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Dynamical reduction models propose a solution to the measurement problem in quantum mechanics: the
collapse of the wave function becomes a physical process. We compute the predictions to decaying and flavor-
oscillating neutral mesons for the two most promising collapse models, the QMUPL (quantum mechanics with
universal position localization) model and the mass-proportional CSL (continuous spontaneous localization)
model. Our results are showing (i) a strong sensitivity to the very assumptions of the noise field underlying those
two collapse models and (ii) under particular assumptions the CSL case allows one even to recover the decay
dynamics. This in turn allows one to predict the effective collapse rates solely based on the measured values
for the oscillation (mass differences) and the measured values of the decay constants. The four types of neutral
mesons (K meson, D meson, Bd meson, and Bs meson) lead surprisingly to ranges comparable to those put
forward by Adler [J. Phys. A: Math. Theor. 40, 2935 (2007)] and Ghirardi, Rimini, and Weber [Phys. Rev. D 34,
470 (1986)]. Our results show that these systems at high energies are very sensitive to possible modifications of
the standard quantum theory, making them a very powerful laboratory to rule out certain collapse scenarios and
study the detailed physical processes solving the measurement problem.

DOI: 10.1103/PhysRevA.94.052128

I. INTRODUCTION

Quantum mechanics has proven to be an exceedingly
successful theory. It covers a plethora of physical phenomena
at different energy scales and, up to date, no experiments are in
contradiction. However, quantum theory is very counterintu-
itive and meets conceptual problems. Considering quantum
mechanics as a fundamental theory also superpositions of
macroscopic objects, such as cats, should exist which are
obviously not observed in our daily world. In the Copenhagen
interpretation during a measurement process a breaking of the
superposition is mathematically postulated, but no detailed
physical process has been assigned to it. Moreover, separa-
tion into macroscopic system (measurement apparatus) and
microscopic system (quantum system) is utilized but lacks a
clear definition. Ruling out unobserved macroscopic super-
positions is the heart of the so-called measurement problem
or macro-objectification problem [1,2]. Dynamical reduction
models, so-called collapse models, introduce an ontologically
objective mechanism of the wave-function collapse. Since
collapse models provide definite predictions for the regime
between microscopic and macroscopic they are experimentally
testable.

In 1985 the first dynamical reduction model, the GRW
model, proposed by Ghirardi, Rimini, and Weber [3], appeared
on the market. Currently, two sophisticated versions are
intensively investigated both from the fundamental point of
view as well as from the experimental point of view. These
are the QMUPL model (quantum mechanics with universal
position localization) [4] and the CSL model (continuous
spontaneous localization) [5,6] in its mass-proportional ver-
sion [7]. Both models introduce the spontaneous collapse
by a modification of the standard Schrödinger equation by
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adding specific nonlinear and stochastic terms and intro-
ducing two new—taking collapse models seriously—natural
constants: a collapse rate and a coherence length of the
localization.

Flavor physics is a rich field within physics with many
unique features, and new facilities in the near future will
tackle very precisely this regime of energy. This contribution
investigates how these two collapse models change the flavor
changing dynamics of neutral mesons. In particular, we find
that the specific link between the position space and the
flavor space provides constraints onto the collapse models in
general. Moreover, we find also that the noise field underlying
any collapse models can be a source of the two different
decay constants of mesons. In detail, the nonlinear interaction
of the quantum system with the noise field implies the
dependence on the absolute masses of the lifetime eigenstates,
the diagonal states of the Hamiltonian, such that an effectively
nonunitary evolution occurs. The mathematical background
are the correlation functions of the stochastic processes
in the expansion. The physical background is that a time
symmetric approach between the two dual spaces (bra-ket)
is not necessarily required.

The QMUPL model has been investigated for the sponta-
neous radiation emission from a nonrelativistic free charged
particle [8,9] and put to an intensive experimental test by x rays
[10–12]. For the mass-proportional CSL model experiments
with optomechanical cavities have been proposed to detect
possible changes in the spectrum of light which drives a
mechanical oscillator [13,14]. In another approach a possible
increase of equilibrium temperature of a mechanical oscillator
produced by the spontaneous collapse was revealed [15]. For
neutral mesons (K , B, D meson) and neutrinos up to first
order in time the effect of the mass-proportional CSL model
was derived and compared to decoherence models [16,17]
by comparing to experimental data [18–23]. Recently, upper
bounds on collapse models have been derived for cold-atom
experiments [24] and the authors of Ref. [25] have shown
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that reduction models can lead to nontrivial contribution to an
effective cosmological constant.

The paper is organized as follows. We start by an introduc-
tion into collapse models and the flavor phenomenology and set
the stage in Sec. II. Next we show how for both collapse models
the transition probabilities are computed up to second order in
time in Sec. III. These computations are lengthy and involved;
therefore, the details are given in Appendix A for the QMUPL
model and in Appendix B for the CSL model, respectively.
The correlation functions and their dependence on the physics
of the noise field are derived in Appendix C. In Sec. IV we
present the results, the probabilities for the lifetime states, and
the flavor oscillating probabilities. These are the quantities that
are well investigated experimentally. We analyze then different
possibilities, one allowing us an independent prediction of the
effective collapse rate for the different types of neutral mesons.
We proceed by giving a physical meaning to the dependence
on the correlation functions of the Wiener process and finalize
by developing a decoherence model that leads to the same
probabilities as the CSL model, however, relies on strictly
different physics. Last but not least we provide a summary and
an outlook in Sec. V.

II. COLLAPSE DYNAMICS AND NEUTRAL
MESON PHENOMENOLOGY

In the QMUPL and CSL models the collapse is a continuous
process which can be described by the following nonlinear
stochastic modification of a Schrödinger equation for a given
Hamiltonian Ĥ [26]

d|φt 〉 =
[
−iĤ dt +

√
λ

N∑
i=1

(Âi − 〈Âi〉t )dWi,t

− λ

2

N∑
i=1

(Âi − 〈Âi〉t )2dt

]
|φt 〉, (1)

with � = 1 and 〈Âi〉t := 〈φt |Âi |φt 〉 being the standard quan-
tum mechanical expectation value. Here Âi are a set of N

self-adjoint commuting operators introducing the collapse in a
certain basis choice (position basis in most cases), Wi,t present
a set of N independent standard Wiener processes, one for each
collapse operator Âi , and λ � 0 quantifies the strength of the
collapse processes. The main difference of the two collapse
models under investigation is the choice of the localization
operators Âi .

A very useful mathematical property of Eq. (1) is that
its physical predictions concerning the outcomes of measure-
ments are, in terms of statistic expectations or probabilities,
invariant under a phase change in the noise [27,28]. In
particular, choosing the phase to be i one can rewrite the above
equation by

d|φt 〉 =
[
−iĤ dt + i

√
λ

N∑
i=1

Âi dWi,t − λ

2

N∑
i=1

Â2
i dt

]
|φt 〉.

(2)

Within collapse models statistics of outcomes of any ex-
periment have to be expressed as averages E[〈φt |Ô|φt 〉] =

Tr [Ô E[|φt 〉〈φt |]] = Tr[Ô ˆ̃ρ(t)], where Ô is a self-adjoint
operator.

The white noise dW represents the change in time t of
the Wiener process Wt (with the definition Wt=0 = 1). The
term white (uncolored) refers to independent and identically
distributed growths of dW , with a zero expectation value and
a standard deviation proportional to

√
dt . Since the temporal

derivative of a Wiener process does not exist (only in the sense
of distributions) the integration of the differential equation
depends on the choice of sampling point in the interval [t,t +
dt]. The Itô formalism chooses t (left-hand end point of each
time subinterval), whereas the Stratonovich formalism chooses
t + dt/2. The advantage of the Stratonovich formalism is
that the differential and integration procedures are those
familiar from ordinary calculus. Therefore, we will stick to this
formalism. Then Eq. (2) becomes a Schrödinger-like equation
(linear) with a random Hamiltonian

i
d

dt
|φt 〉 =

[
Ĥ −

√
λ

N∑
i=1

Âiwi,t

]
|φt 〉 := [Ĥ + N̂ (t)]|φt 〉,

where wi,t := d
dt

Wi,t .
Flavor oscillating systems such as the neutral meson

systems are described by two-state phenomenological Hamil-
tonians. Mesons are massive systems that decay with two
(different) decay constants, consequently, giving rise to a
nonunitary time evolution. To account for the decay one adds a
non-Hermitian part �̂ to the Hamiltonian. Since it is clear how
to add the decay constants to the final formulas, we will later
omit them in the computation of the effect of a spontaneous
collapse.

In Ref. [29] the authors succeeded in showing that effect
of the non-Hermitian part of the Hamiltonian (decay) can
be understood if the system is considered to be an open
quantum system. Then the Schrödinger equation is turned to
a Gorini-Kossakowski-Lindblad-Sudarshan master equation
[30], where a Lindblad operator implies the transition from
the surviving part to the decaying part of the system under
investigation. Consequently, the decay property can be incor-
porated via a Lindblad operator into the quantum system and
can be physically understood as an interaction with a (virtual)
environment (in quantum field theory it would refer to the QCD
vacuum). This in turn shows that the total time evolution is a
completely positive map. We will give the details in Sec. IV D.

A neutral meson M0 consists of quark-antiquark pair, and
both the particle state |M0〉 and the antiparticle state |M̄0〉 can
decay into the same final states. Therefore, neutral mesons
have to be considered as a two-state system. The dynamics
of a M0 − M̄0 oscillating system is covered by an effective
Schrödinger equation

d

dt
|ψt 〉 = −i Ĥeff|ψt 〉, (3)

|ψt 〉 = a(t)|M0〉 + b(t)|M̄0〉, (4)

where the phenomenological (effective) Hamiltonian Ĥeff =
M̂ + i

2 �̂ is non-Hermitian, M̂ = M̂† is the mass operator
which describes the unitary part of the dynamics of a neutral
meson, and �̂ = �̂† covers the decay (nonunitary part).
Diagonalizing the phenomenological Hamiltonian leads to two
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different mass eigenstates (c = 1)

Ĥ |Mi〉 =
(

mi + i

2
�i

)
|Mi〉. (5)

These two states |ML〉 and |MH 〉 have distinct masses and
without loss of generality mL denotes the lower one (L,
light; H , heavy). For all types of neutral mesons the decay
rates �L,�H are approximately equal, except for K mesons
whose decay rates differ by a huge factor 600. For the sake of
simplicity we assume that mass eigenstates are orthogonal,
〈MH |ML〉 = 0; herewith we neglect a small violation of
the charge-conjugation–parity (CP) symmetry. The relation
between the flavor eigenstates and mass eigenstates is then
given by (introducing without loss of generality a particular
phase convention)

|M0〉 = 1√
2

(|MH 〉 + |ML〉), (6a)

|M̄0〉 = 1√
2

(|MH 〉 − |ML〉), (6b)

Let us here also remark that temporal part of the evolution
of mesons is not normalized in time (due to the non-Hermitian
part of the effective Hamiltonian), i.e. (for clarity we add here
the natural constants which we else set to one),

ψ(t) = e− i
�

mc2t e− �
2 t −→

∫ ∞

0
|ψ(t)|2dt = 1

�
. (7)

Obviously, a normalization of the temporal part by
√

�

would give a similar expression as the Born rule for the
spatial part (

∫∞
−∞ |ψ(�x)|2d3x = 1) and allow for a definition

of a time operator [31–36]. However, recently, it was shown
that this formal normalization leads to contradiction with
experimental data if the small violation of the charge-
conjugation–parity (CP) symmetry is taken into account [37].
This expresses the strikingly different roles of time and
space in the quantum theory and the importance of discrete
symmetries.

Let us now move to the two dynamical reduction models,
the QMUPL model for one particle (N = 1) and the mass-
proportional CSL model, and apply them to meson systems.
In the QMUPL model the operators Âi introduce the collapse
and are chosen to be the position operators q̂i . In order to
describe the collapse dynamics in the case of neutral mesons
we extend the collapse operators Âi by a flavor part

ÂQMUPL = q̂ ⊗
[
mH

m0
|MH 〉〈MH | + mL

m0
|ML〉〈ML|

]
, (8a)

and, consequently, the N̂ (t) operator of the Schrödinger-like
equation (3) becomes

N̂QMUPL(t) = −
√

λ[w(t)q̂]

⊗
[
mH

m0
|MH 〉〈MH | + mL

m0
|ML〉〈ML|

]
, (8b)

where m0 is a reference mass which is taken usually to
be the nucleon mass. We consider w(t) := dW(t)

dt
as a white

(uncolored) noise field, where W(t) = {W1(t), . . . ,Wd (t)} and

the corresponding correlation function isE[w(t)w(s)] = δ(t −
s). Here d denotes the dimension, i.e., d = 1,2,3 in general.

In the case of the mass-proportional CSL model the collapse
operator acts in a Fock space, so we replace Âi by a continuous
set of operators Â(x), one for each point in space, i.e.,

ÂCSL(x) =
∫

dy g(y − x)

×
(

mH

m0
ψ̂

†
H (y)ψ̂H (y) + mL

m0
ψ̂

†
L(y)ψ̂L(y)

)
, (9a)

N̂CSL(t) = −√
γ

∫
dy w(y,t)

×
(

mH

m0
ψ̂

†
H (y)ψ̂H (y) + mL

m0
ψ̂

†
L(y)ψ̂L(y)

)
, (9b)

where ψ̂
†
j (y) and ψ̂j (y) are creation and annihilation operators

of a particle of type j = H,L in a point y. The smearing
function g(y − x) is usually taken to be of a Gaussian type

g(y − x) = 1

(
√

2πrC)d
e−(y−x)2/2r2

C , (10)

where rC is a spatial correlation length and represents one
of the two phenomenological constants γ,rc of the mass-
proportional CSL model. The correlation functions of the
mass-proportional CSL noise are given by

E[w(x,t)w(y,s)] = F (x − y)δ(t − s), (11)

where F (x) = 1
(
√

4πrC )d
e−x2/4r2

C . Note that we have substituted

the rate λ by γ which now has the units [md/s]. A characteristic
of the CSL model is that all observable results will be
proportional to the ratio γ /rd

C being a rate or by including
all units the strength of the interaction.

III. DERIVATION OF THE TRANSITIONS PROBABILITIES

Accelerator facilities have intensively studied and will
study the transition probabilities from mass eigenstates to mass
eigenstates, PMμ→Mν

(t), and from flavor eigenstates to flavor
eigenstates, PM0→M0/M̄0 (t).

For the QMUPL model we need to define the initial spatial
state. We will assume a wave packet in position picture with
a width

√
α in d-dimensional space (d = 1,2,3) and with

a momentum pi . Further we assume that the final state is
a momentum eigenstate (most common scenario in typical
accelerator facilities). The probabilities of interest are

PMμ→Mν
(α; t) =

∑
pf

E|〈Mν,pf |Mμ(t),pi ,α〉|2,

PM0→M0/M̄0 (α; t) =
∑
pf

E|〈M0/M̄0,pf |M0(t),pi ,α〉|2,

where E denotes the noise average and μ,ν = L,H . For the
QMUPL model we start with the one-dimensional case and
then generalize the results to the d-dimensional case. In the
case of the mass-proportional CSL model we start directly
with the d-dimensional case.

To obtain the probabilities of interest we need to compute
first the transition amplitudes for all mass eigenstates. For that
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we move to the interaction picture and treat the noise term
N̂ (t) as a perturbation

Tμν(pf ,pi ,α; t) := 〈Mν,pf |Mμ(t),pi ,α〉
= e−imμt 〈Mν,pf |ÛI (t)|Mμ,pi ,α〉, (13)

where the evolution operator ÛI (t) is the corresponding one in
the interaction picture. The evolution operator is then expanded
into a Dyson series up to fourth perturbative order

Tμν(pf ,pi ,α; t)

	 e−imμt
[
T (0)

μν (pf ,pi ,α; t) + T (1)
μν (pf ,pi ,α; t)

+T (2)
μν (pf ,pi ,α; t)+T (3)

μν (pf ,pi ,α; t)+T (4)
μν (pf ,pi ,α; t)

]
,

(14)

with

T (0)
μν (pf ,pi ,α; t0) = 〈Mν,pf |Mμ,pi ,α〉, (15a)

T (n)
μν (pf ,pi ,α; t0) = (−i)n

∫ t0

0
dt1 . . .

∫ tn−1

0
dtn

×〈Mν,pf |
n∏

j=1

[N̂I (tj )]|Mμ,pi ,α〉

for n = 1,2,3,4, (15b)

where N̂I (t) is the noise term in the interaction picture.
Each term in (14) is in detail computed in Appendix A. The
crucial derivations of the correlation functions are given in
Appendix C.

For the CSL model we follow a similar strategy; however,
we can immediately consider the d-dimensional case and the
method introduced in Refs. [16,28]. All details are summarized
in Appendix B.

IV. RESULTS

We first give the general result and analyze its features. Then
we present a decoherence model within standard quantum
mechanics resulting in the same probabilities as those of the
CSL model.

A. General results

Putting all pieces together we obtain the desired
probabilities up to second order in time and collapse

parameters

P
QMUPL
Mμ=L/H →Mν=L/H

(t) = δμν

(
1 − �QMUPL

μ t + 3

× 1
2

(
�QMUPL

μ

)2
t2 + O(t3)

)
e−�μt ,

(16)

P CSL
Mμ=L/H →Mν=L/H

(t) = δμν

(
1 − �CSL

μ t

+ 1
2

(
�CSL

μ

)2
t2 + O(t3)

)
e−�μt , (17)

with

�QMUPL
μ = αλ

2

m2
μ

m2
0

[1 − 2θ (0)],

�CSL
μ = γ

(
√

4πrC)d
m2

μ

m2
0

[1 − 2θ (0)], (18)

where θ (0) is the Heaviside function at zero. The result of the
QMUPL model agrees with those in Ref. [38]. Let us mention
here a couple of comments. First, the mass eigenstates do not
oscillate as it is the case in the standard approach. Secondly,
we find that the effect of the collapse in position space leads
to a term that is proportional to the mass squared per unit
mass squared. These masses never appear in standard quantum
theory. Moreover, it gives an “inverted” ordering, namely the
decay rate that is bigger than the other one is connected
to the heavier mass. This in turn means that the eigenstate
of the heavier mass decays earlier. We reconsider this point
in Sec. IV B. Thirdly, the result of the QMUPL model is
independent of the number of dimensions d (see Appendix B).
Fourthly, there is an additional factor 3 (independent of the
number of dimensions d) in second order of time. This is
a bit surprising. Having a closer look into the computations
summarized in Appendix A we observe that the factor 3 is
a product of choosing Gaussian wave functions and their
integration over all final momenta. As a consequence the effect
of the collapse on the meson time evolution cannot be assumed
to be an exponential effect in general. In strong contrast to the
CSL model, where we can expect that the dynamics of a mass
eigenstate propagating in free space is exponential,

P CSL
Mμ=L/H →Mν=L/H

(t) = δμνe
−(�CSL

μ +�μ)t . (19)

Last but not least the choice of θ (0) ∈ [0,1] coming from the
correlation functions of the Wiener processes leads to positive
[θ (0) ∈ [0, 1

2 }], zero [θ (0) = 1
2 ], or negative [θ (0) ∈ [ 1

2 ,1}]
values of �CSL. Before we proceed in discussing which value
θ (0) should be taken, let us present the results for the transition
of the flavor eigenstates (flavor oscillation)

P
QMUPL
M0→M0/M̄0 = 1

4

[ ∑
i=H,L

e−�i t

(
1 − �

QMUPL
i t + 1

2

(
�

QMUPL
i

)2
t2 + O(t3)

)

±2 cos(�mt) e− �H +�L
2 t

{
1 − αλ

2

[
�m2

m2
0

[1 − θ (0)] + mHmL

m2
0

[1 − 2θ (0)]

]
t

+ 1

2

(
αλ

2

[
�m2

m2
0

[1 − θ (0)] + mHmL

m2
0

[1 − 2θ (0)]

])2

t2 + O(t3)

}]
,
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P CSL
M0→M0/M̄0 = 1

4

[ ∑
i=H,L

e−�i t

(
1 − �CSL

i t + 1

2

(
�CSL

i

)2
t2 + O(t3)

)

±2 cos(�mt) e− �H +�L
2 t

{
1 − γ

(
√

4πrC)d

[
�m2

m2
0

(1 − θ (0)) + mHmL

m2
0

(1 − 2θ (0))

]
t

+1

2

(
γ

(
√

4πrC)d

[
�m2

m2
0

(1 − θ (0)) + mHmL

m2
0

(1 − 2θ (0))

])2

t2 + O(t3)

}]
, (20)

where �m = mH − mL. Again, for the CSL model we assume that the higher orders in time lead to an exponential behavior

P CSL
M0→M0/M̄0 (t) (21)

= 1

4

{
e−(�H +�CSL

H )t + e−(�L+�CSL
L )t ± 2 cos(�mt) e− �H +�L

2 t e− �CSL
H

+�CSL
L

2 t e
− γ

(
√

4πrC )d
(�m)2

2m2
0

t
}
. (22)

This we can rewrite in the following form:

P CSL
M0→M0/M̄0 (t) = e−(�L+�CSL

L )t + e−(�H +�CSL
H )t

4

⎧⎨
⎩1 ± cos(�mt)

cosh
(

(�L+�CSL
L )−(�H +�CSL

H )
2 t

)e
− γ

(
√

4πrC )d
(�m)2

2 m2
0

t

⎫⎬
⎭. (23)

This is an interesting result since it disentangles two effects of
the collapse model. A damping of the interference term pro-
portional to the mass difference squared (�m)2 is independent
of the choice of the Heaviside function θ (0) and additional
energy terms �CSL

i proportional to the absolute masses depend
on the Heaviside function. These additional energy terms
play the same role as the decay constants (added by hands)
in standard quantum theory. In the next step we investigate
whether the collapse dynamics leading to the above result can
explain the full dynamics of the neutral meson systems without
defining decay constants (by hands) due to Wigner-Weisskopf
approximation.

B. Impact and observability of the CSL model prediction

At accelerator facilities the following asymmetry term A(t)
is experimentally well investigated:

A(t) = P CSL
M0→M0 (t) − P CSL

M0→M̄0 (t)

P CSL
M0→M0 (t) + P CSL

M0→M̄0 (t)

= cos(�mt)

cosh
(

(�L+�CSL
L )−(�H +�CSL

H )
2 t

)e
− γ

(
√

4πrC )d
(�m)2

2 m2
0

t
. (24)

From that we observe that the damping term proportional
to γ

(
√

4πrC )d
(�m)2

2 m2
0

is in principle measurable. The standard

proposed value for the mass-proportional CSL model is
λCSL := γ

(
√

4πrC )d
≈ 10−(8±2) s−1 (Adler [39]) or ≈10−16 s−1

(GRW [3]). Here the coherence length is assumed to be of the
order 10−5 cm and d = 3 and from that the collapse strength
γ can be deduced. For more details on the allowed parameter
space for rC and γ consider, e.g., Ref. [40]. Let us also note
that the best experimental upper bound is currently obtained
by x rays [10] being five orders away from the proposed value
of Adler, i.e., 10−12 s−1.

Plugging in these two values (Adler/GRW) and the mea-
sured mass differences we find damping rates of the or-
der 10−38 s−1/10−46 s−1 for K mesons, 10−30 s−1/10−38 s−1

for Bd mesons, 10−30 s−1/10−38 s−1 for Bs mesons, and
10−34 s−1/10−42 s−1 for D mesons (see also Ref. [17]). The
choice of the reference mass m0 being either the neutron mass
or the rest mass of the respective neutral meson does not affect
the values considerably. This is not directly observable since
it corresponds to a lifetime much greater than the decay rates
of the respective neutral meson. Consequently, the effect of
the spontaneous collapse on the interference can be safely
neglected.

The idea behind the choice of m0, being generally a free
parameter of the CSL model, is that for ordinary matter the
mass ratio corresponds to an average number of constituents
of the composite object [41]; the bigger the object, the stronger
the effect of spontaneous localization. The choice in the meson
system stems from our assumption that if collapse models
are relevant in nature then they have to hold for all physical
systems. For the meson system this mass ratio mμ

m0
decreases if

m0 is of the order of a nucleon or the rest mass of the mesons
system, i.e., has the opposite behavior. Thus it may seem more
reasonable to have for particles lighter than those that make
up the ordinary matter the inverted ratio. If we do so then the

damping factor of the interference term becomes 1
2λCSL

�m2m2
0

m2
H m2

L

,
which is only computable if we know the absolute
masses.

The second modification due to the mass-proportional CSL
model compared to the standard approach is for the decay rates,
i.e., �μ + �CSL

μ . Here �μ are the standard decay rates intro-
duced to the system by the Wigner-Weisskopf approximation.
The collapse contribution is connected to the absolute mass
(playing no role in the standard approach) and the value of the

Heaviside function at zero, i.e., �CSL
μ = λCSL

m2
μ

m2
0
[1 − 2θ (0)] or

in the inverted scenario �CSL
μ = λCSL

m2
0

m2
μ

[1 − 2θ (0)].

Taking this one step further is to ask whether collapse
models could solely be responsible for the decaying part of
the neutral mesons, i.e., the dynamics of the spontaneous
localization induces the decay of the mass eigenstates. For
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TABLE I. Experimental values of the decay rates, the mass difference, and the computed values of the absolute masses for the neutral
mesons system.

�
expt
L (s−1) �

expt
H (s−1) �mexpt (�s−1) mL (�s−1) mH (�s−1)

K mesons 1.117 × 1010 1.955 × 107 0.529 × 1010 2.311 × 108 5.524 × 109

D mesons 2.454 × 1012 2.423 × 1012 0.950 × 1010 1.468 × 1012 1.477 × 1012

Bd mesons 6.582 × 1011 6.576 × 1011 0.510 × 1012 1.020 × 1015 1.020 × 1015

Bs mesons 7.072 × 1011 6.158 × 1011 1.776 × 1013 2.477 × 1014 2.655 × 1014

that we set �
exp
μ ≡ �CSL

μ . Certainly �CSL needs to be positive, i.e., θ (0) ∈ [0, 1
2 }, to obey Eq. (19). Then we obtain

�CSL
L − �CSL

H

�CSL
L + �CSL

H

θ(0) 
= 1
2= ±m2

L − m2
H

m2
L + m2

H

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K mesons: 0.996506

{+1.2760 × 10−5,

−1.2760 × 10−5,

D mesons: 0.00645

{+0.0007,

−0.0009,

Bd mesons: 0.0005

{+0.0050,

−0.0050,

Bs mesons: 0.06912

{+7.7058 × 10−4,

−7.7058 × 10−4.

(25)

The experimental values for the experimentally measured decay constants (right-hand side of the above equation) are taken from
the particle data book [42]. The method how to deduce from the experimental values measured the decay rates is described
in Appendix D since it differs slightly for each meson. The minus sign holds for the inverted scenario. Together with the
experimentally obtained value of �m := mH − mL, this allows one to compute the absolute values of the masses mH/L via

�CSL
L − �CSL

H

�CSL
L + �CSL

H

= ±m2
L − (mL + �m)2

m2
L + (mL + �m)2

= ± −2mL�m − (�m)2

2m2
L + 2mL�m + (�m)2

= ±
(

−1 + m2
L

m2
L + mL�m + 1

2 (�m)2

)
. (26)

In the case we have mH > mL (�m > 0) we observe that
the right-hand side becomes negative (if we do not reverse
the mass ratio). Thus the two involved masses cannot be both
positive. This is because the collapse models relate the decay
rates with the corresponding masses directly proportionally:
the heavier the mass the bigger the decay rate, the smaller the
lifetime. This is physically intuitive from the collapse model
perspective since heavier masses should be affected stronger
by the spontaneous factorization. The counterintuitive effect
for applying that to neutral mesons decay is that the more
massive state should decay faster. In literature there can be
found experiments [43,44] for K mesons assigned to measure
the sign of �m and, herewith, if the heavier mass connects
also to the lower decay rate (longer lifetime) and vice versa.
The results are a positive sign of �m, i.e., the heavier mass
decays slower. Note that not for all mesons the sign has been
determined. In summary, for positive mass differences �m >

0 we cannot find positive masses.
In the reversed scenario positive values for the absolute

masses are obtained and listed in Table I. The obtained
values for the absolute masses are in the regime of the weak
interaction due to our identification with the decay rates. They
are functions of the two decay rates and the mass difference.
Let us remind the reader that the rest mass of mesons is
by many units higher since here the strong interaction rules.
Note that the numerical values are very sensitive to the errors
and the method to determine the decay constants which are
very different to the specific mesons and the experiments
considered. We stick here to the values published by the
particle data group in their summary and review papers [42].

Now we can use these values of absolute masses to estimate
λCSL by

λestimated
CSL := �expt

μ

m2
μ

m2
0

1

[1 − 2θ (0)]

= 1(√
�−1

L −
√

�−1
H

)2 (�m)2

m2
0

1

[1 − 2θ (0)]
. (27)

The predicted values are plotted in Fig. 1 for the different
meson types. Interestingly, these values correspond to the ones

FIG. 1. Values of θ (0) vs the deduced collapse rate based on the
input parameters �

expt
H ,�

expt
L ,�mexpt for the different types of neutral

mesons (including experimental errors). As a reference mass the
respective rest mass of the neutral mesons is assumed.
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assumed by Adler, except for the K-meson system which is
closer to the one of GRW (even weaker). Fixing the collapse
rate to the one proposed by GRW requires that θ (0) converges
to 1

2 , only in the Adler case values 
= 1
2 are allowed. Taking

the scenario with reversed masses seriously we have also to
consider the modified contribution to the interference term,
i.e.,

1

2
λCSL

�m2m2
0

m2
Hm2

L

= 1

2
λCSL

m2
0

(�m)2
�H�L

(√
�−1

L −
√

�−1
H

)4
= 1

2

λCSL

λestimated
CSL

1

1 − 2θ (0)
(
√

�L −
√

�H )2. (28)

This term is negligible for all types of neutral mesons due to
the tiny difference between the two decay constants assuming
that the other values are of order 1 except for the K-meson
system. In this case we have a very sensitive tradeoff between
obtaining the experimental values of the decay constant and
the damping of the interference term. The best limit on such a
possible modification of the interference term comes from the
entangled K-meson system [20]; however, this is not directly
comparable.

In summary a full description of the decay and oscillation
properties in the dynamics of neutral mesons can be obtained
demanding certain properties of collapse models.

C. What is the physical meaning of the choice of θ (0) ∈ [0,1]?

Let us remind the reader that it comes from the action of the
classical noise underlying any collapse model. One assumes
that the stochastic noise average of two Wiener processes is
given by a delta distribution, E[w(t)w(s)] = δ(t − s). This
in turn is the assumption of the white noise scenario, i.e.,
the assumption of a constant power spectral density. In our
derivation we had to compute the following type of time
integrals∫ t

0
ds δ(t − s) =

{
θ (t) − θ (0) = 1 − θ (0) for t − s � 0,

θ (0) − θ (−t) = θ (0) for t − s � 0,

(29)

with
∫∞
−∞ δ(t)d t = 1. Note that the dependence on θ (0) occurs

only in case one matches amplitudes of different orders
within the expansion. Assuming the independence of the time
direction δ(t) = δ(−t) leads to θ (0) = 1

2 . In this case the
collapse quantities �QMUPL,�CSL become zero, respectively.
No effect of the collapse field arises in the evolution of the mass
eigenstates. Consequently, in this case also no dependence on
absolute masses (mH , mL) is proposed in line with the standard
quantum mechanical approach.

A value θ (0) 
= 1
2 can be interpreted as the freedom that

the time evolved states in the expansions in the “out” (“bra”)
and the “in” (“ket”) states do depend on the particular time
ordering within the expansion. Only in this case the interaction
with the classical noise field leads to contributions not solely
affecting the interference term with respect to the chosen basis.
Consequently, here is the point where the physics of the noise
field strongly enters the discussion. In particular nonwhite

noise fields will change the very dynamics of neutral mesons,
that in turn will be testable.

D. Mimicking the effect of the CSL model on the meson
dynamics by a decoherence model

To better understand the physics proposed by collapse
models for the meson dynamics, let us see which decoherence
model within standard quantum mechanics would in principle
lead to the same predictions.

Let us here also say some words about the non-Hermitian
Hamiltonian that is the standard starting point in describing
the meson phenomenology. Neutral meson systems violate the
CP symmetry for the mass matrix and have a nonvanishing
lifetime difference in the width matrix. This leads to an
effective Hamiltonian which is even not a normal operator
with incompatible (noncommuting) masses and widths. In
the Wigner-Weisskopf approach, by diagonalizing the entire
Hamiltonian, the in general nonorthogonal “stationary” states
MH,ML are obtained. These states have complex eigenvalues
whose real (imaginary) part does not coincide with the
eigenvalues of the mass (width) matrix. The mesonic systems
can also be described as an open quantum mechanical system
[29,45,46]. In particular, the following Gorini-Kossakowski-
Lindblad-Sudarshan master equation does the job [29]:

d

dt
ρ̂(t) = −i[Ĥ,ρ̂(t)] − 1

2

f∑
i=0

[L̂†
i L̂i ρ̂(t)

+ ρ̂(t)L̂†
i L̂i − 2L̂i ρ̂(t)L̂†

i ], (30)

where we define ρ̂ to live on a Hilbert-Schmidt space with
a direct product structure Hs ⊕ Hd (s corresponds to the
surviving part and d of the decaying part of the system).
In our case we need at least a four-dimensional space. The
Hamiltonian Ĥ and all Lindblad operators L̂ are defined to act
only onto the surviving part of the system, i.e.,

Ĥ =
(

M̂ 0
0 0

)
, L̂i>0 =

(
L̂i 0
0 0

)
, (31)

whereas the zero Lindblad operator entangles the surviving
part with the decaying part

L̂0 =
(

0 0
L̂0 0

)
. (32)

Given these definitions the total density matrix

ρ̂(t) =
(

ρ̂ss(t) ρ̂sd (t)
ρ̂
†
sd (t) ρ̂dd (t)

)
(33)

is normalized for all times. The differential equation decouples
for the parts of the system. Hence the solution of the survive-
decay part ρ̂sd (t) has no physical significance and the time
dependence of the decay-decay contribution ρ̂dd (t) depends
solely on ρ̂ss(t), i.e.,

ρ̂dd (t) = L̂0

∫ t

0
ρ̂ss(t

′)dt ′L̂†
0. (34)
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For clarity, let us rewrite the relevant differential equation
explicitly (for Hermitian Lindblad generators):

ρ̂ss(t) = −i [Ĥ ,ρ̂ss(t)] − 1

2
{L̂0,ρ̂ss(t)}

−1

2

∑
i>0

{{L̂i,ρ̂ss(t)} − 2L̂i ρ̂ss(t)L̂i} (35)

is given in the mass eigenstate basis by L̂0 =
diag{

√
�L + �CSL

L ,

√
�H + �CSL

H }. Choosing L̂1 =√
γ

(
√

4πrC )d
(mL

m0
|ML〉〈ML| + mH

m0
|MH 〉〈MH |) formally leads to

the same probabilities; see Eq. (23).
This has the following physical intuitive picture behind it:

the state vector undergoes a random unitary transformation in
the time dt ,

Û (φ)|ψ(t)〉 = e−iφĜ |ψ(t)〉
= (1 − iφĜ − 1

2φ2Ĝ2 + s
)|ψ(t)〉, (36)

with a Gaussian probability distribution with a width propor-
tional to dt , namely with probability (

∫∞
−∞ p(φ)dφ = 1)

p(φ) = 1√
2πσ

e
− φ2

2σ2 , (37)

where we choose explicitly the width σ =
√

γ

(
√

4πrC )d
dt . Since

we assume small dt we can neglect safely the higher-order
terms and find for the density matrix at time t + dt

ρ̂(t + dt)

=
∫ +∞

−∞
dφ p(φ) Û (φ)ρ̂(t)Û †(φ)

=
∫ +∞

−∞
dφ p(φ)

{
ρ̂(t) − φ2

2
[{Ĝ2,ρ̂(t)} − 2 Ĝ ρ(t) Ĝ]

}

= ρ̂(t) − σ 2

2
[{Ĝ2,ρ̂(t)} − 2 Ĝ ρ̂(t) Ĝ]. (38)

This differential equation is equivalent to the one in the
Lindblad form with L̂1 if we choose for Ĝ =∑i

mi

m0
|Mi〉〈Mi |,

which is just the flavor part of our collapse operators. Even
though we formally arrive at the same formulas, let us stress
that in this case no real collapse is assumed, in particular the
spatial part of the wave function played no role. Moreover,
the dependence on the “decay rate” �CSL

i is not generated
by the dynamics, but introduced by hand. However, it explains
why the interference term in the flavor oscillation probabilities
depends on (�m)2; this is a general feature of any random
unitary noise with a Gaussian distribution.

V. SUMMARY AND OUTLOOK

In this paper we have focused on two popular dynamical re-
duction models, QMUPL (quantum mechanics with universal
position localization) and mass-proportional CSL (continuous
spontaneous localization) model, and analyzed their effect
on the neutral meson system. The beauty of these models
is that they solve the measurement problem by introducing a
physical mechanism for the collapse. In particular, they assume
that with a certain rate every quantum system undergoes

a spontaneous localization in space. Taking these models
seriously they have to also affect systems at higher energies,
in particular, neutral mesons.

We have considered the two-state phenomenological
Hamiltonian for a neutral meson system giving rise to flavor
oscillations and assumed the collapse mechanism implied
by dynamical reduction models. Since the collapse models
assume the collapse to the spatial part of the state, we had
to choose proper collapse operators relating the flavor space
(where the oscillation takes place) with the spatial space. To
calculate the effect of the collapse we have considered the
(white) noise of the collapse models as a small perturbation
by utilizing the Dyson series. The transition probabilities were
calculated up to fourth perturbative order. This allowed us to
distinguish between exponential behavior (observed for the
CSL model) and nonexponential behavior (observed for the
QMUPL model), consequently giving insight into the physics
of the noise field underlying the collapse mechanism.

Due to necessariness in solving the stochastic nonlinear
differential equations by perturbation series we have observed
a dependence on the choice of the Heaviside function θ at
time point zero. This function turns up from integrating the
correlations of two or more Wiener processes. Mathematically,
the value is not well defined; it can be in the interval
θ (0) ∈ [0,1]. Only in the case of θ (0) = 1

2 we find that the
lifetime state evolves independently of the collapse in spatial
part. Indeed, having a closer view at the computations we
observe that the value of the Heaviside function at time zero
matters only if we evaluate amplitudes connecting different
orders in the expansion. Consequently, the effect is due to the
“virtual” propagation of the states and hence portrays a kind
of consistency within the calculus. Since θ (0) = 1

2 physically
implies that we have a time symmetric case of the two Wiener
processes in the two dual spaces (ket-bra). This means that only
in this case [θ (0) = 1

2 ] the norm of the state under investigation
is conserved. Differently stated, the effect of the spontaneous
collapse appears only in the interference terms of the flavor
oscillation, not in the decaying parts.

Interestingly, any value θ (0) 
= 1
2 leads to a dependence on

the absolute masses (energies) of the eigenstates of the time
evolution, which does not show up in the standard quantum
approach. In the CSL model they would not be directly
measurable since they would effectively contribute to the decay
constants of the standard quantum approach. On the other
hand, the effect of the QMUPL model is in principle observable
due to its nonexponential behavior. Since this deviation has not
(yet) been observed, experiments provide upper bounds on the
absolute masses of the lifetime states.

In a further step we analyzed whether the spontaneous
localization could be considered as the only source of the
decay in the neutral meson dynamics. We related the measured
decay constants with the absolute masses appearing due to the
nonlinear and stochastic modifications. The first observation
was that for this identification the sign of the mass difference
matters, i.e., if the longer-lived state corresponds to the
more massive state or the lighter one. Experiments for K

mesons favor the first relation. This is in strong contrast to
the philosophy of collapse models where a more massive
system should localize faster in order to solve the measurement
problem. To obtain still positive absolute masses one needs to
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identify the strength of the generation of a say heavy mass
eigenstate with the lower mass. Doing so, we can deduce the
absolute masses. Via that the decay mechanism of neutral
mesons can be fully described. In turn we can also use them
to predict values of the collapse rate (Fig. 1). This rate is
computed solely by the input parameter of the mass difference
and the two decay rates in dependence on the value for θ (0).
The range is in the expected region proposed by Adler or
Ghirardi, Rimini, and Weber except for the K-meson system.

In order to obtain a different insight into the physics
behind the collapse models we also defined a master equation
within standard quantum mechanics that leads to the same
probabilities. Here we extended the Hilbert space to include
the decay components as developed in Ref. [29]. Then
a Gorini-Kossakowski-Lindblad-Sudarshan master equation
with Gaussian noise proportional to the masses does the
job. This illustrates the dependence of the damping on the
squared mass difference since it is a general feature of systems
undergoing a random Gaussian distributed unitary noise.

The strongest bounds on deviations from the expected
quantum mechanical behaviors come from experiments with
entangled mesons, or may be the case if the tiny CP
violating effects are taken into account. Therefore, it would be
necessary to extend our computations to these cases. Moreover,
our computations are performed for a white-noise scenario.
Colored noise should change the dynamics considerably and
in turn allow to limit the collapse rate.
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APPENDIX A: COMPUTATIONS
FOR THE QMUPL MODEL

1. Transition probabilities for the mass eigenstates

We start the computations of the transition probabilities for
the QMUPL model with the one-dimensional case. The five

terms (15a)–(15b) form the transition amplitude up to fourth
order of the Dyson series which we calculate here. Inserting the
definition (8b) for the N̂QMUPL(t) operator (one-dimensional
case) and calculating the flavor part of matrix elements, we
obtain the following expression for the components up to nth
order of the transition amplitudes

T (n)
μν (pf ,pi,α; t) = e−imμtF (n)(t)

(
i
√

λ
mμ

m0

)n

× 〈pf |q̂n|pi,α〉 δμν, (A1)

where

F (0)(t0) = 1 for all t0,

F (n)(t0) =
∫ t0

0
dt1 . . .

∫ tn−1

0
dtn

n∏
j=1

w(tj ).

The transition amplitudes derive to

〈pf |q̂n|pi,α〉 =
√

2
√

απ e− α
2 (pf −pi )2

ζ (n), (A2)

with

ζ (0) = 1,

ζ (1) = (−i) α (pf − pi),

ζ (2) = α [1 − α(pf − pi)
2],

ζ (3) = (−i)α2[3(pf − pi) − α(pf − pi)
3],

ζ (4) = α2[3 − 6α(pf − pi)
2 + α2(pf − pi)

4].

The transition probabilities up to second order in time t are

PMμ→Mν
(α; t) = P

(0)
Mμ→Mν

(α; t) + P
(1)
Mμ→Mν

(α; t)

+ P
(2)
Mμ→Mν

(α; t), (A3)

which decompose in terms of the transition amplitudes to

P
(0)
Mμ→Mν

(α; t) = 1

2π

∫
dpfE

[
T (0)

μν (pf ,pi,α; t)T (0)∗
μν (pf ,pi,α; t)

]
, (A4a)

P
(1)
Mμ→Mν

(α; t) = 1

2π

∫
dpfE

[
T (0)

μν (pf ,pi,α; t)T (2)∗
μν (pf ,pi,α; t) + T (2)

μν (pf ,pi,α; t)T (0)∗
μν (pf ,pi,α; t) (A4b)

+ T (1)
μν (pf ,pi,α; t)T (1)∗

μν (pf ,pi,α; t)
]
,

P
(2)
Mμ→Mν

(α; t) = 1

2π

∫
dpfE

[
T (0)

μν (pf ,pi,α; t)T (4)∗
μν (pf ,pi,α; t) + T (4)

μν (pf ,pi,α; t)T (0)∗
μν (pf ,pi,α; t)

+ T (1)
μν (pf ,pi,α; t)T (3)∗

μν (pf ,pi,α; t) + T (3)
μν (pf ,pi,α; t)T (1)∗

μν (pf ,pi,α; t)

+ T (2)
μν (pf ,pi,α; t)T (2)∗

μν (pf ,pi,α; t)
]
. (A4c)

The first term gives

P
(0)
Mμ→Mν

(α; t) = 2
√

απ

2π

∫
dpf e−α(pf −pi )2

δμν = δμν. (A5)
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For the first order in time we need

1

2π

∫
dpf E

[
T (0)∗

μν (pf ,pi,α; t)T (2)
μν (pf ,pi,α; t) + T (2)∗

μν (pf ,pi,α; t)T (0)
μν (pf ,pi,α; t)

]

= −2δμν

λm2
μ

m2
0

∫ t

0
dt1

∫ t1

0
dt2E[w(t1)w(t2)]

2α
√

απ

2π

∫
dpf [1 − α(pf − pi)

2]e−α(pf −pi )2

= −δμν (αλ)
m2

μ

m2
0

[1 − θ (0)]t,

where the computation of the two-point correlation function
∫ t

0 dt1
∫ t1

0 dt2E[w(t1)w(t2)] is explicitly derived in Appendix C.
The second term derives to

1

2π

∫
dpfE

[
T (1)∗

μν (pf ,pi,α; t)T (1)
μν (pf ,pi,α; t)

]

= δμν

λm2
μ

m2
0

∫ t

0
dt1

∫ t

0
dt2E[w(t1)w(t2)]

2α2√απ

2π

∫
dpf (pf − pi)

2e−α(pf −pi )2

= δμν

α

2

λm2
μ

m2
0

t,

where the two-point correlation function
∫ t

0 dt1
∫ t

0 dt2E[w(t1)w(t2)] is derived in Appendix C (note the difference in the integration
limits).

Consequently, the transition probabilities in first order in time t result in

P
(1)
Mμ→Mν

(α; t) = −δμν

α

2

λm2
μ

m2
0

[1 − 2θ (0)]t. (A6)

To obtain the solution in the second order in time t we have to compute the five components, T (0)∗T (4), T (4)∗T (0), T (1)∗T (3),
T (3)∗T (1), and T (2)∗T (2), where we have for the first time to evaluate a four-point function in the noise which is done in detail in
Appendix C. We compute

1

2π

∫
dpfE

[
T (0)∗

μν (pf ,pi,α; t)T (4)
μν (pf ,pi,α; t) + T (0)∗

μν (pf ,pi,α; t)T (4)
μν (pf ,pi,α; t)

]

= 2δμν

λ2m4
μ

m4
0

C
(2)
4,0(t)

2α2√απ

2π

∫
dpf [3 − 6α(pf − pi)

2 + α2(pf − pi)
4]e−α(pf −pi )2

= δμν

3α2

2

λ2m4
μ

m4
0

C
(2)
4,0(t) = δμν

3α2

2

λ2m4
μ

m4
0

1

2
[1 − θ (0)]2t2,

1

2π

∫
dpfE

[
T (1)∗

μν (pf ,pi,α; t)T (3)
μν (pf ,pi,α; t) + T (3)∗

μν (pf ,pi,α; t)T (1)
μν (pf ,pi,α; t)

]

= −2δμν

λ2m4
μ

m4
0

C
(2)
3,1(t)

2α3√απ

2π

∫
dpf [3 − α(pf − pi)

2](pf − pi)
2e−α(pf −pi )2

= −δμν

3α2

2

λ2m4
μ

m4
0

C
(2)
3,1(t)

= −δμν

3α2

2

λ2m4
μ

m4
0

[1 − θ (0)]t2,

and

1

2π

∫
dpfE

[
T (2)∗

μν (pf ,pi,α; t)T (2)
μν (pf ,pi,α; t)

] = δμν

λ2m4
μ

m4
0

C
(2)
2,2(t)

2α2√απ

2π

∫
dpf [1 − α(pf − pi)

2]2e−α(pf −pi )2

= δμν

3α2

4

λ2m4
μ

m4
0

C
(2)
2,2(t)

= δμν

3α2

4

λ2m4
μ

m4
0

{
[1 − θ (0)]2 + 1

2

}
t2,
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where C
(2)
4,0(t), C

(2)
3,1(t), and C

(2)
2,2(t) correspond to the integrals of the four-point correlation functions of the noise field, which are

calculated in Appendix C.
Summing up, we obtain the transition probabilities in second-order time t

P
(2)
Mμ→Mν

(α; t) = δμν

3α2

4

λ2m4
μ

m4
0

(
2θ (0)[θ (0) − 1] + 1

2

)
t2

= δμν

3α2

8

λ2m4
μ

m4
0

[1 − 2θ (0)]2t2. (A7)

Finally, collecting all the terms (A5)–(A7), we obtain the transition probabilities for mass eigenstates up to second order in time
t

PMμ→Mν
(α; t) = δμν

[
1 − α

2

λm2
μ

m2
0

[1 − 2θ (0)]t + 3α2

8

λ2m4
μ

m4
0

[1 − 2θ (0)]2t2

]
. (A8)

2. d-dimensional case

In the case of d-dimensional space the components (15a)–(15b) of transition amplitudes have to be generalized in the following
way:

T (n)
μν (pf ,pi ,α; t) = e−imμt F̃ (n)(pf ,pi ,α; t)

(
i
√

λ
mμ

m0

)n

δμν, (A9)

where

F̃ (0)(pf ,pi ,α; t0) = 〈pf |pi ,α〉,

F̃ (n)(pf ,pi ,α; t0) =
∫ t0

0
dt1 . . .

∫ tn−1

0
dtn〈pf |

n∏
j=1

(q̂w(tj ))|pi ,α〉.

Here one can think of basically two different ways the noise would act onto the system. Either a factorization in any of the
possible dimensions happens and contributes to the first order in time, or a factorization of the wave function has to occur in
all dimensions simultaneously. The second one seems to be less natural to assume. Since we assume white noise and an initial
Gaussian wave function in all dimensions, however, integrals give the same value and the only difference is how often the integral
occurs. Therefore, we stick to the first case.

Explicitly, we find

F̃0(pf ,pi ,α; t) = (2
√

απ )d/2e− α
2 (pf −pi )2

,

F̃1(pf ,pi ,α; t) = − i(2
√

απ )d/2α

∫ t

0
dt1[(pf − pi)w(t1)]e− α

2 (pf −pi )2
,

F̃2(pf ,pi ,α; t) = (2
√

απ )d/2α

∫ t

0
dt1

∫ t1

0
dt2{[w(t1)w(t2)] − α[(pf − pi)w(t1)][(pf − pi)w(t2)]}e− α

2 (pf −pi )2
,

F̃3(pf ,pi ,α; t) = − i(2
√

απ )d/2α2
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3{[(pf − pi)w(t1)][w(t2)w(t3)] + [(pf − pi)w(t2)][w(t1)w(t3)]

+ [(pf − pi)w(t3)][w(t1)w(t2)] − α[(pf − pi)w(t1)][(pf − pi)w(t2)][(pf − pi)w(t3)]}e− α
2 (pf −pi )2

,

F̃4(pf ,pi ,α; t) = (2
√

απ )d/2α2
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4{[w(t1)w(t2)][w(t3)w(t4)] + [w(t1)w(t3)][w(t2)w(t4)]

+ [w(t1)w(t4)][w(t2)w(t3)] − α[(pf − pi)w(t1)][(pf − pi)w(t2)][w(t3)w(t4)]

− α[(pf − pi)w(t1)][(pf − pi)w(t3)][w(t2)w(t4)] − α[(pf − pi)w(t1)][(pf − pi)w(t4)][w(t2)w(t3)]

− α[(pf − pi)w(t2)][(pf − pi)w(t3)][w(t1)w(t4)] − α[(pf − pi)w(t2)][(pf − pi)w(t4)][w(t1)w(t3)]

− α[(pf − pi)w(t3)][(pf − pi)w(t4)][w(t1)w(t2)]

+ α2[(pf − pi)w(t1)][(pf − pi)w(t2)][(pf − pi)w(t3)][(pf − pi)w(t4)]}e− α
2 (pf −pi )2
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and herewith the probabilities

P
(0)
Mμ→Mν

(α; t) = δμν,

P
(1)
Mμ→Mν

(α; t) = −δμν

α

2

λm2
μ

m2
0

[1 − 2θ (0)]t,

P
(2)
Mμ→Mν

(α; t) = δμν

3α2

4

λ2m4
μ

m4
0

(
2θ (0)[θ (0) − 1] + 1

2

)
t2,

which are identical to the ones of the one-dimensional case and, consequently, lead to the same transition probabilities.

3. Transition probabilities for the flavor states

Transition amplitude for a flavor state can be expanded in the following way:

TM0→M0/M̄0 (pf ,pi ,α; t)

= 〈M0/M̄0,pf |M0(t),pi ,α〉
=
∑
μ,ν

αμβ∗
ν 〈Mν,pf |Mμ(t),pi ,α〉

=
∑
μ,ν

αμβ∗
ν Tμν(pf ,pi ,α; t),

where μ,ν = H,L and αH = αL = βH = 1√
2
, βL = ± 1√

2
(plus sign refers to a meson; minus sign refers to an antimeson). In the

same manner, transition probability for a flavor state can be defined as

PM0→M0/M̄0 (α; t) =
∑

μ,ν,μ′,ν ′
αμβ∗

ν α∗
μ′βν ′

1

(2π )d

∫
dpfE[Tμν(pf ,pi ,α; t)T ∗

μ′ν ′(pf ,pi ,α; t)]

≡
∑

μ,ν,μ′,ν ′
αμβ∗

ν α∗
μ′βν ′Pμνμ′ν ′ (α; t), (A10)

Furthermore, since each transition amplitude Tμν(pf ,pi ,α; t) contains a Kronecker delta δμν , as can be seen from (A1) and (A9),
we can leave just one index in an amplitude and correspondingly two indexes in probabilities Pμνμ′ν ′(α; t)

PM0→M0/M̄0 (α; t) =
∑
μ,μ′

αμβ∗
μα∗

μ′βμ′Pμμ′(α; t)

= 1

4
[PHH (α; t) ± PHL(α; t) ± PLH (α; t) + PLL(α; t)]. (A11)

Using the transition probabilities which were calculated above we obtain the terms for the transition probability, with same
indexes Paa and different ones Pab

Paa(α; t) = 1 − α

2

λm2
a

m2
0

[1 − 2θ (0)]t + 3α2

8

λ2m4
a

m4
0

[1 − 2θ (0)]2t2, (A12)

Pab(α; t) = e−i(ma−mb)t

[
1 − α

2

λ

m2
0

{(
m2

a + m2
b

)
[1 − θ (0)] − mamb

}
t + 3α2

8

λ2

m4
0

((
m4

a + m4
b

)
[1 − θ (0)]2

− 2
(
m3

amb + mam
3
b

)
[1 − θ (0)] + 2m2

am
2
b

{
[1 − θ (0)]2 + 1

2

})
t2

]
. (A13)

Putting the terms together we finally obtain the transition probability for the flavor states

PM0→M0/M̄0 (α; t) = 1

2

{
1 − α

4

λ
(
m2

H + m2
L

)
m2

0

[1 − 2θ (0)]t + 3α2

16

λ2
(
m4

H + m4
L

)
m4

0

[1 − 2θ (0)]2t2

±
[

1 − 1

2

λα

m2
0

((
m2

H + m2
L

)
[1 − θ (0)] − mHmL

)
t + 3

8

λ2α2

m4
0

((
m4

H + m4
L

)
[1 − θ (0)]2

− 2 mH mL

(
m2

H + m2
L

)
[1 − θ (0)] + 2m2

Hm2
L

{
[1 − θ (0)]2 + 1

2

})
t2

]
cos[(mH − mL)t]

}
. (A14)
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Taking the decay into account we obtain

PM0→M0/M̄0 (α; t) = 1

4

{
e−�H t + e−�Lt − 1

2

λα

m2
0

(
m2

He−�H t + m2
Le−�Lt

)
[1 − 2θ (0)]t

+ 3

8

λ2α2

m4
0

(
m4

He−�H t + m4
Le−�Lt

)
[1 − 2θ (0)]2t2 ± 2

[
1 − 1

2

λα

m2
0

{(
m2

H + m2
L

)
[1 − θ (0)] − mHmL

}
t

+ 3

8

λ2α2

m4
0

((
m4

H + m4
L

)
[1 − θ (0)]2 − 2mHmL

(
m2

H + m2
L

)
[1 − θ (0)] + 2m2

H m2
L

{
[1 − θ (0)]2 + 1

2

})
t2

]

× cos[(mH − mL)t]e− �H +�L
2 t

}
. (A15)

APPENDIX B: COMPUTATIONS FOR THE CSL MODEL

1. Transition probabilities for mass eigenstates

For the CSL model we also have five terms which form the transition amplitude up to fourth order of the Dyson series. Putting
the expressions for the N̂I operators in we obtain

T (n)
μν (pf ,pi ,α; t) = e−imμt (i

√
γ )nK (n)

μν (pf ,pi ,α; t),

where

K (0)
μν (pf ,pi ,α; t0) = 〈Mν,pf |Mμ,pi ,α〉,

K (n)
μν (pf ,pi ,α; t0) =

∫ t0

0
dt1 . . .

∫ tn−1

0
dtn

∫
dx1 . . .

∫
dxn〈Mν,pf |

n∏
j=1

[
w(tj ,xj )

∑
k=H,L

mk

m0
ψ̂

k†
I (tj ,xj )ψ̂k

I (tj ,xj )

]
|Mμ,pi ,α〉.

Accordingly, we will calculate the matrix elements in the same manner as done in [16]. At first, we make an expansion of field
operators into a superposition of plane waves

ψ̂k
I (t,x) = 1√

Ld

∑
q

b̂qe
−i(E(k)

q t−qx), (B1)

where the energy of a meson of mass mk and momentum q is taken in nonrelativistic limit, E(k)
q =

√
q2 + m2

k ≈ mk . Here the
system is assumed to be quantized in a box of size L with using periodic boundary conditions. While calculating the transition
amplitudes and probabilities we take the limit L → ∞ and perform an integration by momentum 1√

Ld

∑
q → 1√

(2π)d

∫
dq.

Using the coordinate representation and calculating the matrix elements, we obtain components of the transition amplitudes
in the following form:

K (0)
μν (pf ,pi ; t) = (2

√
απ )d/2e− α

2 (pf −pi )2
δμν,

K (1)
μν (pf ,pi ; t) = mμ

m0

[(
1√
απ

)d/2 ∫ t

0
dt1

∫
dx1w(t1,x1)e−i(pf −pi )x1e− x2

1
2α

]
δμν,

K (2)
μν (pf ,pi ; t) = m2

μ

m2
0

1

(2π )d

∫
dq1

[(
1√
απ

)d/2 ∫ t

0
dt1

∫ t1

0
dt2

∫ ∫
dx1dx2

× w(t1,x1)w(t2,x2)e−i(pf −q)x1e−i(q−pi )x2e− x2
2

2α

]
δμν,

K (3)
μν (pf ,pi ; t) = m3

μ

m3
0

1

(2π )2d

∫ ∫
dq1dq2

[(
1√
απ

)d/2 ∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ ∫ ∫
dx1dx2dx3

× w(t1,x1)w(t2,x2)w(t3,x3)e−i(pf −q1)x1e−i(q1−q2)x2e−i(q2−pi )x3e− x2
3

2α

]
δμν,

K (4)
μν (pf ,pi ,α; t) = m4

μ

m4
0

1

(2π )3d

∫ ∫ ∫
dq1dq2dq3

[(
1√
απ

)d/2 ∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4

∫ ∫ ∫ ∫
dx1dx2dx3dx4

× w(t1,x1)w(t2,x2)w(t3,x3)w(t4,x4)e−i(pf −q1)x1e−i(q1−q2)x2e−i(q2−q3)x3e−i(q3−pi )x4e− x2
4

2α

]
δμν.
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The next step is to compute the transition probability which consists of three terms

PMμ→Mν
(t) = P

(0)
Mμ→Mν

(t) + P
(1)
Mμ→Mν

(t) + P
(2)
Mμ→Mν

(t), (B3)

where each term corresponds to zeroth, first, and second order by time

P
(0)
Mμ→Mν

(pi ,α; t) = 1

(2π )d

∫
dpfE

[
T (0)

μν (pf ,pi ,α; t)T (0)∗
μν (pf ,pi ,α; t)

]
, (B4a)

P
(1)
Mμ→Mν

(pi ,α; t) = 1

(2π )d

∫
dpfE

[
T (0)

μν (pf ,pi ,α; t)T (2)∗
μν (pf ,pi ,α; t) + T (2)

μν (pf ,pi ,α; t)T (0)∗
μν (pf ,pi ,α; t)

+ T (1)
μν (pf ,pi ,α; t)T (1)∗

μν (pf ,pi ,α; t)
]
, (B4b)

P
(2)
Mμ→Mν

(pi ,α; t) = 1

(2π )d

∫
dpfE

[
T (0)

μν (pf ,pi ,α; t)T (4)∗
μν (pf ,pi ,α; t) + T (4)

μν (pf ,pi ,α; t)T (0)∗
μν (pf ,pi ,α; t)

+ T (1)
μν (pf ,pi ,α; t)T (3)∗

μν (pf ,pi ,α; t) + T (3)
μν (pf ,pi ,α; t)T (1)∗

μν (pf ,pi ,α; t)

+ T (2)
μν (pf ,pi ,α; t)T (2)∗

μν (pf ,pi ,α; t)
]
. (B4c)

First term is trivial and given by

P
(0)
Mμ→Mν

(t) =
(

2
√

απ

2π

)d ∫
dpf e−α(pf −pi )2

δμν = δμν. (B5)

Second term consists of three components, T (0)∗
μν T (2)

μν , T (2)∗
μν T (0)

μν , and T (1)∗
μν T (1)

μν , where the first two components result in

1

(2π )d

∫
dpfE

[
T (0)∗

μν (pf ,pi ,α; t)T (2)
μν (pf ,pi ,α; t) + T (2)∗

μν (pf ,pi ,α; t)T (0)
μν (pf ,pi ,α; t)

]

= −2δμν

γm2
μ

m2
0

( √
2(απ )1/4

(2π )2(απ )1/4

)d ∫ ∫
dpf dq

∫ ∫
dx1dx2 cos[(pf − q)x1 + (q − pi)x2]e− x2

2
2α

× e− α
2 (pf −pi )2

∫ t

0
dt1

∫ t1

0
dt2E[w(t1,x1)w(t2,x2)]

= −δμνγ
m2

μ

m2
0

1

(
√

4πrC)d

( √
2

(2π )2

)d ∫ ∫
dpf dq

∫ ∫
dx1dx2 e

− (x1−x2)2

4r2
C [ei(pf −q)x1ei(q−pi )x2

+ e−i(pf −q)x1e−i(q−pi )x2 ]e− x2
2

2α e− α
2 (pf −pi )2

C
(1)
2,0(t)

= −2δμν

1

(
√

4πrC)d
γm2

μ

m2
0

[1 − θ (0)]t.

The third component is equal to

1

(2π )d

∫
dpfE

[
T (1)∗

μν (pf ,pi ,α; t)T (1)
μν (pf ,pi ,α; t)

]

= δμν

γm2
μ

m2
0

(
1

2π
√

απ

)d ∫
dpf

∫ ∫
dx1dx2 e−i(pf −pi )(x1−x2)e− x2

1+x2
2

2α

∫ t

0
dt1

∫ t

0
dt2E[w(t1,x1)w(t2,x2)]

= δμν

γm2
μ

m2
0

1

(
√

4πrC)d

(
1

2π
√

απ

)d ∫
dpf

∫ ∫
dx1dx2 e

− (x1−x2)2

4r2
C e−i(pf −pi )(x1−x2)e− x2

1+x2
2

2α C
(1)
1,1(t)

= δμν

1

(
√

4πrC)d
γm2

μ

m2
0

t.

Consequently,

P
(1)
Mμ→Mν

(t) = −δμν

1

(
√

4πrC)d
γm2

μ

m2
0

[1 − 2θ (0)]t. (B6)

The computations of the integrals C
(1)
2,0(t) and C

(1)
1,1(t), which contain two-point correlation functions of the noise field, can be

found in Appendix C.
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The second term consists of five components, T (0)∗T (4), T (4)∗T (0), T (1)∗T (3), T (3)∗T (1), and T (2)∗T (2), where the first two
components result in

1

(2π )d

∫
dpfE[T (0)∗

μν (pf ,pi ,α; t)T (4)
μν (pf ,pi ,α; t) + T (4)∗

μν (pf ,pi ,α; t)T (0)
μν (pf ,pi ,α; t)]

= 2δμν

γ 2m4
μ

m4
0

( √
2(απ )1/4

(2π )4(απ )1/4

)d ∫ ∫ ∫ ∫
dpf dq1dq2dq3

∫ ∫ ∫ ∫
dx1dx2dx3dx4 cos[(pf − q1)x1 + (q1 − q2)x2

+ (q2 − q3)x3 + (q3 − pi)x4]e− x2
4

2α e− α
2 (pf −pi )2

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4E[w(t1,x1)w(t2,x2)w(t3,x3)w(t4,x4)]

= δμν

1(
4πr2

C

)d γ 2m4
μ

m4
0

( √
2

(2π )4

)d ∫ ∫ ∫ ∫
dpf dq1dq2dq3

∫ ∫ ∫ ∫
dx1dx2dx3dx4

× [ei(pf −q1)x1ei(q1−q2)x2ei(q2−q3)x3ei(q3−pi )x4 + e−i(pf −q1)x1e−i(q1−q2)x2e−i(q2−q3)x3e−i(q3−pi )x4
]
e− x2

4
2α e− α

2 (pf −pi )2

×
[
e
− (x1−x2)2

4r2
C e

− (x3−x4)2

4r2
C U

4,0
1 (t) + e

− (x1−x3)2

4r2
C e

− (x2−x4)2

4r2
C U

4,0
2 (t) + e

− (x1−x4)2

4r2
C e

− (x2−x3)2

4r2
C U

4,0
3 (t)

]

= δμν

1(
4πr2

C

)d γ 2m4
μ

m4
0

( √
2

(2π )4

)d ∫ ∫ ∫ ∫
dpf dq1dq2dq3

∫ ∫ ∫ ∫
dx1dx2dx3dx4[ei(pf −q1)x1ei(q1−q2)x2ei(q2−q3)x3ei(q3−pi )x4

+ e−i(pf −q1)x1e−i(q1−q2)x2e−i(q2−q3)x3e−i(q3−pi )x4 ]e− x2
4

2α e− α
2 (pf −pi )2

e
− (x1−x2)2

4r2
C e

− (x3−x4)2

4r2
C

1

2
[1 − θ (0)]2t2

= 2δμν

1(
4πr2

C

)d γ 2m4
μ

m4
0

1

2
[1 − θ (0)]2t2,

the second two components result in

1

(2π )d

∫
dpfE

[
T (1)∗

μν (pf ,pi ,α; t)T (3)
μν (pf ,pi ,α; t) + T (3)∗

μν (pf ,pi ,α; t)T (1)
μν (pf ,pi ,α; t)

]

= −2δμν

γ 2m4
μ

m4
0

(
1

(2π )3
√

απ

)d ∫ ∫ ∫
dpf dq1dq2

∫ ∫ ∫ ∫
dx1dx2dx3dx4 cos[(pf − q1)x1 + (q1 − q2)x2

+ (q2 − pi)x3 − (pf − pi)x4]e− x2
3+x2

4
2α

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t

0
dt4E[w(t1,x1)w(t2,x2)w(t3,x3)w(t4,x4)]

= −δμν

1(
4πr2

C

)d γ 2m4
μ

m4
0

(
1

(2π )3
√

απ

)d ∫ ∫ ∫
dpf dq1dq2

∫ ∫ ∫ ∫
dx1dx2dx3dx4

×
[
ei(pf −q1)x1ei(q1−q2)x2ei(q2−pi )x3e−i(pf −pi )x4 + e−i(pf −q1)x1e−i(q1−q2)x2e−i(q2−pi )x3ei(pf −pi )x4

]
e− x2

3+x2
4

2α

×
[
e
− (x1−x2)2

4r2
C e

− (x3−x4)2

4r2
C U

3,1
1 (t) + e

− (x1−x3)2

4r2
C e

− (x2−x4)2

4r2
C U

3,1
2 (t) + e

− (x1−x4)2

4r2
C e

− (x2−x3)2

4r2
C U

3,1
3 (t)

]

= −δμν

1(
4πr2

C

)d γ 2m4
μ

m4
0

(
1

(2π )3
√

απ

)d ∫ ∫ ∫
dpf dq1dq2

∫ ∫ ∫ ∫
dx1dx2dx3dx4

× [ei(pf −q1)x1ei(q1−q2)x2ei(q2−pi )x3e−i(pf −pi )x4 + e−i(pf −q1)x1e−i(q1−q2)x2e−i(q2−pi )x3ei(pf −pi )x4
]
e− x2

3+x2
4

2α

×
[
e
− (x1−x2)2

4r2
C e

− (x3−x4)2

4r2
C + e

− (x1−x4)2

4r2
C e

− (x2−x3)2

4r2
C

]1

2
[1 − θ (0)]t2

= −2δμν

1(
4πr2

C

)d γ 2m4
μ

m4
0

[1 − θ (0)]t2,
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and the last component is equal to

1

(2π )d

∫
dpfE

[
T (2)∗

μν (pf ,pi ,α; t)T (2)
μν (pf ,pi ,α; t)

]

= δμν

γ 2m4
μ

m4
0

(
1

(2π )3
√

απ

)d ∫ ∫ ∫
dpf dq1dq2

∫ ∫ ∫ ∫
dx1dx2dx3dx4 e−i(pf −q1)x1e−i(q1−pi )x2e− x2

2
2α

× ei(pf −q2)x3ei(q2−pi )x4e− x2
4

2α

∫ t

0
dt1

∫ t1

0
dt2

∫ t

0
dt3

∫ t3

0
dt4E[w(t1,x1)w(t2,x2)w(t3,x3)w(t4,x4)]

= δμν

1(
4πr2

C

)d γ 2m4
μ

m4
0

(
1

(2π )3
√

απ

)d ∫ ∫ ∫
dpf dq1dq2

∫ ∫ ∫ ∫
dx1dx2dx3dx4 e−i(pf −q1)x1e−i(q1−pi )x2e− x2

2
2α

× ei(pf−q2)x3ei(q2−pi )x4e− x2
4

2α

[
e
− (x1−x2)2

4r2
C e

− (x3−x4)2

4r2
C U

2,2
1 (t) + e

− (x1−x3)2

4r2
C e

− (x2−x4)2

4r2
C U

2,2
2 (t) + e

− (x1−x4)2

4r2
C e

− (x2−x3)2

4r2
C U

2,2
3 (t)

]

= δμν

1(
4πr2

C

)d γ 2m4
μ

m4
0

(
1

(2π )3
√

απ

)d ∫ ∫ ∫
dpf dq1dq2

∫ ∫ ∫ ∫
dx1dx2dx3dx4 e−i(pf −q1)x1e−i(q1−pi )x2e− x2

2
2α

× ei(pf −q2)x3ei(q2−pi )x4e− x2
4

2α

[
e
− (x1−x2)2

4r2
C e

− (x3−x4)2

4r2
C [1 − θ (0)]2 + e

− (x1−x3)2

4r2
C e

− (x2−x4)2

4r2
C

1

2

]
t2

= δμν

1(
4πr2

C

)d γ 2m4
μ

m4
0

[
[1 − θ (0)]2 + 1

2

]
t2,

where

U
4,0
1 (t) + U

4,0
2 (t) + U

4,0
3 (t) ≡ C

(2)
4,0(t),

U
3,1
1 (t) + U

3,1
2 (t) + U

3,1
3 (t) ≡ C

(2)
3,1(t),

U
2,2
1 (t) + U

2,2
2 (t) + U

2,2
3 (t) ≡ C

(2)
2,2(t)

correspond to the integrals of the four-point correlation functions of the noise field, which are calculated in Appendix C.
Consequently, the component of the transition probabilities, which corresponds to the second order by time t , equals

P
(2)
Mμ→Mν

(t) = δμν

1(
4πr2

C

)d γ 2m4
μ

m4
0

(
2θ (0)[θ (0) − 1] + 1

2

)
t2

= δμν

1

2

1(
4πr2

C

)d γ 2m4
μ

m4
0

[1 − 2θ (0)]2t2. (B7)

Finally, collecting all the calculated terms (B3)–(B7), we obtain the transition probabilities for mass eigenstates

PMμ→Mν
(t) =

{
1 − γ

m2
μ

m2
0

1

(
√

4πrC)d
[1 − 2θ (0)]t + γ 2

2

m4
μ

m4
0

1(
4πr2

C

)d [1 − 2θ (0)]2t2

}
δμν. (B8)

2. Transition probabilities for the flavor states

We perform the computations in the same manner as was done in Appendix A for the QMUPL model, and expand the
probabilities for the flavor states for the mass-proportional CSL model in the following form:

PM0→M0/M̄0 (t) =
∑
μ,μ′

αμβ∗
μα∗

μ′βμ′Pμμ′(t) = 1

4
[PHH (t) ± PHL(t) ± PLH (t) + PLL(t)], (B9)

where terms with the same indexes Paa and different ones Pab are equal to

Paa(t) = 1 − 1

(
√

4πrC)d
γm2

a

m2
0

(1 − 2θ (0))t + 1

2

1(
4πr2

C

)d γ 2m4
a

m4
0

[1 − 2θ (0)]2t2, (B10)
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Pab(t) = e−i(ma−mb)t

{
1 − 1

(
√

4πrC)d
γ

m2
0

[(
m2

a + m2
b

){1 − θ (0)} − mamb

]
t

+ 1(
4πr2

C

)d γ 2

m4
0

[(
m4

a + m4
b

){1 − θ (0)}2 − 2
(
m3

amb + mam
3
b

){1 − θ (0)} + 2m2
am

2
b

(
{1 − θ (0)}2 + 1

2

)]
t2

}
. (B11)

Putting the terms together, we finally obtain the transition probability for the flavor states for the mass-proportional CSL model

PM0→M0/M̄0 (t) = 1

2

{
1 − 1

2

1

(
√

4πrC)d
γ
(
m2

H + m2
L

)
m2

0

[1 − 2θ (0)]t + 1

4

1(
4πr2

C

)d γ 2
(
m4

H + m4
L

)
m4

0

[1 − 2θ (0)]2t2

±
[

1 − 1

(
√

4πrC)d
γ

m2
0

{(
m2

H + m2
L

)
[1 − θ (0)] − mHmL

}
t + 1

2

1(
4πr2

C

)d γ 2

m4
0

((
m4

H + m4
L

)
[1 − θ (0)]2

− 2mHmL

(
m2

H + m2
L

)
[1 − θ (0)] + 2m2

Hm2
L

{
[1 − θ (0)]2 + 1

2

})
t2

]
cos[(mH − mL)t]

}
. (B12)

Taking decay into account

PM0→M0/M̄0 (t) = 1

4

{
e−�H t + e−�Lt − 1

(
√

4πrC)d
γ

m2
0

(
m2

He−�H t + m2
Le−�Lt

)
[1 − 2θ (0)]t

+ 1

2

1(
4πr2

C

)d γ 2

m4
0

(
m4

He−�H t + m4
Le−�Lt

)
[1 − 2θ (0)]2t2

± 2

[
1 − 1

(
√

4πrC)d
γ

m2
0

{(
m2

H + m2
L

)
[1 − θ (0)] − mHmL

}
t + 1

2

1(
4πr2

C

)d γ 2

m4
0

((
m4

H + m4
L

)
[1 − θ (0)]2

− 2mHmL

(
m2

H + m2
L

)
[1 − θ (0)] + 2m2

Hm2
L

{
[1 − θ (0)]2 + 1

2

})
t2

]
cos[(mH − mL)t]e− �H +�L

2 t

}
. (B13)

APPENDIX C: CORRELATION FUNCTIONS OF THE
NOISE FIELD

1. Calculations with a two-point correlation function

First-order components of the transition probabilities con-
tain a two-point correlation function of the noise. In the
computations for the QMUPL model the noise is assumed
to be a white one, i.e., any random process is uncorrelated to
the random process at a later time point. Mathematically, one
defines E[w(t1)w(t2)] = 1

2π

∫∞
−∞ dω eiω(t1−t2) = δ(t1 − t2). In

our computations two different integrals have to be computed
(corresponding to T (0)∗T (2) and T (2)∗T (0), respectively):

C
(1)
2,0(t) =

∫ t

0
dt1

∫ t1

0
dt2 δ(t1 − t2)

=
∫ t

0
dt1[θ (t1) − θ (0)] = [1 − θ (0)]t, (C1)

and the second one corresponds to the component T (1)∗T (1):

C
(1)
1,1(t) =

∫ t

0
dt1

∫ t

0
dt2δ(t1 − t2)

=
∫ t

0
dt1[θ (t1) − θ (t1 − t)] = t. (C2)

In the d-dimensional case we define E[w(t1)w(t2)] = δ(t1 −
t2).

2. Calculations with a four-point correlation function

Second-order components of the transition probabilities
contain integrals of a four-point correlation function of the
noise field

C
(2)
4,0(t) =

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4

× E[w(t1)w(t2)w(t3)w(t4)],

C
(2)
3,1(t) =

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t

0
dt4

× E[w(t1)w(t2)w(t3)w(t4)],

C
(2)
2,2(t) =

∫ t

0
dt1

∫ t1

0
dt2

∫ t

0
dt3

∫ t3

0
dt4

× E[w(t1)w(t2)w(t3)w(t4)].

Since the noise field is assumed to be a Gaussian
white-noise field, its fourth cumulant is equal to zero,
κ[w(t1)w(t2)w(t3)w(t4)] = 0. On the other hand, odd moments
of the Gaussian noise are equal to zero as well; therefore, it is
possible to reformulate its four-point correlation function as a
combination of two-point correlation functions:

E[w(t1)w(t2)w(t3)w(t4)]

= E[w(t1)w(t2)]E[w(t3)w(t4)]

+ E[w(t1)w(t3)]E[w(t2)w(t4)]

+ E[w(t1)w(t4)]E[w(t2)w(t3)].
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Accordingly, each second-order components of the transition
probability contains three integrals of two two-point correla-
tion functions:

C
(2)
4,0(t) ≡ U

4,0
1 (t) + U

4,0
2 (t) + U

4,0
3 (t),

C
(2)
3,1(t) ≡ U

3,1
1 (t) + U

3,1
2 (t) + U

3,1
3 (t),

C
(2)
2,2(t) ≡ U

2,2
1 (t) + U

2,2
2 (t) + U

2,2
3 (t).

For the components T (0)∗T (4) and T (4)∗T (0) the first integral is
equal to

U
4,0
1 (t) =

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4δ(t1 − t2)δ(t3 − t4)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[θ (t3) − θ (0)]δ(t1 − t2)

=
∫ t

0
dt1

∫ t1

0
dt2 t2[θ (t2) − θ (0)]δ(t1 − t2)

=
∫ t

0
dt1 t1[θ (t1) − θ (0)]2 = 1

2
[1 − θ (0)]2t2.

The second integral is equal to

U
4,0
2 (t)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4δ(t1 − t3)δ(t2 − t4)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[θ (t2) − θ (t2 − t3)]δ(t1 − t3)

=
∫ t

0
dt1

∫ t1

0
dt2[θ (t2) − θ (t2 − t1)][θ (t1) − θ (t1 − t2)]

=
∫ t

0
dt1 t1[θ2(t1) − θ (t1)] = 0.

The third integral is equal to

U
4,0
3 (t)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4δ(t1 − t4)δ(t2 − t3)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[θ (t1) − θ (t1 − t3)]δ(t2 − t3)

=
∫ t

0
dt1

∫ t1

0
dt2[θ (t1) − θ (t1 − t2)][θ (t2) − θ (0)]

=
∫ t

0
dt1 t1[θ2(t1) − θ (t1)] = 0.

For the components T (1)∗T (3) and T (3)∗T (1) the first integral is
equal to

U
3,1
1 (t)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t

0
dt4δ(t1 − t2)δ(t3 − t4)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[θ (t3) − θ (t3 − t)]δ(t1 − t2)

=
∫ t

0
dt1

∫ t1

0
dt2 [t2θ (t2) − (t2 − t)θ (t2 − t)]δ(t1 − t2)

=
∫ t

0
dt1 [t1θ (t1) − (t1 − t)θ (t1 − t)][θ (t1) − θ (0)]

= 1

2
[1 − θ (0)]t2.

The second integral is equal to

U
3,1
2 (t)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t

0
dt4δ(t1 − t3)δ(t2 − t4)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[θ (t2) − θ (t2 − t)]δ(t1 − t3)

=
∫ t

0
dt1

∫ t1

0
dt2[θ (t2) − θ (t2 − t)][θ (t1) − θ (t1 − t2)]

=
∫ t

0
dt1 t1[θ2(t1) − θ (t1)] = 0.

The third integral is equal to

U
3,1
3 (t) =

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t

0
dt4δ(t1 − t4)δ(t2 − t3)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[θ (t1) − θ (t1 − t)]δ(t2 − t3)

=
∫ t

0
dt1

∫ t1

0
dt2[θ (t1) − θ (t1 − t)][θ (t2) − θ (0)]

=
∫ t

0
dt1 t1[θ (t1) − θ (t1 − t)][θ (t1) − θ (0)]

= 1

2
[1 − θ (0)]t2.

For the component T (2)∗T (2) the first integral is equal to

U
2,2
1 (t) =

∫ t

0
dt1

∫ t1

0
dt2

∫ t

0
dt3

∫ t3

0
dt4δ(t1 − t2)δ(t3 − t4)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t

0
dt3δ(t1 − t2)[θ (t3) − θ (0)]

= [1 − θ (0)]t
∫ t

0
dt1

∫ t1

0
dt2δ(t1 − t2)

= [1 − θ (0)]t
∫ t

0
dt1[θ (t1) − θ (0)]

= [1 − θ (0)]2t2.

The second integral is equal to

U
2,2
2 (t)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t

0
dt3

∫ t3

0
dt4δ(t1 − t3)δ(t2 − t4)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t

0
dt3[θ (t2) − θ (t2 − t3)]δ(t1 − t3)

=
∫ t

0
dt1

∫ t1

0
dt2[θ (t2) − θ (t2 − t1)][θ (t1) − θ (t1 − t)]
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=
∫ t

0
dt1 t1[θ (t1) − θ (−t1)][θ (t1) − θ (t1 − t)]

= 1

2
t2.

The third integral is equal to

U
2,2
3 (t)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t

0
dt3

∫ t3

0
dt4δ(t1 − t4)δ(t2 − t3)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t

0
dt3[θ (t1) − θ (t1 − t3)]δ(t2 − t3)

=
∫ t

0
dt1

∫ t1

0
dt2[θ (t1) − θ (t1 − t2)][θ (t2) − θ (t2 − t)]

=
∫ t

0
dt1 t1[θ2(t1) − θ (t1)] = 0,

where we assumed θ (t) = 1 for all the integrals since t > 0.
In the d-dimensional case second-order components of the

transition probability form the following combination of four-
point correlation functions:

E{[w(t1)w(t2)][w(t3)w(t4)] + [w(t1)w(t3)][w(t2)w(t4)] + [w(t1)w(t4)][w(t2)w(t3)]}
= 3(E[w(t1)w(t2)]E[w(t3)w(t4)] + E[w(t1)w(t3)]E[w(t2)w(t4)] + E[w(t1)w(t4)]E[w(t2)w(t3)]). (C3)

Two-point correlation functions are equal to ones for the one-dimensional case; therefore, the corresponding integrals can be
calculated in the same manner as done above.

APPENDIX D: COMPUTATIONS OF THE ABSOLUTE MASSES

Here we stick to the scenario which considers spontaneous collapse as a sole source of the decay of neutral mesons (that is
�

expt
μ = �CSL

μ ). We show here how we obtain the absolute masses from the experimental data given in [42] by utilizing (25). The
procedure varies for each type of mesons. We start with D and Bd mesons. The authors of Ref. [42] provide experimental values
of the quantity ��/�, namely

��

�
=
⎧⎨
⎩D mesons:

(
1.29

{+0.14
−0.18

)
× 10−2 ,

Bd mesons: (0.1 ± 1.0) × 10−2,

(D1)

where �� = �
expt
L − �

expt
H and � = 1

2 (�expt
L + �

expt
H ). Therefore, we can easily obtain required decay rates for D and Bd mesons

by dividing the quantity ��/� by 2

(
�CSL

L − �CSL
H

�CSL
L + �CSL

H

)
D,Bd

= 1

2

��

�
=
⎧⎨
⎩D mesons: 0.00645

{+0.0007,

−0.0009,

Bd mesons: 0.0005 ± 0.005.

(D2)

Then we take into account mean lifetime of a meson τ = 1
�

= 2
�

expt
L +�

expt
H

and recover the decay constants for the light and heavy
mass eigenstates

�
D,Bd

L = 1

2τ

(
2 + ��

�

)
=
⎧⎨
⎩D mesons:

(
2.4542

{+0.006782
−0.007270

)
× 1012 s−1 ,

Bd mesons: (0.6582 ± 0.001557) × 1012 s−1,

�
D,Bd

H = 1

2τ

(
2 − ��

�

)
=
⎧⎨
⎩D mesons:

(
2.4227

{+0.011056
−0.010568

)
× 1012 s−1 ,

Bd mesons: (0.6576 ± 0.005020) × 1012 s−1,

where the errors are calculated up to the first order of Taylor series.
For K and Bs mesons the authors of Ref. [42] provide the values of mean lifetimes of the corresponding mass eigenstates,

τL for the light one (short-lived state as in the case of K mesons) and τH for the heavy one (long-lived state as in the case of K

mesons)

τL =
{
K mesons: (0.8954 ± 0.0004) × 10−10 s,
Bs mesons: (1.414 ± 0.010) × 10−12 s,

(D3)

τH =
{
K mesons: (5.116 ± 0.021) × 10−8 s,
Bs mesons: (1.624 ± 0.014) × 10−12 s.

(D4)
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Using the definition of the decay constants of the mass eigenstate �μ = 1
τμ

we obtain the following values:

(
�CSL

L − �CSL
H

�CSL
L + �CSL

H

)
K,Bs

=
1
τL

− 1
τH

1
τL

+ 1
τH

=
{
K mesons: 0.996506 ± (1.2760 × 10−5),
Bs mesons: 0.069124 ± (7.7058 × 10−4),

(D5)

where the errors are calculated up to the first order of Taylor series. The decay constants for the mass eigenstates can be recovered
by inverting the mean lifetimes

�
K,Bs

L =
{
K mesons: (1.1168 ± 0.0005) × 1010 s−1,

Bs mesons: (7.0721 ± 0.010) × 1011 s−1,

�
K,Bs

H =
{
K mesons: (1.9547 ± 0.0500) × 107 s−1,

Bs mesons: (6.1576 ± 0.0531) × 1011 s−1,

where the errors are calculated up to the first order of Taylor series.
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