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Brassard et al. [Phys. Rev. Lett. 96, 250401 (2006)] showed that shared nonlocal boxes with a CHSH (Clauser,
Horne, Shimony, and Holt) probability greater than 3+√

6
6 yield trivial communication complexity. There still

exists a gap with the maximum CHSH probability 2+√
2

4 achievable by quantum mechanics. It is an interesting
open question to determine the exact threshold for the trivial communication complexity. Brassard et al.’s idea is
based on recursive bias amplification by the three-input majority function. It was not obvious if another choice of
function exhibits stronger bias amplification. We show that the three-input majority function is the unique optimal
function, so that one cannot improve the threshold 3+√

6
6 by Brassard et al.’s bias amplification. In this work,

protocols for computing the function used for the bias amplification are restricted to be nonadaptive protocols or
a particular adaptive protocol inspired by Pawłowski et al.’s protocol for information causality [Nature (London)
461, 1101 (2009)]. We first show an adaptive protocol inspired by Pawłowski et al.’s protocol, and then show
that the adaptive protocol improves upon nonadaptive protocols. Finally, we show that the three-input majority
function is the unique optimal function for the bias amplification if we apply the adaptive protocol to each step
of the bias amplification.
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I. INTRODUCTION

Bell showed that quantum mechanics allows correlations
that cannot be generated by classical physics [1]. Clauser,
Horne, Shimony, and Holt (CHSH) found simpler constraints
on correlations which could be violated in quantum mechanics,
but are always satisfied in classical physics [2], and which in
fact characterize the set of correlations generated by classical
physics on the binary setting [3]. Apart from the concrete
mathematical description of quantum mechanics, we can only
consider abstract statistical behavior realized by quantum
mechanics. A nonlocal box is an abstract device which
represents statistical behavior of separable measurements
on a possibly entangled state in quantum mechanics and
superquantum theory as well. A nonlocal box is assumed to
be shared by two parties, Alice and Bob. A nonlocal box
has input ports and output ports on both sides. A nonlocal
box is specified by the conditional probability distribution
p(a,b | x,y) representing the probability of outputting a to
Alice and b to Bob when Alice and Bob input x and y into
the nonlocal box, respectively. Here, all of x, y, a, and b are
assumed to be either of 0 or 1. They cannot communicate
by using the nonlocal box since it satisfies the no-signaling
condition ∑

b∈{0,1}
p(a,b | x,0) =

∑
b∈{0,1}

p(a,b | x,1),

∑
a∈{0,1}

p(a,b | 0,y) =
∑

a∈{0,1}
p(a,b | 1,y).

*mori@c.titech.ac.jp

The CHSH probability PCHSH is a measure of the nonlocality
of the nonlocal box, defined by

PCHSH := 1

4

∑
x,y

∑
a,b

a⊕b=x∧y

p(a,b | x,y).

While the maximum CHSH probability given by classical
physics is PCHSH = 3/4, that for quantum mechanics is
PCHSH = 2+√

2
4 [4]. On the other hand, Popescu and Rohrich

showed that there exists a nonlocal box, called the PR box, with
PCHSH = 1 [5]. Hence, it is a natural question why quantum
mechanics cannot achieve a CHSH probability greater than
2+√

2
4 . Van Dam showed that if Alice and Bob share an

unlimited number of PR boxes, they can compute an arbitrary
function f (x,y) only by sending 1 bit to each other where x

and y are n bits owned by Alice and Bob, respectively [6].
This explains why nature does not allow PCHSH = 1, since
we strongly believe that trivial communication complexity
must not be allowed by nature. Furthermore, Brassard et al.
showed that a nonlocal box with PCHSH > 3+√

6
6 yields trivial

communication complexity in a probabilistic setting [7]. It has
not been known whether or not the communication complexity
is trivial when the CHSH probability is between 2+√

2
4 and

3+√
6

6 . Later, Pawłowski et al. completely characterized the

quantum CHSH probability 2+√
2

4 by using a principle called
information causality [8]. However, it is still interesting to de-
termine the exact threshold of PCHSH for trivial communication
complexity.

In this paper, we show that trivial communication complex-
ity below 3+√

6
6 cannot be proved by Brassard et al.’s technique.

Their technique is based on recursive bias amplification
from exponentially small bias to constant bias by using the
three-input majority function Maj3. It was not obvious that
Maj3 is the best choice for the bias amplification. In this paper,
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we show that Maj3 is the unique optimal function for the bias
amplification.

Theorem 1. The three-input majority function is the unique
optimal function for Brassard et al.’s technique of bias
amplification using nonlocal boxes. Hence, one cannot obtain
a threshold for trivial communication complexity smaller than
3+√

6
6 by Brassard et al.’s technique.
In Brassard et al.’s protocol, the three-input majority

function Maj3 is computed by a nonadaptive protocol; i.e.,
inputs for nonlocal boxes are independent of outputs of other
nonlocal boxes. In this work, we introduce an adaptive protocol
inspired by [8], and show that the adaptive protocol is no
worse than an arbitrary noadaptive protocol. Then, we show
Theorem 1 for generalizations of Brasssard et al.’s protocol
in which an arbitrary Boolean function is used for the bias
amplification in place of Maj3, and is computed by the
adaptive protocol. In this work, protocols for the computation
of the function corresponding to Maj3 are restricted to be
nonadaptive protocols or the adaptive protocol inspired by
[8]. For the proof of Theorem 1, we use the Fourier analysis
of Boolean functions developed in theoretical computer
science [9].

II. PRELIMINARIES

A. XOR protocol and nonlocal boxes

We introduce some notions and notations.
Definition 2. For a Boolean function f : {0,1}n ×

{0,1}n → {0,1}, the XOR protocol with bias ε is a process
of computations by Alice and Bob in which Alice and Bob
compute a and b, respectively, by using nonlocal boxes and
shared random bits but without any communication, such that
a ⊕ b = f (x,y) with probability (1 + ε)/2.

There is a simple XOR protocol with bias 2−n for an
arbitrary function [7].

Lemma 3. There is an XOR protocol with bias 2−n for
arbitrary function f (x,y) without using nonlocal boxes.

Proof. Let r ∈ {0,1}n be shared uniform random bits. Let
a = f (x,r). Let b = 0 if r = y and b = r ′ otherwise, where
r ′ ∈ {0,1} is Bob’s private uniform random bit. Then, a ⊕ b =
f (x,y) with probability 1

2 + 1
2n+1 . �

Definition 4. The nonlocal box is said to be isotropic if∑
a,b

a⊕b=x∧y

p(a,b | x,y)

does not depend on x and y and if the marginal distributions
for a and b are uniform for any x and y.

It was shown in Refs. [10,11] that the isotropic nonlocal
box can be simulated by an arbitrary nonlocal box with the
same CHSH probability.

Lemma 5. Using an arbitrary given nonlocal box, the
isotropic nonlocal box with the same CHSH probability can
be simulated.

From Lemma 5, in this study we assume that all nonlocal
boxes are isotropic. Forster et al. showed that non-isotropic
nonlocal boxes can be used for the nonlocality distillation,
which is the amplification of the CHSH probability [12]. Brun-
ner and Skrzypczyk showed that there exists a nonisotropic
nonlocal box with PCHSH = 3/4 + ε for arbitrary small ε > 0,

which allows the simulation of a nonlocal box arbitrarily close
to the PR box [13]. Of course, such a nonlocal box cannot be
simulated in quantum mechanics even if the CHSH probability
of the nonlocal box is achievable by quantum mechanics. In
this study, we do not consider the nonlocality distillation,
but consider the XOR protocol using isotropic nonlocal
boxes.

B. Fourier analysis

Fourier analysis is the main mathematical tool in this work.
Definition 6. Any Boolean function f : {+1,−1}n →

{+1,−1} can be represented by a polynomial on R uniquely:

f (x) =
∑
S⊆[n]

f̂ (S)
∏
i∈S

xi

where [n] := {1,2, . . . ,n}. Here, (f̂ (S))S⊆[n] are called the
Fourier coefficients of f . When we consider the Fourier coef-
ficients of Boolean function f : {0,1}n → {0,1}, we regard f

as the function from {+1,−1}n to {+1,−1}. From Parseval’s
identity, the sum of squares of the Fourier coefficients is 1.

Let supp(f̂ ) := {S ⊆ [n] | f̂ (S) 	= 0}. For S ⊆ [n], let 1S

be a vector on F2 of length n such that ith element of 1S is
1 iff i ∈ S. Let dim(f̂ ) be the Fourier dimension of f which
is the dimension of linear space on F2 spanned by {1S | S ∈
supp(f̂ )}.

C. One-way communication complexities

We introduce notions on the one-way communication com-
plexity of f : {0,1}n × {0,1}n → {0,1}. Let Mf be a 2n × 2n

matrix whose (x,y) element is f (x,y). Let D→(f ) be the one-
way communication complexity of f from Alice to Bob, which
is the minimum m such that there exist functions s : {0,1}n →
{0,1}m and h : {0,1}m × {0,1}n → {0,1} satisfying the identity
f (x,y) = h(s(x),y). Similarly, let D←(f ) be the one-way
communication complexity of f from Bob to Alice. The
one-way communication complexities can be characterized
by the number of distinct rows and columns of Mf , i.e.,
D→(f ) = �log2 nrows(Mf )� and D←(f ) = �log2 ncols(Mf )�,
where nrows(Mf ) and ncols(Mf ) denote the number of distinct
rows and the number of distinct columns of Mf , respectively.
We also define

D⊕
→(f ) := min

A:{0,1}n→{0,1}
D→(f (x,y) ⊕ A(x)),

D⊕
←(f ) := min

B:{0,1}n→{0,1}
D←(f (x,y) ⊕ B(y)).

Here, D⊕
→(f ) is the minimum number of bits Alice has to send

to Bob such that Alice can compute a and Bob can compute b

satisfying a ⊕ b = f (x,y).

D. Other notations

For odd n, let Majn : {0,1}n → {0,1} be the majority
function on n variables. For even n, let Majn be the set
of majority functions on n variables where the definitions
for the tie cases are arbitrary. Since there are ( n

n
2

) tie cases,
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|Majn| = 2
( n

n
2

)
for even n. Note that a function f : {0,1}2k →

{0,1} which ignores one of the 2k input variables and outputs
the majority of the other 2k − 1 variables is a member of
Maj2k . Finally, let δ := 2PCHSH − 1, i.e., PCHSH = 1+δ

2 . Here,
we call δ the bias of the CHSH probability.

III. BRASSARD et al.’s PROTOCOL

Brassard et al.’s basic idea is bias amplification by Maj3.
They showed that Maj3 can be computed by using two PR
boxes. Here, we give a simple argument showing that two
PR boxes are sufficient to compute Maj3(x ⊕ y). The F2-
polynomial representation of the three-input majority function
is Maj3(z1,z2,z3) = z1z2 ⊕ z2z3 ⊕ z3z1. Hence, one obtains
the representation

Maj3(x1 ⊕ y1,x2 ⊕ y2,x3 ⊕ y3)

= (x1 ⊕ x2)(y2 ⊕ y3) ⊕ (x2 ⊕ x3)(y1 ⊕ y2)

⊕(x1x2 ⊕ x2x3 ⊕ x3x1) ⊕ (y1y2 ⊕ y2y3 ⊕ y3y1). (1)

The following is the protocol for computing a and b. Alice and
Bob can compute their local terms Maj3(x) := x1x2 ⊕ x2x3 ⊕
x3x1 and Maj3(y) := y1y2 ⊕ y2y3 ⊕ y3y1 without communi-
cation, respectively. For the each of first two terms in Eq. (1),
they use the PR box. For the first PR box, Alice and Bob
input x1 ⊕ x2 and y2 ⊕ y3 and obtain a1 and b1, respectively.
Similarly, for the second PR box, Alice and Bob input x2 ⊕ x3

and y1 ⊕ y2 and obtain a2 and b2, respectively. Then, Alice
and Bob output a := Maj3(x) ⊕ a1 ⊕ a2 and b := Maj3(y) ⊕
b1 ⊕ b2, respectively. This is the XOR protocol without error
using two PR boxes. Von Neumann showed that the probability
of correctness of computations sufficiently close to 1/2 is
amplified by noisy Maj3 iff the computation of Maj3 succeeds
with probability greater than 5/6 [14]. Hence, the threshold
of the above protocol is given by the condition P 2

CHSH + (1 −
PCHSH)2 > 5/6 ⇐⇒ PCHSH > 3+√

6
6 . Under this condition,

the iterative applications of Maj3 to independent samples
obtained by the protocol in Lemma 3 give a constant bias.

Brassard et al. invented the above elegant protocol, and
showed that if PCHSH > 3+√

6
6 , there exists an XOR protocol

with constant bias for arbitrary function f . However, there is
no reason why Maj3 should be used for the bias amplification.
We can use arbitrary functions, e.g., the majority function on
five variables, in place of Maj3. Of course, on a given number
n of input variables, the majority functions Majn minimize
the threshold value, corresponding to 5/6 for Maj3. However,
nonmajority functions may require a smaller number of non-
local boxes than the majority functions. Hence, nonmajority
functions are also candidates for the generalization of Brassard
et al.’s protocol. We have to generalize two quantities “2” and
“5/6” in the case of Maj3, which are the number of nonlocal
boxes needed for the computation and the threshold for the
probability of the correctness of computation of the function
for the bias amplification, respectively. In this work, these two
quantities are clearly characterized.

Although we can consider a general function f : {0,1}n ×
{0,1}n → {0,1} in place of Maj3(x ⊕ y), in this study, we

restrict f to be an XOR function, i.e., f (x,y) = g⊕(x,y) :=
g(x ⊕ y) for some g : {0,1}n → {0,1}. It seems to be a
natural restriction since the inputs x and y have meaning
only when their XOR is taken. Linden et al. showed that
quantum mechanics has no advantage on the XOR protocol for
computation of the XOR function when the input distribution
is also an XOR function [15].

IV. NONADAPTIVE PR-CORRECT PROTOCOLS

Brassard et al. consider the protocol according to the
F2-polynomial representation (1) for computing Maj⊕3 . In
this section, we show that for arbitrary given f : {0,1}n ×
{0,1}n → {0,1}, this protocol is the best protocol for comput-
ing f (x,y) among all protocols satisfying nonadaptivity and
PR-correctness.

Definition 7. An XOR protocol is said to be nonadaptive if
inputs for nonlocal boxes does not depend on outputs of other
nonlocal boxes. An XOR protocol is said to be PR-correct if
the protocol computes the target function f (x,y) without error
when the nonlocal boxes are PR boxes. An XOR protocol is
said to be nonredundant if the inputs (li(x),ri(x))i=1,... ,t for the
nonlocal box satisfy

A(x) ⊕ B(y) ⊕
t⊕

i=1

(Ci ∧ li(x) ∧ ri(y)) = 0

⇐⇒ (Ci)i=1,... ,t = 0, A(x) = B(y). (2)

The following lemma was shown by Kaplan et al. [16].
Here, we give a short proof using Fourier analysis.

Lemma 8. The outputs of both players in nonadaptive PR-
correct nonredundant protocol must be parity of the outputs of
nonlocal boxes and a function of local inputs.

Proof. Let l1(x), . . . ,lt (x) and r1(y), . . . ,rt (y) be the in-
puts of nonlocal boxes from Alice and Bob, respectively. Let
a1, . . . ,at and b1, . . . ,bt be the outputs of the nonlocal boxes
for Alice and Bob, respectively. From any protocol, one can ob-
tain a modified protocol using (l′i(x) := li(x) ⊕ li(0),r ′

i (x) :=
ri(y) ⊕ ri(0))i=1,...,t as the inputs for nonlocal boxes since
replacements of ai and bi by a′

i ⊕ l′i(x)ri(0) ⊕ li(0)ri(0) and
b′

i ⊕ li(0)r ′
i (y) for i = 1, . . . ,t , respectively, simulate the

original protocol, where (a′
i ,b

′
i)i=1,... ,t are the outputs of the

nonlocal boxes in the modified protocol. This transformation
preserves nonadaptivity, PR-correctness, and nonredundancy.
This transformation also preserves whether or not the outputs
of both players are parity of the outputs of nonlocal boxes and a
function of local inputs. Hence, without loss of generality, we
can assume that l1(0) = · · · = lt (0) = r1(0) = · · · = rt (0) =
0. Assume that a = ux(a1, . . . ,at ) and b = vy(b1, . . . ,bt ).
Since the protocol is PR-correct, a ⊕ b = ux(a1, . . . ,at ) ⊕
vy(a1 ⊕ z1(x,y), . . . ,at ⊕ zt (x,y)) must be constant for all
(a1, . . . ,at ) ∈ {0,1}t , where zi(x,y) := li(x) ∧ ri(y). By let-
ting x = 0 (y = 0), we obtain that vy (ux) is equal to u0

(v0) or its negation for any y (x), respectively. Hence, there
exist Boolean functions F : {0,1}t → {0,1}, ϕ,ψ : {0,1}n →
{0,1} such that ux(a1, . . . ,at ) = ϕ(x) ⊕ F (a1, . . . ,at ) and
vy(b1, . . . ,bt ) = ψ(y) ⊕ F (b1, . . . ,bt ). On the other hand, it
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holds on the {+1,−1} domain that

ab =
⎛⎝∑

S⊆[t]

ûx(S)
∏
i∈S

ai

⎞⎠⎛⎝∑
S⊆[t]

v̂y(S)
∏
i∈S

(aizi(x,y))

⎞⎠ =
∑

S1,S2⊆[t]

ûx(S1)̂vy(S2)
∏
i∈S2

zi(x,y)
∏

i∈(S1∪S2)−(S1∩S2)

ai

=
∑
S⊆[t]

⎛⎜⎝ ∑
S1,S2 ,

(S1∪S2)−(S1∩S2)=S

ûx(S1)̂vy(S2)
∏
i∈S2

zi(x,y)

⎞⎟⎠ ∏
i∈S

ai . (3)

This is the Fourier expansion of ux(a1, . . . ,at ) ⊕ vy(a1 ⊕
z1(x,y), . . . ,at ⊕ zt (x,y)) as a function of a1, . . . ,at . Since
the function must be constant, the Fourier coefficients for the
empty set must be ±1, i.e.,

∑
S1⊆[t]

ϕ(x)ψ(y)F̂ (S1)2
∏
i∈S1

zi(x,y) ∈ {+1,−1}

for any x,y ∈ {0,1}n. Hence, for any x,y ∈ {0,1}n,∏
i∈S1

zi(x,y) must be common for all S1 ∈ supp(F̂ ). The
equality

∏
i∈S1

zi(x,y) = ∏
i∈S2

zi(x,y) for S1 	= S2 implies∏
i∈(S1∪S2)−(S1∩S2) zi(x,y) = 1, which shows the existence of

a redundant nonlocal box. Hence, F̂ (S1) 	= 0 for unique

S1 ⊆ [t]. This implies that ux [vy] is the parity of variables in
S1 and ϕ(x) [ψ(y)], respectively. �

Naturally, we can ask whether or not the non-redundancy
is restriction, i.e., whether or not we can reduce the error
probability of the protocol by using the redundancy when
the nonlocal boxes are not the PR boxes. The following
lemma says that redundancy does not help to reduce the error
probability of a nonadaptive PR-correct protocol.

Lemma 9. For an arbitrary given nonadaptive PR-correct
protocol, there exists a nonadaptive PR-correct nonredundant
protocol whose error probability is at most that of the original
protocol for any bias δ of the CHSH probability.

Proof. As in the proof of Lemma 8, we can assume
without loss of generality that l1(0) = · · · = lt (0) = r1(0) =
· · · = rt (0) = 0. Similarly to (3), when the nonlocal boxes are
not necessarily the PR boxes, ab is equal to

∑
S⊆[t]

⎛⎜⎝ ∑
S1 ,S2 ,

(S1∪S2)−(S1∩S2)=S

ûx(S1)̂vy(S2)
∏
i∈S2

(eizi(x,y))

⎞⎟⎠ ∏
i∈S

ai,

where ei represents the error of the output of ith nonlocal
box; i.e., ei = +1 if the ith nonlocal box computes correctly
and ei = −1 otherwise. Recall that the bias of the CHSH
probability is δ; i.e., the expectation of ei is δ. Since the
nonlocal boxes are isotropic, ei is independent of any other
variables x, y, (aj )j∈[t], and (ej )j∈[t]\{i} for i ∈ [t]. Since the
nonlocal boxes are isotropic, ai is uniformly distributed for all
i ∈ [t]. Hence, the expectation of ab (the bias of a ⊕ b) is

σ (x,y)ϕ(x)ψ(y)
∑

S1⊆[t]

F̂ (S1)2δ|S1|

=: σ (x,y)ϕ(x)ψ(y) Stabδ(F ),

where σ (x,y) denotes the common sign of
∏

i∈S1
zi(x,y) ∈

{+1,−1} for all S1 ∈ supp(F̂ ). Since the protocol is PR-
correct, σ (x,y)σ (x)ψ(y) ∈ {+1,−1} must be equal to f (x,y).
Hence, the output of the protocol is correct with probability
[1 + Stabδ(F )]/2. On the other hand, since

∏
i∈S zi(x,y) ∈

{+1,−1} is common for all S ∈ supp(F̂ ), we can obtain a
nonadaptive PR-correct protocol by replacing ux(a1, . . . ,at )
and vy(b1, . . . ,bt ) by ϕ(x) ⊕ ⊕

i∈S∗ ai and ψ(y) ⊕ ⊕
i∈S∗ bi

for S∗ := argminS∈supp(F̂ ) |S|, respectively. In order to obtain
a nonadaptive PR-correct nonredundant protocol, we shrink
the set S∗ to T ⊆ S∗ if S∗ includes the redundancy [the local
terms ϕ(x) and ψ(y) should also be modified according to the

shrinkage]. The bias of the probability of correctness of the
protocol is δ|T | � δ|S∗| � Stabδ(F ). �

Lemma 9 implies that, if we are interested in the minimiza-
tion of the error probability among all nonadaptive PR-correct
protocols, we only have to consider nonadaptive PR-correct
nonredundant protocols.

V. THE NUMBER OF NONLOCAL BOXES

Lemma 8 implies that an arbitrary nonadaptive PR-correct
nonredundant protocol corresponds to an F2-polynomial rep-
resentation of f (x,y):

f (x,y) = A(x) ⊕ B(y) ⊕
t⊕

i=1

li(x)ri(y). (4)

Since the bias of the correctness of the corresponding protocol
is δt , we define the following measure of the complexity.

Definition 10. The nonlocal box complexity NLBC(f ) is
the minimum t such that there exists a representation (4).

The nonlocal box complexity can be characterized by the
rank of some matrix on F2. The following theorem slightly
generalizes a theorem in Ref. [16].

Theorem 11. For any f : {0,1}n × {0,1}n → {0,1},
NLBC(f ) = rankF2 (Mf ′),
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where f ′(x,y) = f (x,y) ⊕ f (x,0) ⊕ f (0,y) ⊕ f (0,0) and
where Mf ′ is a 2n × 2n matrix on F2 such that its (x,y) element
is equal to f ′(x,y).

Proof. First, we show NLBC(f ) � rankF2 (Mf ′). If
rankF2 (Mf ′) = r , there is a matrix factorization Mf ′ = UV

for some 2n × r matrix U and r × 2n matrix V . This implies
that f ′(x,y) = ⊕r

i=1 ai(x)bi(y), where ai(x) denotes the (x,i)
element of U and where bi(y) denotes the (i,y) element of V .
Hence, it holds that f (x,y) = (f (x,0) ⊕ f (0,0)) ⊕ f (0,y) ⊕⊕r

i=1 ai(x)bi(y), and hence NLBC(f ) � r .
Conversely, if NLBC(f ) = t , there is a representation

f (x,y) = A(x) ⊕ B(y) ⊕ ⊕t
i=1 li(x)ri(y). There also exists

a representation f ′(x,y) = A′(x) ⊕ B ′(y) ⊕ ⊕t
i=1 li(x)ri(y).

Since f ′(0,y) = f ′(x,0) = 0 for all x and y, by expanding
constant terms in li(x) and ri(x) we obtain a representation
f ′(x,y) = ⊕t

i=1 l′i(x)r ′
i (y). This implies that there is a matrix

factorization Mf ′ = UV for 2n × r matrix U and r × 2n

matrix V where the (x,i) element of U is l′i(x) and the (i,y)
element of V is r ′

i (y). Hence, rankF2 (Mf ′) � t . �
Remark. If we restrict the decomposition to be symmetric,

i.e., li = ri for all i = 1, . . . ,t , an extra one dimension is
required for arbitrary XOR function g⊕ [17].

Lemma 12. For any g : {0,1}n → {0,1}, NLBC(g⊕) = 0
only when g is a parity of some variables or its negation.
Furthermore, NLBC(g⊕) cannot be equal to 1.

Proof. From Theorem 11, NLBC(g⊕) = 0 implies g(x ⊕
y) ⊕ g(x) ⊕ g(y) ⊕ g(0) = 0. Hence, it holds that g(x ⊕ y) ⊕
g(0) = (g(x) ⊕ g(0)) ⊕ (g(y) ⊕ g(0)), so that g(z) ⊕ g(0) is
linear, i.e., parity of some variables. Assume NLBC(g⊕) = 1.
From Theorem 11, rankF2 (Mg⊕′ ) must be equal to 1. Since Mg⊕′

is a symmetric matrix, there is a decomposition Mg⊕′ = vvt ,
where v denotes aF2 vector of length 2n. On the other hand, the
diagonal elements of Mg⊕′ must be zero. That implies v = 0,
and hence NLBC(g⊕) = 0. This is a contradiction. �

Example 13. The following table shows the nonlocal box complexity of Majn computed numerically by a computer:

n 3 5 7 9 11 13 15 17
NLBC(Maj⊕n ) 2 14 26 254 494 1090 1818 65534

In Example 13, it is not easy to find any rule between n

and the nonlocal box complexity, although NLBC(Maj⊕n ) =
2n−1 − 2 may happen frequently, e.g., n = 3,5,9,17. Gener-
ally, it is considered to be difficult to express rankF2 (Mf ) in a
simple form for arbitrary given f . Note that the rank on R is
always at least the rank on F2. Since rankR(Mg⊕) is equal to
the number of nonzero Fourier coefficients of g [18], 2n−1 + 1
is an upper bound of NLBC(Maj⊕n ) for odd n [an inequality
rankF2 (Mf ) − 2 � NLBC(f ) � rankF2 (Mf ) can be obtained
in a way similar to that of Theorem 11]. Here, we introduce a
lower bound of the nonlocal box complexity using the one-way
communication complexity.

Lemma 14. For any f : {0,1}n × {0,1}n → {0,1},
NLBC(f ) � max{D⊕

→(f ),D⊕
←(f )}.

Proof. Assume f (x,y) has the form (4). Bob can compute
f ⊕ A(x) from (li(x))i=1,... ,NLBC(f ). �

It obviously holds that D⊕
→(f ) � D→(f ) − 1. If g is an odd

function, i.e., g(z) = g(z) where z denotes the bit inversion
of z, then D⊕

→(g⊕) = D→(g⊕) − 1 since g(x ⊕ y) ⊕ g(x) =
g(x ⊕ y) ⊕ g(x).

Example 15. It obviously holds that D→(Maj⊕n ) = n. Since
Majn is an odd function, it holds that D⊕

→(Maj⊕n ) = n − 1.
From Example 13, this lower bound is tight for n = 3, but
becomes looser as n increases. This lower bound seems not to
be asymptotically tight.

In fact, the adaptive protocol introduced in the next section
has bias δD⊕

→(g⊕) for arbitrary XOR function g⊕.

VI. ADAPTIVE PROTOCOL

A. Pawłowski et al.’s protocol

In this section, we show an adaptive protocol which is
inspired by the adaptive protocol invented in Ref. [8]. Let

the address function Addrn be

Addrn(x0, . . . ,x2n−1,y1, . . . ,yn) := xy,

where y = ∑n
i=1 yi2i−1. In Ref. [8], Pawłowski et al. char-

acterized the quantum limit 2+√
2

4 of the CHSH probability
by using a principle called information causality. What they
essentially showed in Ref. [8] is following.

Lemma 16. There is a PR-correct protocol computing the
address function Addrn with bias δn.

Proof. The lemma is shown by the induction. There is n
representation

Addr1(x0,x1,y1) = x0 ⊕ y1(x0 ⊕ x1).

Hence, there exists a nonadaptive protocol computing Addr1

with bias δ, so that the lemma holds for n = 1. For n � 2,
there is a recursive formula

Addrn(x0, . . . ,x2n−1,y1, . . . ,yn) = Addr1(x ′
0,x

′
1,yn),

where

x ′
0 := Addrn−1(x0, . . . ,x2n−1−1,y1, . . . ,yn−1),

x ′
1 := Addrn−1(x2n−1 , . . . ,x2n−1,y1, . . . ,yn−1).

From the hypothesis of the induction, there is a PR-correct
protocol computing x ′

0 and x ′
1 with bias δn−1. Let a0 and b0 (a1

and b1) be random variables corresponding to the outputs of
the protocol computing x ′

0 (x ′
1), respectively. Then, if δ = 1,

one obtains

Addrn(x0, . . . ,x2n−1,y1, . . . ,yn)

= Addr1(a0 ⊕ b0,a1 ⊕ b1,yn)

= Addr1(a0,a1,yn) ⊕ Addr1(b0,b1,yn)

= a0 ⊕ yn(a0 ⊕ a1) ⊕ byn
.
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From this observation, we recursively define the protocol for
Addrn in the following way. (P1) Compute a0 and a1 at Alice’s
side, and byn

at Bob’s side using the protocol for Addrn−1.
(P2) Input a0 ⊕ a1 and yn into the common nonlocal box,
and obtain a′ and b′. (P3) Output a := a0 ⊕ a′ at Alice’s side
and b := b′ ⊕ byn

at Bob’s side. This protocol is obviously
PR-correct. Since at each step, the error of bias δ is XORed,
this protocol has bias δn. �

B. The adaptive protocol

In the following, we show an adaptive protocol computing
arbitrary given function f : {0,1}n × {0,1}n → {0,1} using
Pawłowski et al.’s protocol.

Theorem 17. For arbitrary function f : {0,1}n × {0,1}n →
{0,1}, there is a PR-correct protocol computing f with bias
δmin{D⊕

→(f ),D⊕
←(f )}.

Proof. Arbitrary function f can be represented by

f (x,y) = Addrn(f (x,0, . . . ,0),f (x,0 . . . ,0,1), . . . ,

f (x,1, . . . ,1),y1, . . . ,yn).

From Lemma 16, there is an adaptive protocol computing f

with bias δn.
We can consider compression of Bob’s input since we do

not have to distinguish y’s belonging to equivalent columns
of Mf . By applying the compression, we obtain the protocol
with bias δD←(f ). Furthermore, if we have an XOR protocol for
f (x,y) ⊕ B(y), we also obtain an XOR protocol for f (x,y)
by replacing Bob’s output b with b ⊕ B(y). Hence, we obtain
the protocol with bias δD⊕

←(f ). In the same way, we also obtain
the protocol with bias δD⊕

→(f ). �
From Lemma 14 and Theorem 17, we obtain the following

corollary.
Corollary 18: The adaptive PR-correct protocol in Theo-

rem 17 is no worse than any nonadaptive PR-correct protocol.

VII. BIAS AMPLIFICATION

We now consider the bias amplification by general XOR
function g⊕ in Brassard et al.’s protocol, where g⊕ is computed
by the adaptive PR-correct protocol introduced in Theorem 17.
If z is a random variable taking +1 with probability 1+ε

2 and
−1 with probability 1−ε

2 , its expectation is ε. The expectation
ε is called the bias of random variable z. If the inputs for g is
independently and identically distributed and have bias ε, the
bias of output of g is given in the following formula.

Definition 19. For any g : {0,1}n → {0,1}, we define

Biasε(g) :=
∑
S⊆[n]

ĝ(S)ε|S|.

Example 20. Since Maj3(z1,z2,z3) = (1/2)(z1 + z2 +
z3 − z1z2z3), one obtains Biasε(Maj3) = (3/2)ε − (1/2)ε3.
Roughly speaking, the input bias ε is amplified to (3/2)ε for
small ε.

When a Boolean function g is computed correctly with
probability 1+ρ

2 , the output bias of g is ρ Biasε(g). We say
that the bias is amplified by g if the absolute value of bias
of the output of g is larger than that of the input and if
the sign of bias is preserved. The bias is amplified by the

noisy g for sufficiently small input bias iff Bias0(g) = 0 and
ρ

d Biasε (g)
dε

|
ε=0

> 1. Hence, we obtain the following theorem.
Theorem 21. Assume that g : {0,1}n → {0,1} can be com-

puted correctly with probability 1+ρ

2 . Then, the bias is
amplified by the noisy g when the input bias is sufficiently
small iff ĝ(∅) = 0 and ρ > ρB(g), where

ρB(g) := 1

max
{
1,

∑n
i=1 ĝ({i})} .

The majority functions minimize ρB(g).
Lemma 22. For g : {0,1}n → {0,1},

ρB(g) � 2n−1

n
(
n−1
n−1

2

) if n is odd,

ρB(g) � 2n

n
(

n
n
2

) if n is even.

The equality is achieved by and only by the majority
functions on n variables. Asymptotically, it holds that ρB(g) �√

π/(2n)[1 + O(n−1/2)].
Proof. One obtains

∑
i∈[n] ĝ({i}) = E[g(x)(x1 + · · · +

xn)] � E[|x1 + · · · + xn|] where the equality holds only when
g is Majn [9]. Hence, only the majority functions Majn
maximize

∑
i∈[n] ĝ({i}). It is easy to complete the rest of the

proof [9]. �
Note that the lower bound for even n is equal to the lower

bound for n − 1. The condition on δ for the bias amplification
by Brassard et al.’s protocol is δD⊕

→(g⊕) > ρB(g).
Definition 23. For any g : {0,1}n → {0,1},

δB(g) :=
{

ρB(g)
1

D
⊕→(g⊕ ) if ĝ(∅) = 0 and ρB(g) < 1,

1 otherwise.

If δ > δB(g) for some g : {0,1}n → {0,1}, there exists an
XOR protocol with constant bias.

Example 24. One obtains δB(Maj3) = √
2/3, which means

that the threshold for the CHSH probability is 1+√
2/3

2 = 3+√
6

6
[7].

We can now rephrase Theorem 1 in the following form.
Theorem 25.

inf
g:{0,1}n→{0,1},n∈N

δB(g) =
√

2

3
.

Furthermore, δB(g) = √
2/3 iff g is essentially equivalent to

Maj3.
Here, we say that g is essentially equivalent to Maj3 if g is

the majority of some fixed three-input variables and ignores the
other n − 3 input variables. The following lemma was shown
in Ref. [19].

Lemma 26. For any g : {0,1}n → {0,1},
D→(g⊕) = dim(̂g).

Since D⊕
→(f ) � D→(f ) − 1, it holds that D⊕

→(g⊕) �
dim(̂g) − 1.

Remark. If A(x) in the definition of D⊕
→(f ) is restricted to

be linear, D⊕
→(g⊕) is equal to the affine dimension of ĝ, which

is the minimum dimension of affine space on F2 including
{1S | S ∈ supp(̂g)}. Hence, the affine dimension of ĝ is an
upper bound of D⊕

→(g⊕).
First, we show that Theorem 25 holds for n � 4.
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Lemma 27. It holds that δB(g) �
√

2/3 for all Boolean
functions g on at most four variables. Furthermore, for
n � 4, only functions essentially equivalent to Maj3 satisfy
δB(g) = √

2/3.
Proof. Assume D⊕

→(g⊕) � 1. Then, the protocol is non-
adaptive. From Lemma 12, g must be linear, and hence
ρB(g) = 1. Assume D⊕

→(g⊕) � 2. From Lemma 22, ρB(g) �
2/3 for n � 4, and hence δB(g) �

√
2/3. From Example 24,

it is achieved by Maj3.
Next, we show the uniqueness. From the above argument,

it holds that δB(g) = √
2/3 only when ρB(g) = 2/3 and

D⊕
→(g⊕) = 2. From Lemma 22, ρB(g) = 2/3 only when g

is one of the 64 majority functions on four variables. In
the following, we show that for g ∈ Maj4, D⊕

→(g⊕) = 2 only
when g is essentially equivalent to Maj3. From Lemma 26,
|{i ∈ [n] | ĝ({i}) 	= 0}| � dim(̂g) � 3. If |{i ∈ [n] | ĝ({i}) 	=
0}| � 2, it holds that

∑
i∈[n] ĝ({i}) �

√
2 < 3/2 from the

Cauchy-Schwartz inequality. If |{i ∈ [n] | ĝ({i}) 	= 0}| = 3, g

depends only on three variables since dim(ĝ) � 3. Hence, g is
essentially equivalent to Maj3. �

From the following lemma, only Boolean functions with
small Fourier dimension may outperform Maj3.

Lemma 28. For any g : {0,1}n → {0,1},

δB(g) �
(

1

dim(̂g)

) 1
2[dim(̂g)−1]

.

In particular, if dim(ĝ) � 5, it holds that δB(g) >
√

2/3.
Proof. One obtains

dim(̂g) � |{i ∈ [n] | ĝ({i}) 	= 0}|

�
(∑

i∈[n] ĝ({i}))2∑
i∈[n] ĝ({i})2

�

⎛⎝∑
i∈[n]

ĝ({i})
⎞⎠2

.

In the above, the first inequality is trivial. The second inequality
is the Cauchy-Schwartz inequality. The third inequality holds
since the sum of squares of all of the Fourier coefficients is 1.
Hence, ρB(g) � dim(̂g)−1/2. From Lemma 26, we obtain this
theorem. �

Lemmas 27 and 28 give the complete proof of Theorem 25.
Proof of Theorem 25. From Lemma 28, we only have to

show that if |{i ∈ [n] | ĝ({i}) 	= 0}| � dim(̂g) � 4, δB(g) �

√
2/3 only for g essentially equivalent to Maj3. Assume

|{i ∈ [n] | ĝ({i}) 	= 0}| = 4. Then, the Boolean function g

depends only on four input variables since dim(̂g) � 4. From
Lemma 27, there is no function on four variables satisfying
δB(g) �

√
2/3 except for functions essentially equivalent to

Maj3. Next, we assume |{i ∈ [n] | ĝ({i}) 	= 0}| = 3. In this
case,

∑
i∈[n] ĝ({i}) �

√
3. Since (1/

√
3)1/3 >

√
2/3, we can

assume D⊕
→(g⊕) � 2. Then, the Boolean function g depends

only on three input variables since dim(̂g) � D⊕
→(g⊕) + 1 �

3. From Lemma 27, there is no function on three variables
satisfying δB(g) �

√
2/3 except for Maj3. Next, we assume

|{i ∈ [n] | ĝ({i}) 	= 0}| � 2. In this case,
∑

i∈[n] ĝ({i}) �
√

2.

Since (1/
√

2)1/2 >
√

2/3, we can assume D⊕
→(g⊕) � 1. From

Lemma 12, it holds that δB(g) = 1. We conclude that there
is no function satisfying δB(g) �

√
2/3 except for functions

essentially equivalent to Maj3. �

VIII. CONCLUSION

In this paper, we show that the three-input majority function
is the unique optimal function for Brassard et al.’s bias
amplification on some conditions. This paper also develops a
mathematical framework using Fourier analysis for problems
on XOR protocols with nonlocal boxes. On the other hand,
in this paper, functions g⊕ for the bias amplification are
restricted to be XOR function, although it seems to be a natural
restriction. Furthermore, protocols for computing functions
g⊕, in this paper, are restricted to be a particular adaptive PR-
correct protocol, which is improves upon arbitrary nonadaptive
PR-correct protocols. General adaptive protocols may allow
more reliable computation than these protocols [13]. Hence,
the result of this paper does not show the limitation of the idea
of the bias amplification, but shows only the limitation of the
idea of bias amplification by an XOR function computed by the
particular adaptive PR-correct protocol. The bias amplification
by general adaptive computation of a non-XOR function would
be an interesting direction of research.
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