up to quadratic in system-bath coupling (the Born
approximation). In deriving the above equation, we have
also done the Markov approximation which assumes that
the observation time is much larger than the time scale
of relaxation of bath correlation functions. To ensure weak
system-bath coupling, we choose ¢ = 0.1 and «,, to be of the
same order as 2.

The Markov assumption entails that Eq. (6) is not valid at
short times. In fact, as pointed out in Ref. [42], this equation
is not completely positive and may lead to unphysical states
at small times for certain initial conditions. A way around
suggested in Ref. [42] is to derive Lindblad equation in terms
of eigenbasis operators of Hg via the secular approximation.
The equation so derived respects complete positivity at all
times. In the following, we will be interested only in the
diagonal elements of / in the eigenbasis of Hs. It turns out that
the evolution equation for these elements as derived from the
Redfield equation and from the eigenbasis Lindblad equation
are exactly the same.

In equilibrium, i.e., when ) = B, = B, 1 = o = [, it
can be checked by direct substitution that the thermal state

o~ PHs—ul)
léeq = T )]
is the steady state of the Eq. (6), where Z = Tr[e #Hs—#N] g
the equilibrium partition function.
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IV. THE NONEQUILIBRIUM STEADY STATE (NESS)

To calculate various physical observables in NESS beyond
linear response, we need to find the NESS density matrix.
Also, in nonequilibrium, since we have no guess for direct
substitution, we need to find the p directly from Eq. (6). Since
both the number operator N and the system Hamiltonian Hg
are diagonal in occupation number basis, the NESS transport
properties as well as average occupation and energy of the
system can be found from the steady-state diagonal elements
of p in this basis. The occupation number basis satisfies

aln)y =nln—=1), a'ln)y=vn+1n+1). (9

The evolution equation for the diagonal elements p, = (n|j|n)
is given by
dpn
dt

where

=—&’[pu(Cy + Dp) — pu—1Cp—t — pus1Dni1l, (10)

C, = cH L C(2)7 D, = D p@
CO = (n + DT @)ne(@y,),
D = nJy(@n-)ne(@p-1) + 1]
o, = Q0+ x2n+1). (11)

Inthe steady state we set the left-hand side of Eq. (10) to zero.
This leads to a difference equation. Noting that C ﬁf} =C_; =0,
D((f) = Dy = 0, we obtain, by recursion, the solution

ann = ;Onflcnfl (12)
n n 2
Cpi 1 Deng(wp—1)
= Pn = Po l‘)’—zpo ZZ“ P
p=1 p p=1 Zzzl Celne(wp—1) + 1]
for n =1,2,3,..... (13)

The constant pg is fixed from the normalization condition
Zn pn = 1, i.e., the trace of the density matrix is unity. Thus,

-1

oo n 2
_ 51 _ 2ot Dene(wp—1)
p=2"= 1+ Z l_[ 2

w1 p=1 2t=1 De(ne(@p—1) +1)

(14)

where Z is a normalization constant and is analogous to the
partition function in equilibrium systems. It can be easily
checked by putting n;(w) = ny(w) = n(w) in Eq. (13) that p,
indeed gives Eq. (8) in equilibrium. Also, in the equilibrium
case, Eq. (12) corresponds to the detailed balance condition.
In the nonequilibrium case, while this still looks like the
detailed balance condition, we note that in general it is not
possible to define an effective temperature. Also note that p,
is independent of the choice of spectral function of the bath.

The explicit expression for population p, of bosons in
NESS, given by Eq. (13), is the central result that allows us to
go beyond linear response in this interacting bosonic problem.
The population, in itself, is a physically measurable quantity
and, as we show below, can be used to compute various other
physical observables.
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FIG. 1. The plot of population density (diagonal elements of
density matrix in eigenbasis of system Hamiltonian) of SSBH model
in equilibrium and under thermal bias with assymetric system-bath
coupling (I'y =0.4,T, = 1.6) and Q¢ = 1. The top and bottom
panels are for interchanged hot and cold baths. The three dotted
lines (in each plot) are the corresponding equilibrium distributions
(Ty =T, = 3.5), i.e., Eq. (8) for the values of y mentioned in the
legend. The deviation from equilibrium is more prominent in the
bottom panel. For large interaction strength (x = 4), only two levels
have non-negligible probability, like a spin-boson model. All energy
variables are measured in units of €.

In Fig. 1, we show the plots of population density p, of
the system under asymmetric system-bath coupling. Since
system-bath coupling is asymmetric, the out-of-equilibrium
distribution changes under interchange of hot and cold baths.
For high interaction strength, i.e., for x > Q,71,7>, only
the lowest two levels have non-negligible probability. In this
regime, we can truncate the energy spectrum in just two levels.
Then py and p; become

o 2t Delne(wo) + 11
Yioi Tell + 2np(wo)]’

|~ Zﬁzl 'ene(wo)
Stoi Tell + 2np(wo)]
Vx> Q,T1,T (15)

Lo

with wy = Q¢ + x. The above results are exactly the same as
obtained for a nonequilibrium spin-boson model (NESB) by
using the Redfield equation [44]. Thus for x > 0,7}, T, the
system becomes identical to the NESB. Since NESB is already
a well-explored problem, in the following, we will be mainly
interested in the physics beyond this regime. We also note that
for x = 0 the system reduces to a harmonic oscillator and, in
this case, the population pj =05 given in terms of an effective
temperature Tor = 1/Befr, i.€., pf > o e~ Peron | with
I"y coth(B20) + I'> coth(B,£20)

COth(,Befoo) = T+, , (16)
1

which is consistent with the finding in Ref. [51].

V. AVERAGE OCCUPATION AND ENERGY

First, we will look at the average occupation and energy
of the system. These quantities are measurable in current
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state-of-the-art experiments in quantum light-matter hybrid
systems [21,26]. The expressions for these are given by

o0

2
(N) = Zn,o,, = Z 1_[ 2213:1 Ceng(wp—1)

n=1 nl p=1 2ut=1 Fé(“e(wp71)+1)’

(Hg) = ZE,,pn == Z 1_[ Zz  Pene(wp—1)

—1 Delng(wp—1) + 1
(17)

with E,, = Qon + xn>.

In the NESB limit, these average quantities can be trivially
found from Eq. (15). They become (N) ~ p; and (Hg) ~
wpp1. We are interested in going beyond the NESB regime. So
let us look at the regime of high temperatures 71,7, > x,$2p.
First, we look at the normalization constant defined in Eq. (14).
which can be written as

Z=1+4) expy— loglf(@,1]

n=1 p=1

> Telng(w,) + 1]
Zz%:l Feng(wp)

Note that f(w,) > 1, and hence log[ f(w,)] > 0. It follows
that there is an energy level cutoff n* beyond which the energy
levels have negligible contribution to Z. For high-enough
temperatures, we can assume, Sw, < 1Vp < n*. Under this
condition, we can expand f(w,) to obtain (after some amount
of algebra),

f(a)p) =

(18)

w
wy, %1+Tp,
f(@p) 7

hence log[ f(w,)] ~ log(l + %) ~ L (19)

with
. Ty +IT
Fo 11Tt (20)
i+,
The contribution of terms n > n* is small and so their precise
form is irrelevant. Hence we get

n

. ad 1
Z~1+) exp —?Z[Qo+(2p — Dx]

n=I p=I

= Zexp [——(Qon-i-xn >] 1)

n=0

Thus, for 71,7, > o, x, the normalization constant has the
same form as the equilibrium partition function with the
effective temperature 7. This is consistent with the effective
temperature for harmonic oscillator (x = 0) given in Eq. (16).
For high temperatures, Ber = 1/7. It is also interesting to
note that for symmetric system-bath coupling, i.e., I'j =
I, the effective temperature is just the mean temperature,
T =T, = (T, + T»)/2. However, the description in terms of
an effective temperature is not possible for low temperatures,
except when y = 0.
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The high-temperature scaling of the normalization constant
can now be easily found by noting that, for high temperatures,
the summation can be converted into an integral. So we have

. * 1 |T
7~ / dx exp [—T(Qox + sz)} ~ ﬁ .
0 T 2\ x

The second step requires the condition 7' x >> Q2. under which

we see that the normalization constant scales as v/ 7/ x.

The above trick can be used to find high-temperature
scaling of the average of any operator which is diagonal in
the eigenbasis of the system Hamiltonian. The average of any
operator i which is diagonal in the eigenbasis of the system
has the form

> i loglf(w,- 1)]h(n)}
Z

Z by = {hO)+ 352 e

n=0
(23)

which, for 71,7, > Qy, x, exactly following the above argu-
ments, becomes

) [/ dx ex [ $2x ”" ]h(xy 24)

Using this, we readily obtain the high-temperature behavior of
(N) and (Hy),

. T . . | T
Ny~ [—, (Hs) =T+ (Qo+2x)/—. (25)
TX X

Thus (N) should show a data collapse for various x and vary

as a function of /7 /x, whereas (ﬁs)/x varies as 7 /x and
should show a data collapse for x > €.

To check the above high-temperature discussion and the
connection with equilibrium behavior, we now first define

T,

r= T, (26)
which quantifies the degree of deviation from equilibrium, with
r = 1 corresponding to equilibrium. To ensure that the system
is far from equilibrium, we keep r fixed at r < 1. We note
that if r is kept fixed, all the NESS results become a function
of only one temperature, say, 7;. We choose T)/wo, where
= Qo + X, as the scaling variable since it can be used both
in the highly interacting regime (where x =~ wy) and the linear
regime (where x = 0). Also in the NESB regime, with r fixed,
all NESS quantities vary as a function of Tj/wy, as can be

checked from Eq. (15)

In Fig. 2, we plot (N) and (Hs) /wy as a function of T} /wy.
Note that Eq. (17), and not any simplified expression, was
used to calculate (N) and (Hs) in the plots. The plots clearly
show data collapse over the entire temperature regime for
X > . Also important to note is the substantial effect of
small interaction strengths at high temperatures. The high-
temperature scaling behavior for small interaction strengths
is the same as that for large interaction strengths, but there
is no data collapse. This is because the condition 7 x > Q
means that, for small x, there are large subleading terms. The
low-temperature behavior matches with NESB. Since all these
observations are valid for any choice of r, it follows that they
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FIG. 2. The plot shows scaling behavior of average occupation
and average energy of the single-site Bose-Hubbard model for fixed
r=T,/T) = 1/3. Here wy = Qo + x. The dotted plots correspond
to the NESB model. For x > @ (¢ = 1), there is data collapse
over the entire range of temperatures. Even for small x(= 0.1),
there is substantial deviation from linear (¥ = 0) behavior. For high
temperatures, (N scales as VT ]wy, while, (Hg) scales as T. Here
the system-bath coupling is taken as symmetric: I'; =T, = 1. All
energy variables are measured in units of €2y.

also are all valid in equilibrium (i.e., r = 1). This is consistent
with previous results in Ref. [39].

The crucial point in the above discussion was to find that
high-temperature nonequilibrium results can be described via
an effective temperature 7. In the following, we will see that
even transport properties at high temperatures can be described
in terms of 7.

VI. CURRENTS

Now we look at the average transport properties of the
system; in particular, we compute particle and energy currents.
To calculate current, we look at the evolution equations of the
expectation values (N) and (Hy) of N and Hy. Since N and
Hj are diagonal in the eigenbasis of the system Hamiltonian,
we can directly obtain the evolution of their expectation values
from Eq. (10). This gives

A

d(N) dpy 2

dt
d(Hs) N
= Q il
yr Zn} on + xn)—
=& ) (@PuCo = @19 D). (28)

Collecting all terms depending on each bath separately, the
above equations can be written like continuity equations of the
formsd(N)/dt = I, — I,,d(Hs)/dt = J, — J», where I, (J;)
is the particle (energy) current flowing into the system from
£th bath. In steady state, I} = I, = I and J; = J, = J. The

0.012F %
~ 0.0

0.000

0.08 X4

[/

0.04

0.00 £

FIG. 3. Plot of particle (top panel) and energy (bottom panel)
currents as a function of interaction strength x for transport under
both forward and backward bias for Ohmic baths [s = 1 in Eq. (5)]
under asymmetric system bath coupling (I'y = 0.4,I", = 1.6). Here
the mean temperature 7,, = (T} + 7»)/2 = 5 for both plots. The two
black dotted lines in each plot correspond to the NESB currents
for AT = =£5. The currents from our model match the NESB
currents for large x. Particle current decreases with x, while energy
current behaves nonmonotonically with x . The forward and backward
currents do not match, thereby showing rectification effect. The
direction of rectification of energy current is reversed beyond a value
of x. It follows that at this value of x, the energy current does not
show rectification. The insets show the corresponding currents as a
function of AT = T} — T, forachosen valueof x = 3and 7,, = 5.1t
can be seen that / and J deviate from odd-function behavior, which is
a signature of rectification. Other parameters are ¢ = 0.1, w. = 1000.
All energy variables are measured in units of 2y, and time is measured
in units of Qal,

steady-state expressions for currents are as follows:

I = 82 an[cy(zl) - D,(,I)] = ann-’z(wnfl)a
n=0

n=1

[} 0
J = 82 an[wncy(ll) - wn—lD,(ll)] = anwn—lnz.(wn—])’
n=0 n=1

(29)
with

Lwn-1) = 52{ D DI (@n-DIni(@p—1) — ma(@n-1)] }

Cing(w,—1) + oo, —1)
(30)

The second steps of Eq. (29) have been arrived at from the first
steps after some simplification using the property of NESS
density matrix given in Eq. (12). Note that energy and particle
currents are not independent. But, in general, there is no way of
directly finding one current given the other and they can have
quite different behavior. Figure 3 shows variation of energy and
particle currents with interaction strength x for Ohmic baths
[s = 1 in Eq. (5)] for both forward (AT > 0) and backward
(AT < 0) biases. The mean temperature 7,, = (T} + T,)/2 is
kept fixed in the plots, and system-bath coupling is asymmetric
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(I'y #T'y). The plots immediately show us a number of
physical aspects of the system.

First, we note that the particle current decreases with
increase in interaction strength . This is expected because
of increasing repulsive interaction in the system. On the other
hand, energy current shows nonmonotonic behavior with x.
This is plausible because, while, with increasing x, the system
allows fewer particles to pass, higher-energy particles have a
larger probability to pass through the system.

Second, we see that there is rectification of both energy
and particle currents, since the particle and energy currents
for forward and backward biases do not match. This is to
be expected because the expressions for currents in Eq. (29)
are not antisymmetric under interchange of hot and cold
baths (i.e., nj <> ny) in general. It is only so under special
conditions. Two of such special conditions where there is no
rectification are when x = 0, i.e., when the system is linear,
and when ') = I'; (for any y). These can be easily checked
from the expressions for currents [Eq. (29)]. Hence, in general,
there will be rectification effects in both particle and energy
currents for x # 0 and I'; # I',. This is the generic behavior
in nonlinear (interacting) systems.

Third, as discussed above, for y > Q¢,77,T5, the system
behaves as NESB, and currents match with the NESB results.
But, the rectification in the NESB limit is less than that for
smaller interaction strengths. Thus rectification behavior is
nonmonotonic as a function of yx. Our findings therefore
suggest that a careful engineering of the system Hamiltonian
is required to get maximum rectification from a given system.

Finally, and most interestingly, for small interaction
strength, the rectification of energy current occurs in the
opposite direction to rectification of particle current. Also,
there is a nonzero value of x where the forward and backward
energy currents match, and hence there is no rectification.
At this point, the system rectifies particle current but not the
energy current. Beyond this value of yx, energy and particle
rectification occur in the same direction (see Fig. 3, bottom
panel).

In what follows, we investigate the behavior of particle and
energy currents and rectification in more detail along with their
scaling behavior.

A. Scaling behavior of currents

As we have seen with average system properties, transport
properties also behave differently for different relative values
of temperatures and interaction strengths. In the NESB regime,
x > Q0,T1,T», the currents are given by

~ &2 T2 T (wo)[n1 (wp) — na(wo)]
Ti[1 + 2ny(wo)] + Ta[1 + 2na(wp)]”
Jsp ~ wolsp, (31)

SB

with wyg = Qo + x. This is identical to the expression for
current previously derived for NESB [44]. Note that in the
NESB regime, energy current is proportional to particle
current. This is because, in this limit, transport is allowed
through transfer of exactly one particle through the system,
and that particle has energy €2y + x. This is not valid beyond
the NESB regime.
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Now, let us look at the high-temperature regime, 77,7, >
X ,$20, where the NESB results are not valid. We note that the
expression for the currents in Eq. (29) has the same form as
Eq. (23). So, the high-temperature trick in Eq. (24) can be
readily applied to obtain

- 2 o X x.xz
[T~ | 2K / dxe™ ™7 (x + DI(w,),
2T 0
[ 2x /Ood S DA (@)
L — xe T (x Wx)==">
72T 0 T

] 5 oo e AT
JT>>Q(),X ~ %/‘ dxeiﬂu ; ()C + l)waj(wx)T’
7T Jo T

(32)

with A = stle/(Fl +I';) and AT = T, — T>. In the sec-
ond step above, we have expanded the Bose distributions in
Z(wy) [Eq. (30)] for high temperatures to obtain Z(w,) ~
AJ(w,)AT/T. Using the general form of spectral function
given in Eq. (5), and after some algebra, we obtain

. AAT ™ |T
IT>>Q();X ~ K(S) = / dyliy_ée_v< _y + 1)
ﬁT 0 X

x(Q+x +2 Txy)f},

JT>R0X ~ K (s 4 1), (33)

For the choice of spectral function in Eq. (5), we can relate
particle and energy currents via the function K(s). We now
look at the properties of the function K (s). First, we look at
the regime 7 >> x > . In this regime, K (s) becomes

K A x <Z >
XIAT  Jr T x’s ’
where  F(z,s) =/ dy[y_%e_y(«/a-i- D +2/zy)'].
0
(34)

This then gives

~ s—1

(s) il — ’ r il VT>x>Q
~ S =1, )
xSTIAT JT o\ X 2 X 0

(35)

where ['(x) is the Gamma function. We immediately
make the following observations. First, for 71,7, > x >
Qo, K(s)/(x* 'AT) varies as a function of T/yx. Thus,
I/(x*""AT) and J/(x*AT) for various values of x should
show a data collapse when plotted with 7'/ .

Second, we see K(1) ~ AAT. It follows that for Ohmic
baths [s = 1in Eq. (5)] at high temperatures, particle current is
independent of the interaction strength x and one gets a linear-
response-like relation I &~ AAT, even for large temperature
bias. This is consistent with the high-temperature result for
a harmonic oscillator (x = 0). However, the energy current

J ~ m AT and shows the effect of interaction. On the
other hand, for constant bath (s = 0), the energy current J
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always satisfies the linear-response-like relation, whereas the

particle current is suppressed by a factor v/ x /7.
Third, we note that the quantity J /() I) varies as a function

of T/x and scales as /T /x for any s,

I FT s+ 2\/f (s + DI(5!)
xI — F(T/x.s) x  sT(3)
YT, T > x> Q. (36)

In the other regime, 71,7, > ¢ > x, the scaling behavior is
the same, but the data collapse is difficult to see because of
large subleading terms.

Note that I /AT and J/AT actually give the beyond linear
response analog of particle and energy conductance. For linear
response, T = T in the right-hand side of Eq. (34), T being
the equilibrium temperature. Then, the above discussion gives
the high-temperature scaling of conductance.

PHYSICAL REVIEW A 94, 052134 (2016)

In Fig. 4, we show the scaling behavior of I/AT and J/AT
as a function of 77 /wp. As in Sec. V, we have chosen T} /w, as
the relevant scaling variable and have kept r fixed at r < 1 to
ensure beyond linear response regime. r — 1 gives the linear
response conductance. The plots in Figs. 4(a) and 4(b) are then
the beyond-linear-response equivalent of temperature scaling
of conductance. Note that Eq. (29) (and not any simplified
expression) was used to calculate currents. The plots show the
scaling behavior discussed above. The plots for y > ¢ show
data collapse over the entire range of temperatures. Also, the
low-temperature behavior is given by NESB.

In Fig. 4(a), we plot I/AT for fixed r for Ohmic baths
[s = 1inEq. (5)]. We see that, for NESB, this quantity behaves
nonmonotonically with temperature, while for our nonequi-
librium SSBH model, this quantity monotonically increases
with temperature. In fact, the deviation from NESB result
starts precisely at the point where the NESB result reaches
a maximum. Similar behavior is observed for J/(AT wp) in
Fig. 4(b). We conclude that the nonmonotonic behavior of
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—————————— ITEET B e i e e e e o e e e
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X
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FIG. 4. Panel (a) and (b) show the scaling behavior of I /AT and J /(AT w,) for Ohmic baths [s = 1in Eq. (5)] and for fixed r = T2 =

VI wo

The

dotted lines show the corresponding NESB result. The horizontal dashed lines in panel (a) and panel (b) correspond to I /AT = J / (A Ta)o) =
A = &’I' ', /(T'| + TI'), which is the high-temperature result for the harmonic oscillator (x = 0). For x > Q4 (¢ = 1), there is a data collapse
for all temperatures. The NESB result matches with the nonequilibrium SSBH model for small temperatures. At higher temperatures, the NESB
result shows nonmonotonicity, which is not seen in the nonequilibrium SSBH model which demonstrates a stark difference between the two
models. In panel (a), /AT approaches a constant value at high temperatures irrespective of the strength of interaction strength. In panel (b),
even for small interaction strength (y = 0.1), substantial deviation from linear (¥ = 0) behavior is noticeable. Panel (c) shows data collapse of
J /(1 wy) for all temperatures for x > 2. Irrespective of choice of bath spectral function and for fixed r(= %), J/(Iwy) shows a data collapse
and goes as ~ /T /wy for T} > wy. All observations are also valid in the linear response regime (i.e., r & 1) and give the temperature scaling
of conductance. Other parameters are as follows: ¢ = 0.1, . = 1000, 'y = I'; = 1. All energy variables are measured in units of £, and time
is measured in units of ;.
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conductance of NESB, both at and beyond linear response,
comes as a result of truncation of the energy spectrum and
is not observed when all energy levels are considered. This
demonstrates a major difference between the high-temperature
behavior of nonequilibrium SSBH model and the NESB
model.

Also, it follows from Fig. 4(a) that, for Ohmic baths [s = 1
in Eq. (5)], at high temperatures the particle current (for fixed
AT) becomes independent of both interaction strength and
the effective temperature. Figure 4(b) shows a considerable
deviation from linear behavior, even for small interaction
strengths.

Figure 4(c) shows that, consistent with our previous
discussion, irrespective of the choice of bath spectral function,
the quantity J/({wy), for x > 29, shows a data collapse and
goes as ~/Tj /wy for T} > wy (with r kept fixed).

Having discussed the scaling behavior of currents in detail,
we now look into another important property of interacting
systems, the rectification of current.

B. Rectification

Rectification of current is a generic behavior of nonlinear
(interacting) systems in nonequilibrium. As we have seen, in a
nonequilibrium setup, two kinds of currents through the system
can be defined, the particle current and the energy current, and
their rectification behavior can also differ considerably. To
our knowledge, there has been no previous work where both
particle and energy current rectification for a bosonic nonlinear
system has been investigated. Also, note that rectification can
only be observed beyond a linear response regime.

Since rectification occurs only for asymmetric system-bath
coupling, we use the following definition to describe the degree
of asymmetry:

Fi=Al-y), Ta=Ad+y), (37

where 0 < y < 1 is dimensionless. Given a value of asymme-
try parameter y, we define a measure of rectification as

I(AT,y) + I(=AT,y)

] =

s

I(AT,y =0)
_ J(AT,y)+ J(=AT,y)
Ry = J(AT,y =0) (38)

R; and R; are the particle and energy current rectifications.
This measure of rectification is as used in Refs. [44,45]. Note
that, by this definition, rectification is positive if higher current
flows when the cold bath is more strongly coupled to the
system. Also, R; and R; are zero when y = 0,1. In our
following discussion of rectification, we will primarily confine
ourselves to the Ohmic baths [s = 1 in Eq. (5)].

The variation of R; and R; with y is shown in Fig. 5.
Irrespective of the strength of interaction strength, we notice
that the maximum rectification occurs when y =~ 0.6. The
figure also shows that both particle and energy rectifications
behave nonmonotonically with x. For small x, R; is negative
while R; is positive, hence, the direction of energy rectification
is opposite to particle rectification. For large y, the rectification
is the same as that obtained from NESB. In the NESB regime,
particle and energy rectifications are the same, because particle

PHYSICAL REVIEW A 94, 052134 (2016)
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FIG. 5. The plot shows particle rectification R; (top) and energy
rectification R; (bottom) as a function of asymmetry parameter y
for various values of interaction strength x and Ohmic baths [s = 1
in Eq. (5)]. R; and R, are as defined in Eq. (38). The black dotted
line corresponds to NESB. The rectfications become maximum when
y =~ 0.6. Also, rectification of both particle and energy currents show
a nonmonotonic change with x. Rectification for large x matches
with the NESB result. Energy rectification changes direction with
increase in y. Other parameters are as follows: ¢ = 0.1, w. = 1000.
All energy variables are measured in units of €, and time is measured
in units of ;.

current is proportional to energy current. All these observations
are consistent with our discussion of Fig. 3.

To concisely investigate the rectification behavior of the
system as a function of the interaction strength and the
temperatures, we again resort to the scaling variable T} /wy
with 7 fixed at r < 1. The plots of R; and R, as a function
of Tj/wy for fixed r for Ohmic baths are shown in Fig. 6. We
readily make the following observations.

First, for x < €, rectification is small. For y > €, there
is data collapse as expected from the scaling of currents.

Second, where NESB matches the nonequilibrium SSBH
model, there is small rectification. This can be understood from
expression for currents in NESB regime given in Eq. (31).
NESB result holds when x > Qq,T),T,. Therefore, in this
regime wy > T1,77. So the Bose distributions in Eq. (31)
are exponentially small. Hence, 1+ n(wp) ~ 1. With this
approximation, the expressions of currents in Eq. (31) become
antisymmetric under interchange of hot and cold baths. Thus
the NESB regime of the SSBH model gives very small
rectification. Maximum particle rectification R; is reached
when wy < T}, which is outside this regime.

Third, after the maximum, R; gradually approaches zero
with increase in 77/wp. This is expected because, as we
have seen before, at high temperatures, for Ohmic baths, the
particle current eventually has the form, I = AAT, which
is antisymmetric under interchange of hot and cold baths.
On the other hand, the corresponding NESB rectification (the
dotted line in Fig. 6) continues to increase with 7 /wy, until
it saturates to a high value. Thus, as an effect of having all
energy levels, and not truncating at two levels, the particle
rectification is suppressed at high temperatures.
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FIG. 6. The plot shows rectification of particle current (top
panel) and of energy current (bottom panel) of SSBH model out-of-
equ111br1um for fixed r = Tz = 1 , for Ohmic baths [s = 1 in Eq. (5)].

= Qo+ x. R, and R, are as defined in Eq. (38). The vertical
dashed line indicates the positions of 7}/wy = 1. The dotted plots
correspond to the NESB model. For x > g, (o = 1), there is
data collapse. Both R; and R, has a maximum for wy < 7. R; =0
for wy &~ Ty. R, shows reversal in direction of rectification beyond
this point. Other parameters are as follows: ¢ = 0.1, w, = 1000. All
energy variables are measured in units of €2 and time is measured in
units of ;.

Fourth, and most interestingly, energy rectification R;
also has a peak for wy < T;. However, R; =0 at wy ~ T).
At this point, the particle rectification is still positive. So
the system behaves as a particle rectifier and not as an
energy or heat rectifier. Beyond that point, R; changes sign.
Thus the direction of rectification is reversed. With further
increase in T /wyp, energy rectification continues to grow in
the reversed direction. Therefore, at high temperatures, the
heat rectification occurs in the opposite direction to particle
rectification and continues to grow as temperatures of both hot
and cold baths are increased.

Note that all the above observations are for Ohmic baths
[s = 1 in Eq. (5)]. Finally, we discuss the case of non-Ohmic
baths. For super-Ohmic baths (i.e., for s > 1), both particle and
energy currents show a reversal of direction of rectification.
The reversal of energy rectification for super-Ohmic bath
occurs at a lower value of Tj/w( than that for the Ohmic
bath. For sub-Ohmic baths (i.e., for s < 1), the reversal of
energy rectification occurs at higher values of 7j/wy than
that for the Ohmic bath. The particle rectification does not
show reversal for sub-Ohmic baths. For the constant bath,
s = 0, neither particle nor energy rectification shows reversal.
However, in all cases, both particle and energy rectifications
vary nonmonotonically with the interaction strength.

VII. TIME DYNAMICS

Until now, we have discussed the properties of the NESS of
the out-of-equilibrium SSBH model. In this section, we look at
the transient time dynamics of the various physical quantities
we have so far calculated in NESS.

PHYSICAL REVIEW A 94, 052134 (2016)

To do this, we revert to the equation for time evolution of
on» Eq. (10). The equation can be rewritten and solved in the
form

ap(1)

ot
where § is an infinite-dimensional column vector contain-
ing diagonal elements of the density matrix and M is a

infinite-dimensional non-Hermitian square matrix containing
the entries of Eq. (10). M has the form

= —2Mp0) = p(t) =e M p0),  (39)

Co+ Dy —D 0 ce e e
—Cy Ci+ Dy —D, 0o ......
M=1 o ~Cl G+ D; —D; 0 . (40)

where C, and D, are as defined in Eq. (11). Note that the
matrix M has the form of a Markov matrix. The sum of each
column is zero (Dy = 0 by definition). This corresponds to
the fact that the trace of the density matrix is preserved, i.e.,
Zn Pn = 1

To calculate the time dynamics, we choose an initial state
with no particles in the system, i.e., initially, pp(0) = 1 and
on(0) = 0Vn # 0. The Eq. (39) is used to numerically obtain
the time evolution. Even though the matrices involved are
infinite dimensional, for given interaction y and temperatures
T, and T, only a finite number of levels, determined by the
ratio of the temperatures and the interaction, effectively con-
tribute. Thus, starting from a finite matrix size, a convergence is
reached as the matrix size is increased. Smaller interaction and
higher temperatures require larger matrix sizes. A subtle point
to note is that if the matrix M is truncated at any finite size,
say, p, then the constraint that the sum of each column should
be zero is not satisfied for the pth column, unless C, = 0.
Consequently, the matrix M can be truncated at size p only if
C, < D,.

Since we are using Redfield equation under Born-Markov
approximation to obtain transient time dynamics, we need to
be careful in choosing the observation times. This is because,
as mentioned in Sec. III, Markov approximation is valid only
when observation times are much larger than the time for
decay of bath correlation functions. We have made some
estimates (similar to that in Ref. [52]), which indicate that
the bath relaxation times are indeed much smaller than the
observational transient times of our interest.

Time dynamics of physical quantities (N@)), (H,(1)),
1(t), J(¢t) for Ohmic baths [s = 1 in Eq. (5)] are shown in
Fig. 7, where I;(t) and J,(¢) are, respectively, particle and
energy currents from the left bath into the system. (Before
reaching steady state, the currents from the left and right baths
are not the same.) Similar time dynamics, but for bosonic
system of two sites without interactions, was calculated in
Ref. [52]. We observe that, unlike the two site noninteracting
case in Ref. [52], here, the currents show no oscillations.
More interestingly, we also observe that the time to reach
steady state, called # hereafter, decreases with increase in the
interaction. In the following, we investigate the dependence of
tss on setup parameters more carefully.

We note from the solution of §(¢) in Eq. (39) that time can
be scaled as &2¢. It follows that zi o< £~2. Thus, the time to
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FIG. 7. The figure shows time dynamics of (a) average occupa-
tion, (N(7)); (b) average energy, (H,(t)); (c) particle current from
left bath, /,(¢); and (d) energy current from left bath, J(¢), for
various values of interaction strength and for a temperature bias
T, =4 and T, = 2 for Ohmic baths [s = 1 in Eq. (5)]. All physical
quantities demonstrate a nonunitary evolution towards a steady state.
The approach to steady state is faster for higher interactions. Since
physical quantities plotted here are diagonal in the eigenbasis of the
system Hamiltonian, none of them show oscillations with time. Other
parameters are Q2o =1, ¢ =0.1, ', =04, I'; = 1.6, w. = 1000.
All energy variables are measured in units of €2y, and time is measured
in units of Q.

reach steady state increases as system-bath coupling becomes
weaker.

It is also clear from Eq. (39) that the steady state is given
by the eigenvector of the matrix M corresponding to zero
eigenvalue. The fact that a unique steady state is reached in long
times then implies that all other eigenvalues of the M have a
positive real part. Interestingly, we have found in our numerical
computation that the eigenvalues of M are all real (and hence
no oscillations in time). The smallest nonzero eigenvalue then
gives a measure of ti. So, we define

1
82)\1
with A being the smallest nonzero eigenvalue of M.

Even though 7, cannot be calculated for all setup parameters
analytically, in two limiting cases, analytical results can be
obtained. The first case corresponds to the NESB regime

x > Q0,T1,T,. In this case, C; < Dj, only two levels
effectively contribute and matrix M has the form

M~ [ Co _D‘}. (42)

fss = . (41)

—Cy Dy
The nonzero eigenvalue of M is

2
ho=[]7" & Co+ Dy =) Je(@o)[2ne(wo) + 11. (43)

(=1

The time to reach steady state therefore also depends on the
temperatures of the baths. However, for large wy = Q¢ + x,
the Bose distributions are exponentially small. Thus, for
X > Qo,T1,T, and for a general bath of the form given in
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Eq' (5)3

1
N e A T @
which is independent of the temperatures of the baths. We also
see that, for constant baths [s = 0in Eq. (5)], ¢ is independent
of interaction strength. For other baths, t; decreases with
increase of interaction strength as a power law.

The second case where t,; can be analytically calculated
corresponds to the linear system, y = 0. In this case, C,
does not decay with n [Eq. (11) for x = 0] and hence the
matrix M cannot be truncated at any finite size. So, the above
method of finding # fails. However, since, in this case, we
have a noninteracting system, we can find 75 directly from
the evolution equation for (N(z)). The evolution equation for
(N (7)) can be obtained from Eq. (27) by setting x = 0. The
resulting equation can be written and solved in the form

d(N . 2 2
o dt(t)) ==X (N®) ) Te(Q0) + & Y Te(Q)ne()
=1 (=1
= (K1) = (N(0)) — Nge " T J@0) 4 N 45)

with Ny = [ 3¢, Je(Q0)ne(Q0))/[ X¢_; Je(Q0)] being the
NESS occupation. From above equation, it is clear that for
x = 0, the #y is given by

1
YR ()

This is again independent of the temperatures of the baths.

(40)
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FIG. 8. The figure shows a log-log plot of time to reach NESS,
tis [as defined in Eq. (41)] as a function of interaction strength x
for Ohmic baths [s = 1 in Eq. (5)]. The horizontal dash-dotted line

-1
corresponds to [€? Z?zl Je(R20)] , which is the ¢, for the linear

(x = 0) system. For large x, t, ~ [e2x ([} + Fz)]il, and this is
indicated by the dashed line. For intermediate y, #,; depends on the
temperatures of the hot and cold baths. Other parameters are 2y =
1,e=0.1,T; =04, I' = 1.6, w. = 1000. All energy variables are
measured in units of €2, and time is measured in units of ;.
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Except for these two limiting cases, t,; needs to be found
numerically using the definition Eq. (41). Figure 8 shows
log-log plot of numerically obtained #, as a function of
interaction strength y for Ohmic baths for two different
choices of temperatures of hot and cold baths. It is seen that,
except for the limiting cases, t;; depends on the temperatures
of the baths. The limiting cases show the behavior discussed
above.

VIII. CONCLUSION

We have investigated a system consisting of a single
bosonic site with Bose-Hubbard interaction weakly coupled
to two bosonic baths at different temperatures. We have
used the Redfield QME method to obtain analytical results
beyond linear response regime. Below, we summarize our main
findings and their potential applications.

We have found an analytical result for the population
density (diagonal elements of the density matrix in the
eigenbasis of system Hamiltonian) of the system in NESS
[Eq. (13)]. This has further allowed us to find various physical
observables like average occupation and energy, as well as
the particle and energy currents in NESS. We have then
analytically found interesting scaling behavior of the physical
observables. Our main finding in this respect is that the high-
temperature behavior of the system can be described in terms
of an effective temperature [Eq. (20)]. Then, it follows that,
with the ratio r of the temperatures of cold and hot baths fixed,
there occurs a data collapse for various strengths of interaction
X, when physical observables of the system are plotted in
terms of the scaling variable T /wq (Figs. 2, 4, and 6). The
scaling behaviours hold for a general choice of bath spectral
functions of the form given in Eq. (5). We have also found
very interesting rectification behavior of the system. The most
interesting finding is that, for Ohmic and sub-Ohmic baths
[0 < s < 1in Eq. (5)], the energy current shows a reversal in
the direction of rectification (Fig. 6). It follows that there is
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a nonzero strength of interaction strength, (x ~ T — Q, for
Ohmic baths), where energy or heat rectification is zero. At
this point, the system behaves as a particle rectifier but not
as a heat rectifier. For super-Ohmic baths [s > 1 in Eq. (5)],
both particle and energy currents show reversal in direction
of rectification. For constant baths [s = 0 in Eq. (5)], there
is no change in direction of rectification for both particle
and energy currents. Therefore careful engineering of baths
can lead to various interesting rectification behavior of the
system. Such phenomena can be potentially used to create
quantum devices, such as optical diodes. Reversal of direction
of thermal rectification of a quantum system has also been
previously theoretically seen for a Heisenberg spin chain out
of equilibrium [53]. Further, we have computed nonunitary
time dynamics of various physical quantities (Fig. 7). We
found that, except for constant baths, the time to reach steady
state is shorter for higher interactions and higher system-bath
couplings. For constant baths, with increase in interaction, the
time to reach steady state approaches a constant independent
of the strength of interaction. For large y, the time to reach
steady state goes as ty5 ~ [€2 )(S]_1 for a general choice of bath
spectral functions of the form given in Eq. (5). All our results
also are consistent with the linear, y = 0 (harmonic oscillator),
case, as well as the NESB, x > Q,T},T5, case.

Our results are experimentally relevant in quantum hybrid
systems, where a single-site Bose-Hubbard model can be
realized, as well as in molecular junction systems, where our
setup describes a model for anharmonic junctions. Future work
includes going to a strong system-bath coupling regime, as
well as to generalize to nonequilibrium interacting systems of
more than one site, such as the nonequlibrium Bose Hubbard
chain [54-57] and the Jaynes-Cummings Hubbard model [58].
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