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Determining stationary-state quantum properties directly from system-environment interactions
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Considering stationary states of continuous-variable systems undergoing an open dynamics, we unveil the
connection between properties and symmetries of the latter and the dynamical parameters. In particular, we
explore the relation between the Lyapunov equation for dynamical systems and the steady-state solutions of a
time-independent Lindblad master equation for bosonic modes. Exploiting bona fide relations that characterize
some genuine quantum properties (entanglement, classicality, and steerability), we obtain conditions on the
dynamical parameters for which the system is driven to a steady state possessing such properties. We also
develop a method to capture the symmetries of a steady state based on symmetries of the Lyapunov equation. All
the results and examples can be useful for steady-state engineering processes.
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The manipulation of the environment affecting the dy-
namics of a quantum system, with the aim of driving the
latter towards a specific state, embodies a valuable tool for
quantum state engineering. Depending on assumptions about
the couplings, the open dynamics can lead to either an
equilibrium state or to a dynamical steady state. On the other
hand, in this scenario, it is critical to ensure that the desired
state is achieved regardless the fluctuations in the initial state
of the system. Protocols of this sort are known as reservoir
engineering, stabilization, and design [1–5].

A standard approach to the modeling of the evolution of an
open system is the Lindblad master equation (LME) for the
density operator ρ̂ [3,6,7]:

dρ̂

dt
= − i

�
[Ĥ ,ρ̂] − 1

2�

M∑
m=1

({L̂†
mL̂m,ρ̂} − 2L̂mρ̂L̂†

m), (1)

which, besides the unitary dynamics ruled by the Hamiltonian
operator Ĥ , accounts for a nonunitary dynamics as resulting
from the weak coupling (via the operators L̂k) to uncontrol-
lable environmental degrees of freedom. The LME is the most
general type of Markovian and time-homogeneous master
equation guaranteeing trace preservation and complete positiv-
ity. Despite the fundamental and very restrictive Markovianity
assumption, the LME is crucial for the description of an
ample set of dynamics in quantum optics and information,
mesoscopic physics, and quantum chemistry [3,7,8].

In this work we investigate properties and symmetries
of continuous-variable states driven to equilibrium by a
linear evolution governed by the time-independent Lindblad
dynamics. Gaussian states, which play a preponderant role in
quantum information science and are the natural candidates for
the implementation of quantum computation with continuous
variables [9], belong to such set of states.

From the mathematical point of view, the problem of
whether a linear LME has a stable steady state is equivalent
to the solution of a Lyapunov equation for the covariance
matrix of the quantum state. The methodology used to solve
Lyapunov equations, known as Lyapunov stability theory [10],
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was developed in Ref. [11] in the context of dynamical systems.
This formalism was explored in Ref. [12] to determine
conditions for a state to be pure in the stationary regime.

In our work, we make use of the connection between the
LME and the Lyapunov theory to determine several properties
of continuous-variable steady states, such as classicality [13],
separability [14] (or bound entanglement [15]), and steerability
[16]. Furthermore, we also explore the steady-state symmetries
induced by the dynamical symmetries of the Lyapunov equa-
tion. This is particularly interesting, because it is in general
hard to characterize the symmetries of the states working
directly on the LME (1). This task becomes instead fully
manageable when dealing with finite matrices. Our results
are applicable to systems with a generic number of degrees
of freedom and their analyticity brings in turn robustness for
numerical examinations of the mentioned properties.

The remaining of this paper is organized as follows: In
Sec. I, we set the notation and describe the linear dynamics,
discussing the connection between the LME and the Lyapunov
theory. The mathematical results concerning the Lyapunov
equation are developed in Sec. II, which will be extensively
applied to find general properties of stationary solutions in
Sec. III. Symmetries of the system are analyzed in Sec. IV,
while examples are given in Sec. V. A method for engineering
steady states is presented in Sec. VI. Section VII presents our
conclusions, while in the Appendixes we further discuss some
technical aspects of the mathematical approach, including a
brief summary of the notation.

I. LINEAR DYNAMICS AND STATIONARY CONDITIONS

For a system of n continuous degrees of freedom (DF),
the generalized coordinates together with the canonical conju-
gated momenta are collected in a 2n column vector:

x̂ := (q̂1, . . . , q̂n, p̂1, . . . p̂n)†. (2)

In this notation, the canonical commutation relation (CCR) is
written compactly as [x̂j ,x̂k] = i�Jjk with Jjk given by the
elements of the symplectic matrix

J :=
(

0n In
−In 0n

)
. (3)
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We consider the evolution of a quantum state governed by
the LME with a quadratic Hamiltonian and linear Lindblad
operators, viz.,

Ĥ = 1
2 x̂ · Hx̂ + ξ · Jx̂ + H0,

L̂m = λm · Jx̂ + μm, (4)

where ξ ∈ R2n and λm ∈ C2n are column vectors, H0 ∈ R
and μm ∈ C are constants, and m = 1, . . . ,M . The Hessian
of the Hamiltonian is symmetric by definition: H = H� ∈
Mat(2n,R). Under such conditions, the evolution of the mean
value vector 〈x̂〉t := Tr[x̂ρ̂(t)] ∈ R2n can be retrieved from
Eq. (1) by using only the CCR [3,17]:

d〈x̂〉t
dt

= ξ − η + �〈x̂〉t , (5)

where we have introduced η := ∑M
m=1 Im(μ∗

mλm) ∈ C2n,

� := JH − ImϒJ ∈ Mat(2n,R), (6)

and

ϒ :=
M∑

m=1

λmλ†
m ∈ Mat(2n,C). (7)

The natural question that arises at this point is whether
a solution of Eq. (5) attains a finite asymptotic value when
t → ∞. The answer is provided in the context of the Lyapunov
stability theory [10]. All solutions will be driven to an
asymptotic point, if the matrix � is asymptotically stable (AS),
i.e., if its spectrum has negative real part.

Interestingly enough, from the Lindblad dynamics (1) with
the operators in Eq. (4), a Lyapunov equation (LE) emerges
naturally for the stationary value of the covariance matrix (CM)
of the system, as we shall see. Defining the CM of the state ρ̂

as V = V� ∈ Mat(2n,R) with elements [18]

Vjk = 1

�
Tr[{x̂j − 〈x̂j 〉t ,x̂k − 〈x̂k〉t }ρ̂(t)], (8)

and calculating its evolution [3,17], the (possible) stationary
value of the CM will be the solution of the LE

V�� + �V + D = 0, (9)

with � in Eq. (6) and

D := 2Reϒ = D� ∈ Mat(2n,R), (10)

which is positive semidefinite, D � 0, by the definition of ϒ.
The Lyapunov theorem and its extensions [10,11,19] guarantee
that, for an AS matrix �, the solution of Eq. (9) exists and is
unique. Furthermore, those theorems also relate the stability
nature of the matrix � to the existence of matrices (in our case
V and D) satisfying the LE (9).

We stress that, in order to deduce Eqs. (5) and (9), we do not
need any assumptions about the initial state of the system. The
derivation of such equations only uses the LME, the particular
structure of Eqs. (4), and the CCR. Meanwhile, the LME with
the operators (4) will always preserve the Gaussian character
of an initial Gaussian state [17]. Once the CM of a steady state

of the system is a solution of Eq. (9), which is unique and does
not depend on the initial state, any initial state will end in a
Gaussian steady state.

II. LYAPUNOV EQUATIONS

In this section we show and develop results concerning the
generic Lyapunov equation

AP + PA† + Q = 0, (11)

and its solution. Since our objective is to understand properties
of stationary solutions of the LME, it is convenient to assume
that (i) A ∈ Mat(m,C) is AS, (ii) P = P† ∈ Mat(m,C), and
(iii) Q = Q† ∈ Mat(m,C). From now on, the LE (11) will be
represented by the triple 	P,A,Q
.

The first of those assumptions (A is AS) is enough to prove
[10,19] that the unique solution for the LE in (11) is written as

P(Q,A) =
∫ ∞

0
dt eAtQeA†t . (12)

Furthermore, for any A ∈ GL(m,C), it is true that

In(eAtQeA†t ) = In(Q), (13)

because the expression inside the parenthesis on the LHS is
a congruence transformation of Q. The symbol “In” refers to
the inertia index of a matrix, as defined in Appendix A. On
the other hand, once A is AS, then limt→∞ eAt = 0, which
guarantees the convergence of the integral in Eq. (12). These
last arguments about the structure of Eq. (12) are used in the
proof of the following result [10,19]:

Proposition 1. Consider the solution (12) for the LE in
Eq. (11). If Q � 0 (Q > 0), then P � 0 (P > 0).

Note that Proposition 1 does not exclude the statement
Q � 0 ⇒ P > 0, since the set of matrices P such that P > 0
is a subset of P � 0; cf. Appendix A. This is the case provided
the pair (Q,A) is observable [10,19]. For our purposes, this
statement is not necessary; however, it is for the results
in Ref. [12].

Now, let us go a bit further with the results in Proposition 1,
specializing the properties of the AS matrix A:

Proposition 2. Consider the LE 	P,A,Q
 with A = A†, then
P � 0 (P > 0) if and only if Q � 0 (Q > 0).

Proof. Since A is self-adjoint and negative definite (AS),
it is possible to write A = −√−A

√−A, where
√−A is the

unique self-adjoint positive-definite square root of −A. From
the LE (11),

SpecR(Q) = −SpecR(AP + PA)

= −SpecR[(P + APA−1)A]

= SpecR[
√−A(P + APA−1)

√−A]. (14)

Since the sum of positive-semidefinite (positive-definite)
matrices is positive semidefinite (positive definite), and since
a congruence transformation does not change the signs of
the eigenvalues (or the inertia of the matrix), it follows that
Q � 0 (Q > 0) if P � 0 (P > 0), which proves the necessary
condition. The sufficiency is in Proposition 1. �

Note that, once one statement in Proposition 2 is Q > 0 ⇔
P > 0, then the statement Q � 0 ⇔ P � 0 necessarily means
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that if Q has one null eigenvalue, then P will also have one
null eigenvalue, and vice versa.

In the direction of the main task of this work, we must
develop some results concerning matrices of the form P + �,
where P is the solution in Eq. (12) of 	P,A,Q
 and � = �† ∈
Mat(m,C).

Corollary 1. P + � � 0 if Q[�] := Q − �A† − A� � 0.
Proof. It is easy to see that the LE 	P + �, A, Q[�]
 is

equivalent to the LE in Eq. (11). Thus, the proof follows from
Proposition 1, since Q[�] = Q†

[�]. �
The converse statement of Corollary 1 is not true in general.

By using the restriction for the matrices A, as in Proposition 2,
we obtain the following corollary giving a necessary and
sufficient condition:

Corollary 2. Consider A = A† (A is AS), then P + � � 0
if and only if Q̃[�] := Q − {�,A}}}+ � 0.

Proof. As before, we construct the equivalent Lyapunov
equation 	P + �,A,Q̃[�]
, and use Proposition 2 since
Q̃[�] = Q̃†

[�]. �
Note that, contrary to Propositions 1 and 2, we did not

mention the strictly positive cases (Q[�] > 0, Q̃[�] > 0) in
Corollaries 1 and 2. Actually, these cases follow the same
prescription, but they are not necessary for our next results.

In what follows, properties of the steady states, driven to
equilibrium under the linear evolution generated by Eq. (4),
will be considered from the perspective of the results developed
in this section.

III. BONA FIDE RELATIONS AND STEADY STATES

Through the temporal evolution of a state by the LME
conditioned to an AS dynamics, the dependence on the initial
condition is progressively erased by the environmental action.
Therefore, the steady-state properties must be completely
determined only by the environment. An usual way to describe
properties of continuous-variable states is given by bona fide
relations involving the CM of the states. From now on, we will
assume that the CM of a quantum state evolves with � AS and
D � 0 and attains an asymptotic value described by the LE (9)
with solution V := P(D,�) in Eq. (12).

It is convenient to recall the definitions of the auxiliary
matrices defined in Corollaries 1 and 2, but now for the LE in
question. For any matrix � = �† ∈ Mat(2n,C), we have

D[�] := D − ��� − ��, D̃[�] := D − {�,�}+. (15)

A. Uncertainty principle

Any quantum state is subjected to constrains imposed by
the uncertainty principle, which is only a consequences of the
CCR. For the continuous-variable case, this principle takes
into account only the CM (8). A genuine physical state has a
CM such that [20]

V + iJ2n � 0. (16)

Given a Hamiltonian and a collection of Lindblad operators
as in Eq. (4), what can our corollaries say about the genuineness
of the steady state generated by the LME? Invoking Corollary
1, the matrix V of a steady state is a bona fide CM if
D[iJ] = D − i�J − iJ�� � 0. However, by using Eqs. (6)

and (7), it is not difficult to show that D[iJ] = 2ϒ∗, which
is always positive semidefinite, according to the definition of
ϒ in Eq. (7). Tautologically, this says that all linear LMEs
with � AS and D � 0 will drive the system to a steady state
obeying the relation (16), i.e., a genuine physical state.

On the other hand, Eq. (9) is a consequence of the CCR,
as mentioned before. Accordingly, the LME guarantees that
the uncertainty principle holds for all times, including the
steady-state limit, whereof the condition in Corollary 1 is
necessary and sufficient regardless of whether � is symmetric.
Before going to the next bona fide relation, it is important to
remark that this extension of Corollary 1 to an “if and only
if” condition is only true for the relation in Eq. (16). For
all the other relations which will appear in what follows, the
differences between Corollaries 1 and 2 should be considered.

B. Classical states

Classical states are defined as having a positive Glauber–
Sudarshan distribution function, they are also called P -
representable states. This definition relies on the possibility to
express a desired state as a classical mixture of coherent states.
The necessary and sufficient condition for P -representability
of a Gaussian state is written in terms of its CM as the bona
fide relation (see Appendix B)

V − I2n � 0. (17)

The evolution that drives the system to a classical
steady state is subjected to the sufficient condition given by
Corollary 1:

D[−I] = � + �� + D � 0 ⇒ V − I2n � 0. (18)

The contrapositive of the above statement says that, if a given
LME is such that D[−I] has at least one negative eigenvalue,
it will lead the system to a nonclassical stationary state. The
matrix V is, by hypothesis, the CM of a steady state of the
LME. Once the converse statement of Eq. (18) is not true,
one can conclude that there are classical steady states which
cannot be generated by a LME with dynamical matrices such
that D[−I] � 0.

If we consider only steady states generated by a LME with
� symmetric, by Corollary 2 the possible classical states will
obey the necessary and sufficient condition

D̃[−I] = 2� + D � 0 ⇔ V − I2n � 0. (19)

This means that all states generated by a LME with � = ��

and D̃[−I] � 0 are classical states. Conversely, all classical
states with CM V which are solutions of a LE with � = ��

are steady states of a LME satisfying D̃[−I] � 0.
Since classicality is related to mixtures of coherent states,

one instructive example is given by the CM V = I2n—i.e., the
CM of any n-mode (or n-DF) coherent state. The simplicity of
this case enables us to derive a useful necessary and sufficient
condition besides the relation in Eq. (19). Actually, we will be
concerned with the slightly more general situation: the tensor
product of n Gibbs states with the same occupation number.
These states have the global CM written as V = αI2n, which
is a CM of a classical state if α � 1.

Corollary 3. For any α > 0 and any � such that (� + ��)
� 0, the matrix V = αI2n is a solution of the LE 	V,�,D
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if and only if α(� + ��) + D = 0. Furthermore, α =
1
2 TrD/Tr(ImϒJ).

Proof. The sufficient condition is trivially obtained by
constructing the LE 	αI2n,�,D
 from Eq. (9). To prove the
necessary condition, one defines

I :=
∫ ∞

0
dt e�t e��t

and integrates it by parts to show that I�� + �I = −I2n.
The solution (12) with Q = D = −α(� + ��) and A = �

shows that V = −α(�I + I��) = αI. Since � ∈ Mat(2n,R),
its complex eigenvalues will occur in conjugate pairs, then
Tr� ∈ R. Since it is also AS, Tr� �= 0, then the value of α

holds if one considers the definition of � in Eq. (6) and the
fact that Tr(JH) = 0, since H is symmetric. �

The state studied in Corollary 3 is an example of the
multiplicity of the steady state with respect to different
matrices � and D. There is an infinite number of matrices
satisfying the relation α(� + ��) + D = 0 and giving rise to
the same steady state. However, for a given pair of matrices �

and D, the solution V(�,D) is uniquely given in Eq. (12).

C. Separable states

A necessary and sufficient condition for an n-mode
Gaussian state to be separable with respect to one of the modes,
say the kth mode, is defined in terms of its CM as V�k + iJ �
0, where V�k := TkVTk . The transformation Tk = T−1

k = T�
k

is a local time inversion on the x̂ operator, viz.,

Tkx̂ = (q̂1, . . . ,q̂k, . . . ,qn,p̂1, . . . , − p̂k, . . . ,p̂n)�, (20)

and, of course, cannot be implemented unitarily. Since Tk

is orthogonal, we can express the separability condition
equivalently as [14,15]

V + iJ�k � 0. (21)

The statements in Eqs. (18) and (19) can be readily modified
to the present case:

(Corollary 1) D[iJ�k ] � 0 ⇒ V + iJ�k � 0, (22a)

(Corollary 2) D̃[iJ�k ] � 0 ⇔ V + iJ�k � 0. (22b)

The interpretations of these conditions are also readily adapted
from those in the previous section, it is just a question of
changing the dichotomy “classical and/or nonclassical” to
“separable and/or entangled.”

All classical states (not only the Gaussian ones) are
separable, since they are written as a convex sum of coherent
states which are separable [see Eq. (B1)]. As a consequence,
a hierarchy of the dynamics of LMEs can be established: the
set of matrices such that D̃[−I] � 0 in Eq. (19) is a subset of
those satisfying D̃[iJ�k ] � 0 in Eq. (22b). However, this is not
true for the matrices in Eqs. (18) and (22a), because both only
give a sufficient condition.

Now consider the following partition of the number of DF
of a state: n = n1 + n2, where ni is the number of DF of each
partition. Define also the local time inversion operation as

Tn2 x̂ = (q̂1, . . . ,q̂n,p̂1, . . . ,p̂n1 , − p̂n1+1, . . . , − p̂n1+n2 )�.

(23)

The separability criteria already exposed is a necessary and
sufficient condition only if n2 = 1. For all other cases,
entangled states with V + iTn2 JTn2 � 0 are bound entangled,
i.e., they have nondistillable entanglement [15]. One can also
relate the reservoir properties with this bona fide relation
through the replacement J�k → Tn2JTn2 in Eqs. (22). Note
that the bona fide relation in question does not say whether the
state is separable or bound-entangled.

D. Gaussian steerability

Quantum steering is a form of correlation related to
the ability of one part of a system to modify the state
of a companion system when only local measurements are
performed on the former. More precisely, if through local
measurements and classical communication one part of the
system is able to convince the other part that they share an
entangled state, the state is said to be steerable with respect to
the first part [3].

As in the previous section, considering the partition of the
DF as n = n1 + n2, a state is non-Gaussian-steerable with
respect to the first part (with n1 DF) if and only if [16]

V + i�2 � 0, �2 := 1
2

(
J + Tn2JTn2

)
, (24)

with Tn2 defined in Eq. (23). In other words, it is not possible to
steer the state of part 1, making local Gaussian measurements
on part 2, if the last condition holds. The steering relation with
respect to the second part is obtained by changing the roles of
n1 and n2.

As before, this concept can be related to the dynamical
matrices, and one can derive similar formulas by just replacing
J�k → �2 in Eq. (22). All Gaussian steerable states are
entangled [3], thus the set of matrices such that D̃[i�2] � 0
is a subset of those satisfying D̃[iJ�k ] � 0.

This concludes our analysis of the bona fide relations used
across this paper.

IV. SYMMETRIES OF STEADY STATES

In principle, symmetries of the steady states can be
associated with the symmetries of the dynamics governed by
the LME [5,8]. In the perspective developed in this work, the
relation of the steady-state symmetries and the symmetries of
the dynamical matrices � and D will be investigated.

Two LEs, 	V,�,D
 and 	V′,�′,D′
, are said to be covariant
when their matrices are related by

V′ = WVW�, �′ = W�W−1, D′ = WDW�, (25)

for W ∈ GL(2n,R). Note that, for an orthogonal W, all
above matrices are subjected to the same transformation. This
covariance is helpful to determine the invariance properties of
a steady state, working directly at the level of the CM:

Proposition 3. If � and D are invariant under W ∈
GL(2n,R) (i.e., W�W−1 = � and WDW� = D), then V is
invariant as well (i.e., WVW� = V). In this case, we say that
W is a symmetry transformation of the Lyapunov equation.

Proof. Writing the solution V(�,D) as in Eq. (12) for the LE
	V,�,D
, and since det W �= 0, it is easy to see that V(�,D) =
V(W�W−1,WDW�), i.e., V remains unchanged. �
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Let us give some particular but useful examples. Consider
the transformation

W = σ̂z ⊗ I2 =
(

I2 02

02 −I2

)
∈ GL(4,R). (26)

If � and D are invariant under this transformation, they
are necessarily written as � = �1 ⊕ �2 and D = D1 ⊕ D2,
where �j , Dj ∈ Mat(2,R). As a consequence of Proposition 3,
V = V1 ⊕ V2, i.e., it will be the CM of a state without position-
momentum correlations. This invariance can be retrieved
directly from the solution (12): if A and Q are block diagonals
then P will also be block diagonal.

Another example is the transformation

W =
(

02 I2
I2 02

)
∈ GL(4,R). (27)

If � and D are invariant under this, the CM will have
momentum correlations equal to position correlations:

V =
(

V1 V12

V12 V1

)
. (28)

Focusing on the symplectic group, i.e., choosing W ∈
Sp(2n,R) ⊂ GL(2n,R), we use the definition of � in Eq. (6)
and the covariance relation (25) to write

V′ = WVW�, H′ = W−�HW−1, λ′ = Wλ. (29)

This symplectic covariance, by the Stone–von Neumann
theorem [21], is nothing but the representation of a unitary
transformation of the LME:

ρ̂ → Ûρ̂Û†, Ĥ → ÛĤ Û†, L̂i → ÛL̂iÛ
†, (30)

where the unitary operator Û is the metaplectic operator
associated with W ∈ Sp(2n,R) [17,21].

If we rearrange the elements of Eq. (8) consistently with the
reordering x̂ �→ x̌ := (q̂1,p̂1, . . . ,q̂n,p̂n) of Eq. (2), then the
invariance under the (nonreordered) transformation in Eq. (26)
implies that the steady state of the system, with CM V =
V1 ⊕ V2, is the product state ρ̂ = ρ̂1 ⊗ ρ̂2. In the reordered
basis, the transformation (26) is symplectic. Similarly, the
(nonreordered) matrix in Eq. (27) is also symplectic in the
reordered basis, and it realizes the exchange of the subsystems.
Consequently, the matrix in Eq. (28) is the CM of states with
same local purity (symmetric states).

As a last example, consider a symplectic rotation R ∈
K(n) := Sp(2n,R) ∩ O(2n). As a consequence of its symplec-
ticity and orthogonality, it is written as [20]

R =
(

Y Z
−Z Y

)
, (31)

with Y,Z ∈ Mat(n,R) satisfying the following conditions:

YY� + ZZ� = In, YZ� − ZY� = 0n. (32)

Any matrix written as M := m1I2n + m2J ∈ Mat(2n,R), with
m1,m2 ∈ R is invariant under the whole group K(n). Note that,
if M = M�, then m2 = 0. If we consider

� = −γ1I2n + γ2J, D = δI2n, (33)

i.e., both invariant under K(n), then Proposition 3 implies that
V = νI2n. By the other side, Corollary 3 is a necessary and

sufficient condition for this CM, thus ν = γ

2δ
. It is important

to mention that the matrices � and D on that corollary need
not be invariant.

The subgroup of local rotations in K(n) is described as the
set of matrices (31) with

Y = Diag(y1,y2, . . . ,yn), Z = Diag(z1,z2, . . . ,zn), (34)

which corresponds to a rotation

Ri :=
(

yi zi

−zi yi

)
∈ K(1) (35)

in each respective canonical pair (q̂i ,p̂i). The matrix � ∈
Mat(2n,R) is invariant under the local rotation subgroup if
it is of the following form:

� =
(

�1 �2

−�2 �1

)
, (36)

with �i := Diag(γi1, . . . ,γin) ∈ Mat(n,R). Since D is sym-
metric, it will be invariant under the same subgroup if it is
written as

D = Diag(d1, . . . ,dn,d1, . . . ,dn) ∈ Mat(2n,R). (37)

Assuming that � and D have this invariant structure,
Proposition 3 guaranties that the CM of the steady state will
be

V = Diag(v1, . . . ,vn,v1, . . . ,vn), vi ∈ R ∀ i, (38)

which is the CM of n-mode thermal state.

V. EXAMPLES

Let us now present some examples to show the usefulness
of the results presented in this work.

A. Two oscillators interacting with thermal baths

Consider two coupled harmonic oscillators, each one
interacting with its own thermal bath. The frequency of the
oscillators are ω1 and ω2 and the spring constant is κ .

The Hamiltonian of the system is given by Eq. (4) with
ξ = 0, H0 = 0 and

H =
[
ω1 + κ

2 − κ
2− κ

2 ω2 + κ
2

]
⊕

[
ω1 0
0 ω2

]
. (39)

The coupling between a given oscillator and the respective
reservoir is described by the Lindblad operators [3]

L̂k =
√

�ζk(N̄k + 1)âk, L̂′
k =

√
�ζkN̄kâ

†
k, k = 1,2, (40)

where ζk � 0 are the bath-oscillator couplings, N̄k � 0 are
thermal occupation numbers, and âk := (q̂k + ip̂k)/

√
2� is the

annihilation operator associated with mode k. This choice for
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the reservoirs and Eq. (4) allow us to identify

λ1 =
√

ζ1

2
(N̄1 + 1) (i,0,−1,0)�,

λ′
1 =

√
ζ1

2
N̄1 (i,0,−1,0)†,

λ2 =
√

ζ2

2
(N̄2 + 1) (0,i,0,−1)�,

λ′
2 =

√
ζ2

2
N̄2 (0,i,0,−1)†. (41)

With the above vectors, and using Eqs. (6), (7), and (10), one
finds

D = DDD ⊕ DDD, DDD := Diag[ζ1(2N̄1 + 1),ζ2(2N̄2 + 1)],

� =

⎡⎢⎢⎣
− ζ1

2 0 ω1 0
0 − ζ2

2 0 ω2

−ω1 − κ
2

κ
2 − ζ1

2 0
κ
2 −ω2 − κ

2 0 − ζ2

2

⎤⎥⎥⎦. (42)

For simplicity, we will consider ζ1 = ζ2 = ζ , ω1 = ω2 = ω,
and the eigenvalues of � become

SpecC(�) =
{
−ζ

2
± iω, − ζ

2
± i

√
ω(ω + κ)

}
. (43)

As one can see, � is AS since Re[SpecC(�)] < 0 for all
(positive) values of the parameters.

The separability of the steady state will be retrieved from
Eqs. (22). Since � �= ��, Eq. (22a) will be applied and,
calculating the eigenvalues of D[iJ�k ], one finds

SpecR(D[iJ�2 ]) =
{
ζ (N̄1 + N̄2 + 1) ±

√
κ2

2
+ ζ 2(N̄1 − N̄2)2 + ζ 2 ±

√
κ4

4
+ ζ 2κ2 + 4ζ 4(N̄1 − N̄2)2

}
. (44)

The steady state is separable if this spectrum is non-negative,
or explicitly when

ζ

κ
� S(N̄1,N̄2) :=

√
(2N̄1 + 1)(2N̄2 + 1)

16N̄1N̄2(N̄1 + 1)(N̄2 + 1)
. (45)

In this example, states with 0 ∈ SpecR(D[iJ�k ]) are all lying
in the surface ζ/κ = S(N̄1,N̄2). The classicality of the steady
state will be determined by Eq. (18) with

SpecR(D[−I]) =
{
ζ (N̄1+N̄2) ± κ

2
±

√
κ2

4
+ ζ 2(N̄1−N̄2)2

}
,

(46)

and the steady state will be classical if

ζ

κ
� P(N̄1,N̄2) := N̄1 + N̄2

4N̄1N̄2
. (47)

In Fig. 1 we show the functions in Eqs. (45) and (47). Since a
classical state is always separable, S(N̄1,N̄2) < P(N̄1,N̄2).

To understand the sufficiency of the results for the system
in consideration, as a consequence of the fact that � �= ��,
we explore the separability and classicality criteria directly
applying both to the CM of the steady state. Using Eqs. (42),
we are able to obtain analytically the solution V = P(�,D)
using Eq. (12) or solving algebraically the LE 	V,�,D
. For
simplicity and without loss of generality, we choose N̄1 =
N̄2 = N̄ and the solution is

V = (2N̄ + 1)I4

+ (2N̄ + 1)κ

ζ 2 + 4ω(ω + κ)

[
ω 1

2ζ
1
2ζ (ω + κ)

]
⊗

[−1 1
1 −1

]
. (48)

The steady state is classical if and only if the above CM obeys
Eq. (17), or working out its eigenvalues, if and only if

ζ

κ
� P ′(N̄) :=

√
1

4N̄2
−

(
2ω

κ
+ 1

)2

. (49)

As for separability, the steady state will be separable if and
only if the condition (21) is satisfied, which reads as

ζ

κ
� S ′(N̄ ) :=

√
1

16N̄2(N̄ + 1)2
−

(
2ω

κ
+ 1

)2

. (50)

In Fig. 2, the two functions representing the necessary and
sufficient conditions in Eqs. (49) and (50) are shown. We
also compare them with the two sufficient conditions (45) and
(47), already plotted in Fig. 1. It is clear that, for the system
in question, even if the sufficient criteria become tighter for
smaller values of N̄ , they are in general unable to determine
whether a state is entangled or nonclassical.

ζ
κ

N̄1

N̄2

FIG. 1. Separability surface S (bottom) and classicality surface
P (top). States either on or above S are separable while states either
on or above P are classical. Between S and P there are classical
and nonclassical separable states. Below S, there are separable and
entangled states. The divergence of both functions for N̄1 → 0 and
for N̄2 → 0 are not shown in this plot.
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(Separable)
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(Separable)
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S′→
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FIG. 2. Necessary and sufficient conditions for classicality and
for separability of the steady state. We show the functions P ′(N̄ ) in
Eq. (49) and S ′(N̄ ) in Eq. (50), as indicated in the graph. The regions
limited by these two functions indicates the nature of the steady
state. We also plot the functions S(N̄,N̄) in Eq. (45) and P(N̄,N̄) in
Eq. (47) as dashed curves, see Fig. 1. In this plot ω/κ = 0.5.

For the Gaussian-steering property, we also consider the
case N̄1 = N̄2 = N̄ and the sufficient condition is determined
by calculating the matrix D[i�k] [the matrix �k is defined in
Eq. (24), and here n1 = n2 = 1], which has the eigenvalues

SpecR(D[i�1]) = SpecR(D[i�2])

= {(2N̄ + 1), ζ (2N̄ + 1) ±
√

4ζ 2 + κ2}. (51)

The steady state will be non-Gaussian steerable with respect
to both partitions if ζ/κ � [4(2N̄ + 1)2 + 4]−1/2.

B. Two oscillators interacting with thermal baths
in rotating wave approximation

Let us consider the same system as before, but with the
Hamiltonian

H =
[
�1 �

� �2

]
⊕

[
�1 �

� �2

]
. (52)

This Hamiltonian is derived from the one in Eq. (39) by
applying a rotating wave approximation (RWA). The proce-
dure and the validity of this result are carefully discussed
in the appendix of Ref. [22], as well as the relation among
the coupling constant � in Eq. (52) with the parameters in
Eq. (39); see the note [23] for details. Considering also the
same structure for the reservoirs in (41), one finds

� =

⎡⎢⎢⎣
− ζ1

2 0 �1 �

0 − ζ2

2 � �2

−�1 −� − ζ1

2 0
−� −�2 0 − ζ2

2

⎤⎥⎥⎦, (53)

which is AS with eigenvalues

SpecC(�) =
{
−ζ1 + ζ2

4
± 1

4

√
(ζ1 − ζ2)2 − 4�2 ± i�

}
,

(54)

where we used �1 = �2 =: � . Note that � in Eq. (53) and D
in Eq. (42) are invariant under a rotation by J ∈ K(2). Follow-
ing Proposition 3, the steady state CM for this system will also
be, i.e., V = JVJ�, which means that position-momentum
correlations are antisymmetric and position-position cor-
relations are equal to momentum-momentum correlations.
This symmetry help us to solve algebraically the LE (9),
obtaining [24]

V =

⎡⎢⎣ v1 0 0 v14

0 v2 −v14 0
0 −v14 v1 0

v14 0 0 v2

⎤⎥⎦, (55)

with

v1 = 2
ζ1N̄1 + ζ2N̄2

ζ1 + ζ2
+ 2(N̄1 − N̄2)ζ1ζ

2
2

(ζ1 + ζ2)(4�2 + ζ1ζ2)
+ 1,

v2 = 2
ζ1N̄1 + ζ2N̄2

ζ1 + ζ2
+ 2(N̄2 − N̄1)ζ 2

1 ζ2

(ζ1 + ζ2)(4�2 + ζ1ζ2)
+ 1,

v14 = 4ζ1ζ2�(N̄2 − N̄1)

(ζ1 + ζ2)(ζ1ζ2 + 4�2)
. (56)

Note that, if ζ2 = 0, then V = (2N̄1 + 1)I4, which has a simple
structure, but it cannot be simply retrieved by symmetries of
� and D.

The simple form of Eq. (55) can be used to explicitly
analyze the results in conditions in Eq. (18). Considering for
simplicity ζ1 = ζ2 = ζ , the (doubly degenerate) spectrum of
Eq. (55) is

SpecR(V) =
{
N̄1 + N̄2 + 1 ± (N̄1 − N̄2)√

1 + 4�2/ζ 2

}
. (57)

From this, it is easy to see that the state (55) is classical for
any values of the parameters, since V − I4 � 0. On the other
hand, let us calculate

SpecR(D[−I]) = {2ζ N̄1, 2ζ N̄2}, (58)

which is non-negative for any value of N̄1 and N̄2. The
statement in Eq. (18) thus tells us that all steady states of
this system belong to the set of classical states, which was
already found by means of Eq. (57).

C. Cascaded optical parametric oscillator

Consider an optical parametric oscillator (OPO) coupled to
the vacuum field [12]. The Hamiltonian is written as Ĥ =
i�ε(â†2 − â2)/4, where ε � 0 denotes the effective pump
intensity. The coupling with the vacuum is described by the
operator L̂ = √

�κâ, where κ > 0 is the damping cavity rate.
With the help of Eqs. (4), (6), (7), and (10), one readily

reaches

� =
[

1
2 (ε − κ) 0

0 − 1
2 (ε + κ)

]
, D = κI2. (59)

The matrix � = �� will be AS in so far as κ > ε. Also,
D > 0, once κ > 0. Following the statement in Eq. (19), since
D̃[iJ�2 ] = Diag(ε, − ε), the steady state will be nonclassical if
ε �= 0 and will be classical only if ε = 0. The LE is trivially
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solved to give the CM of the steady state:

V = Diag[κ/(κ − ε), κ/(κ + ε)], (60)

which is a squeezed thermal state and corresponds to the
coherent-state solution in Ref. [12] if ε = 0.

For a cascaded OPO [12], the system is described by the
Hamiltonian Ĥ = Ĥ1 + Ĥ2 + 1

2i
(L̂†

1L̂2 − L̂
†
2L̂1) with Ĥj =

i�εj (â†2
j − â2

j )/4 and L̂j = √
�κâj . The coupling of the

system with the intracavity vacuum is represented by L̂ =
L̂1 + L̂2. Under these circumstances we write

D =
[
κ κ

κ κ

]
⊕

[
κ κ

κ κ

]
, (61)

and

� =
[

ε1−κ
2 0

−κ ε2−κ
2

]
⊕

[− ε1+κ
2 0

−κ − ε2+κ
2

]
, (62)

with spectrum given by

Spec(�) = {− 1
2 (κ ± ε1), − 1

2 (κ ± ε2)
}
. (63)

Note that � �= �� is AS if κ > max{|ε1|,|ε2|}. Now the
eigenvalues of D[iJ�2 ] in Eq. (22) can be calculated, yielding

SpecR(D[iJ�2 ]) = {(1 ±
√

5)κ, 2κ, 0}, (64)

which shows that the state will be always entangled following
Corollary 1. The same arguments can be applied to determine
the Gaussian steerability. Calculating the matrix D[i�k] [the
matrix �k is defined in Eq. (24), and here n1 = n2 = 1], which
has the eigenvalues

SpecR(D[i�1]) =
{

(1 ±
√

5)
κ

2
, (3 ±

√
5)

κ

2

}
,

SpecR(D[i�2]) =
{

(3 ±
√

17)
κ

2
, k, 0

}
. (65)

From these, one concludes that the state will always be
Gaussian steerable with respect to both modes since these
spectra are nonpositive.

Following Proposition 3, the CM of the steady state of the
cascaded OPO will have the symmetry induced by Eq. (26),
and reads

V =
[

k
k−ε1

− 2κε1
g−

− 2κε1
g−

− κh+
g−

]
⊕

[
k

k+ε1

2κε1
g+

2κε1
g+

κh−
g+

]
, (66)

where we have defined

g± = (ε1 + ε2 ± 2κ)(ε1 ± κ),

h± = (ε2
1 + ε1ε2 ± ε1κ + 2κ2 ∓ κε2)(ε2 ∓ k)−1.

D. Optical parametric oscillator and thermal baths

Consider the Hamiltonian dynamics of two particles de-
scribed by

Ĥ = ε

4
{{{q̂1,p̂1}}}+ + ε

4
{{{q̂2,p̂2}}}+ + κ

2
(q̂2p̂1 + p̂2q̂1). (67)

This Hamiltonian is similar to the one in the previous example,
it is basically the Hamiltonian of the cascaded OPO with a

phase change [3]. If the particles are in contact with the thermal
baths, as in Eq. (40), the dynamical matrices become

� = �� = 1
2

[
ε − ζ k

k ε−ζ

]
⊕ 1

2

[−(ε+ζ ) k

k −(ε + ζ )

]
,

(68)

D is as in Eq. (42), and now we are considering N̄1 = N̄2 = N̄

and ζ1 = ζ2 = ζ . The eigenvalues of � are

Spec(�) = {− 1
2ζ ± 1

2 (ε + κ), − 1
2ζ ± 1

2 (ε − κ)
}
, (69)

and it will be AS if ζ > ε + κ . The eigenvalues of D[−I] in
Eq. (19) are

SpecR(D[−I]) = {2ζ N̄ ± (ε + κ), 2ζ N̄ ± (ε − κ)}, (70)

which shows that the state will be classical if and only if
2ζ N̄ � (ε + κ). The eigenvalues of D̃[iJ�2 ] in Eq. (22b) are

SpecR(D̃[iJ�2 ]) = {2ζ N̄ ± κ, 2ζ (N̄ + 1) ± κ}, (71)

and the steady state will be entangled if and only if 2ζ N̄ < κ .
In the interval (ε + κ) > 2ζ N̄ � κ , the state is nonclassical
and separable. The steerability of the state is determined by

SpecR(D̃[i�1]) = SpecR(D̃[i�2])

= {(
2N̄ + 1

2

)
ζ ±

√
ζ 2 + κ2,

(
2N̄ + 3

2

)
ζ

±
√

ζ 2 + κ2
}
. (72)

As a consequence of the chosen parameters, the steady state is
symmetric with respect to the steerings of both partitions. This
state is steerable if and only if (2N̄ + 1

2 )ζ < (ζ 2 + κ2)1/2.

VI. ENGINEERING STEADY STATES

The unavoidable influence of uncontrollable degrees of
freedom are usually responsible for losses of the quantum-
ness of a system through the procedure called decoherence.
However, a steady state with a desired quantum property can
be produced by controlling the parameters of the system and of
the environmental action. As the examples of the last section,
systems of bosonic degrees of freedom have been extensively
studied in what concerns entanglement generation [25,26],
production of pure states [12,27], and engineering of graph
states [12,26]. On the experimental side, realizations of these
techniques in the context of atomic ensembles were already
performed [28].

To develop a simple theoretical engineering-state method
for bosonic degrees of freedom, we will use the results
provided by the Williamson theorem [20,21,29]:

Theorem 1 (Williamson). Let M ∈ Mat(2n,R) be a positive-
definite matrix: M = M� > 0. This matrix can be diago-
nalized by a symplectic congruence, i.e., there exists S ∈
Sp(2n,R) such that

SMS� = Diag(μ1, . . . ,μn,μ1, . . . ,μn) =: �, (73)

where μj � μk > 0 for j > k.

The double-paired ordered set (or the diagonal matrix) �

is called symplectic spectrum of M, and μk are its symplectic
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eigenvalues (SEs). These can be found from the (Euclidean)
eigenvalues of JM [21], which turn out to be

SpecC(JM) = Diag(iμ1, . . . ,iμn, − iμ1, . . . , − iμn). (74)

Suppose one wants to design a reservoir structure able to
produce a steady state (with n degrees of freedom) described
by a 2n × 2n CM V′. If one identifies this CM with M in
Eq. (73), the first step is to find a suitable LE able to produce
its corresponding symplectic spectrum � as a solution, i.e.,
it is necessary to find matrices �′ and D′ satisfying the LE
	�,�′,D′
. Assuming that it is possible to design a system-
reservoir structure with this LE, one applies the symplectic
covariance (29) to it and finds

	V′, S−1�′S, S−1D′S−�
, (75)

which, by Eq. (73), is the LE with solution V′ = S−1�S−�.
Reservoir engineering can then be realized by finding some
convenient matrix � and a system-reservoir structure suitable
to the unitary transformations, as in Eq. (30). Following
Eq. (29), the engineered Hamiltonian and Lindblad operators
will be, respectively, such that H′ = S�HS and λ′ = S−1λ.

A peculiar example using Eq. (75) appears when one
is able to produce a reservoir structure such that D′ = β�

and �′ = −βI2n with β > 0, thus the use of Eq. (73) gives
that 	V′, − βI2n, βV′
. This shows that a Lindblad equation
with ϒ = 1

2βV′ + iβI2n [see Eq. (7)] will have a steady state
automatically given by a Gaussian with CM V′.

In fact, the matrix � in Eq. (73) is like the CM in Eq. (38),
thus any �′ as in Eq. (36) and D′ as in Eq. (37), which are
invariants under the local rotations in Eq. (35), are appropriate
to the first step of the method. It is noticeable that not all
reservoir structures are suitable to produce a diagonal matrix
� as a CM of a steady state, since it cannot have the desired
invariant structure for performing the first step. However, it
is still possible to use the covariance relation (29) to design
a specific steady state from a known simple steady state of
some system, one of these cases (the OPO in Sec. V C) will be
analyzed at the end of this section.

The special condition presented in Corollary 3 can be used
to engineer a specific and important class of states. Explicitly,
we will use the relation (29) to generate a state with CM V′ =
αSS�, where S ∈ Sp(2n,R) and α � 1. In other words, we
want to know which matrices �p AS and Dp � 0 are necessary
to construct a LE with the solution given by the desired CM.
Note that the above-mentioned CM represents a pure state if
and only if α = 1 [12,20,21].

As stated in Corollary 3, the n-mode Gibbs state with
V = αI2n is generated by any LE of the form 	V,�′,−α(�′ +
�′�)
, for all matrices �′ AS such that (�′ + �′�) � 0. Using
the relation (29), we are able to obtain a covariant LE
	V′,�p,Dp
 with

V′ = αSS�, �p = S�′S−1, Dp = −αS(�′ + �′�)S�.

(76)

It is interesting to note that, recalling Corollary 3, the value of
α only depends on the reservoir structure (it does not depend
on the Hamiltonian of the system) used to prepare the initial
state V = αI2n; conveniently the Hamiltonian at this stage can
be taken as zero. Another remarkable fact is that any one-mode

Gaussian state (n = 1) is included in the scheme provided by
Eq. (76): these states have a CM written as V′ in Eq. (76)
with α = μ1 � 1 and S ∈ Sp(2,R), as a consequence of the
Williamson theorem.

In Ref. [12], the authors established specific conditions for a
system to be driven to a pure steady state when evolving under
the LME subjected to the restrictions in Eq. (4). Equation (76)
with α = 1 constitutes a simple connection with some of their
results.

Examples

1. Two-mode thermal squeezed states

Consider the following CM:

V′ = (2n̄ + 1)SrS�
r , (77)

with

Sr :=
[(

cosh r sinh r

sinh r cosh r

)
⊕

(
cosh r − sinh r

− sinh r cosh r

)]
, (78)

where r � 0 is the squeezing parameter and n̄ � 0 is the mean
number of thermal photons of both modes. Note that Sr ∈
Sp(4,R). Following the criteria (21) and (24), the state in
Eq. (77) will be respectively entangled if and only if r >

ln(2n̄ + 1) and steerable if and only if r > cosh−1(2n̄ + 1).
If one wants to engineer a reservoir with the steady state

given in Eq. (77), it is possible to apply the scheme in
Eq. (76). For this purpose, one needs a reservoir structure
able to produce a steady state of the form V = αI2n with
α = (2n̄ + 1). An example of a system with this steady state
is the one in Sec.V B with N̄1 = N̄2. The system in Sec.V A
can also be used to this end, but now, besides the condition
N̄1 = N̄2, one needs to take κ = 0—this condition is necessary
to guarantee that � + �� � 0, as required in Corollary 3.
Recalling that the Hamiltonian dynamics does not affect the
value of α in Eq. (76), one can use either ω1 = ω2 = κ = 0
and ζ1 = ζ2 := ζ in Eq. (42), or �1 = �2 = � = 0 and
ζ1 = ζ2 := ζ in Eq. (53) to obtain a reservoir structure with
�′ = − ζ

2 I4 and D′ = (2n̄ + 1)ζ I4. This structure produces the
steady state V = (2n̄ + 1)I2n.

Now, one needs to apply the covariance relation (76) and
determine the engineered reservoir with matrices �p and Dp

through the symplectic matrix (78), i.e.,

�p = −ζ

2
I4, Dp = (2n̄ + 1)ζSrS�

r . (79)

From Eq. (29), one can see that λ′ = Srλ, and the Lindblad
operators in Eq. (4) for λ′ are characteristics of a squeezed
thermal bath.

2. Optical parametric oscillator steady states

The steady state in Eq. (66) is a pure steady state if and
only if ε1 = −ε2 [12]. Under these conditions and if we define
ε := √

(κ + ε2)/(κ − ε2), the CM of this steady state is written
as

V′ = SpS�
p , Sp :=

(
1+ε

2
1−ε

2
1−ε

2
1+ε

2

)
⊕

(
1+ε
2ε

ε−1
2ε

ε−1
2ε

1+ε
2ε

)
, (80)

which is entangled for any value of ε. Obviously, if one wants
to produce this pure state as a steady state of an OPO, the only
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step is to produce an OPO satisfying the mentioned conditions.
On the other side, it is not possible to produce it by using the
covariance rules in Eq. (76) for an OPO, since Corollary 3
requires � + �� � 0, which is not the case for � in Eq. (62)
with ε1 = −ε2.

By the Williamson theorem, the symplectic spectrum of the
CM of the pure state in Eq. (80) is the identity matrix [30]. If
one can choose suitable values of the parameters in Eqs. (61)
and (62) such that �′ and D′ satisfy the LE 	I4,�′,D′
, then
Eq. (75) can be applied. In fact, this happens when ε1 =ε2 =0.
Thus, preparing an OPO system such that this last condition
holds, Eq. (75) becomes⌊

SpS�
p , Sp�

′S−1
p , SpD′S�

p

⌉
. (81)

with D′ as in Eq. (61) and

�′ =
[− κ

2 0
−κ − κ

2

]
⊕

[− κ
2 0

−κ − κ
2

]
. (82)

Note that the matrices �′ and D′ in this example do not have
the invariant structure in Eq. (35). Note also that the same pure
state can be engineered by using thermal baths. The recipe for
this case is just Eq. (79) but replacing Sr by Sp and using
n̄ = 0.

An entangled and steerable (with respect to both partitions)
mixed state can also be prepared by following the same recipe.
Suppose that one wants to create the below state as a steady
state of an OPO-covariant-LE:

V′ = S−1
p �S−�

p , (83)

with Sp defined in Eq. (80) and

� = Diag[1, (1 − ε)−1, 1, (1 + ε)−1]. (84)

This matrix is the solution for the LE 	�,�′,D′
 with D′ in
Eq. (61) and �′ in Eq. (62) both with κ = 1, ε1 = 0, and ε2 = ε.
By the same recipe as before, the LE in Eq. (75) has the above
V′ as solution if we replace S by Sp and the mentioned matrices
�′ and D′.

VII. FINAL REMARKS

Symmetries and properties of the Lyapunov equation
were used to classify the features of the steady state of
a LME with a quadratic Hamiltonian and linear Lindblad
operators. The connection with the Lyapunov equation eases
the characterization of the state, a task that is typically difficult
when performed using the master equation directly.

For Gaussian steady states, we focused on known bona
fide relations for the covariance matrix of a state. Specifically,
we considered conditions for the classicality, separability, and
steerability of Gaussian states. We remark, however, that the
extension for any other bona fide relation is straightforward
and can be performed following the lines presented here.
For instance, we can refer to the characterization of tripar-
tite entanglement given in Ref. [31]. We also analyze the
consequences for the covariance matrix of a steady state
when a transformation symmetry of the Lyapunov equation
is performed.

We focused our examples on systems with one or two
degrees of freedom, which has enabled us to compare the
results of our corollaries with the results extracted directly
from the covariance matrix of the system after solving the
Lyapunov equation. However, our results are applicable to
systems with a generic number of degrees of freedom. For large
systems, in particular in the absence of symmetries, numerical
solutions might be needed to find the covariance matrix of the
steady state; for instance, the systems considered in Ref. [32].
In this situation, instabilities associated with the algorithms for
solving Lyapunov equations may arise [33]. The robustness
of the analytical results shows the advantage with respect to
either perturbations of the systems parameters or preparation
imprecisions. In other words, our results are advantageous
since one does not need to solve a Lyapunov equation to know
some of the system properties or symmetries. In addition, our
results are suitable for the engineering of (a reservoir leading
to a specific) steady state of a LME having suitable properties
and symmetries.
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APPENDIX A: NOTATIONS AND DEFINITIONS

Throughout the text we use some mathematical objects
whose notations are defined here:

(1) Mat(m,K): set of all m × m square matrices over the
field K.

(2) GL(m,K) := {M ∈ Mat(m,K)| det M �= 0}: general
linear group over field K.

(3) Sp(2m,R) := {M ∈ Mat(2m,R)|MJM� = J}: real
symplectic group.

(4) O(m) := {M ∈ Mat(m,R)|MM� = Im}: real orthogo-
nal group.

(5) Im: Identity matrix in Mat(m,K).
(6) 0m: zero matrix in Mat(m,K).
(7) SpecK(M) := {ν1, . . . ,νl} is the spectrum of M ∈

Mat(m,K). It is the set of its eigenvalues νk ∈ K, ∀ k and
l � m.

(8) M�: transposition of M. M−�: inverse of M�.
(9) M∗: complex conjugation of the elements of M.
(10) In(M) := (n+,n0,n−)(M): Inertia index, i.e., the triple

containing the number of eigenvalues of M with positive
(n+), null (n0), and negative (n−) real part. Note that, if
M ∈ Mat(m,K), then m = n+ + n0 + n−.
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In what follows, M ∈ Mat(m,K) and M = M†:
(1) M > 0 (M < 0): positive (negative) definiteness of M,

i.e., all its eigenvalues are positive (negative).
(2) M � 0 (M � 0): Positive (negative) semidefiniteness

of M, i.e., all its eigenvalues are non-negative (nonpositive). In
this text, the statement M � 0 (M � 0) means that M can, but
not necessarily, have null eigenvalues. This is the same as say
that the set of matrices such that M > 0 (M < 0) is a subset
of those satisfying M � 0 (M � 0).

It is noteworthy that, following our definitions, the sum
of two positive (negative) semidefinite matrices is positive
(negative) semidefinite, i.e., the sum will have non-negative
(nonpositive) eigenvalues. In addition, the sum of two
positive (negative) definite matrices is positive (negative)
definite.

APPENDIX B: ON THE P-REPRESENTABILITY
OF STATES

Due to the absence of a proof in the literature, this appendix
is devoted to prove that the necessary and sufficient condition
for P -representability of a n-mode Gaussian state is Eq. (17).

A quantum state ρ̂ is P -representable, by definition, if it
can be written as a convex and regular sum of coherent states

through the Glauber–Sudarshan P -function [34]:

ρ̂ =
∫

P (ζ )|ζ 〉〈ζ |d2nζ, (B1)

where ζ ∈ R2n and |ζ 〉 is a coherent state.
The sufficient condition is proved in Ref. [13] for two mode

Gaussian states, i.e., n = 2 in Eq. (B1). The extension for any
n-mode state (not only the Gaussians) follows the same recipe:
using the definition of the CM [Eq. (8)] with the ρ̂ in Eq. (B1),
Eq. (17) follows immediately.

To prove the necessary condition (only for Gaussian states),
we choose two Gaussian states ρ̂ and ρ̂0, with the respective
CMs V and V0 such that V � V0. These states can be related
through a Gaussian noise channel [35]:

ρ̂ = 1

(π�)n

∫ +∞

−∞

e− 1
�

ζ ·�−1ζ

√
Det�

T̂ζ ρ̂0T̂
†
ζ d2nζ. (B2)

The operators T̂ζ are the Weyl displacement operators [21],
and � := V − V0 � 0. Mathematically speaking, Eq. (B2)
express the very known fact that the convolution of two
Gaussian functions is a Gaussian function. If we choose V0 =
I2n and ρ̂0 as a vacuum state, the positive-semidefiniteness of
� implies relation (17), as we should prove.
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