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In quantum information processing, one often considers inserting a barrier into a box containing a particle to
generate one bit of Shannon entropy. We formulate this problem as a one-dimensional Schrödinger equation with
a time-dependent δ-function potential. It is a natural generalization of the particle in a box, a canonical example
of quantum mechanics, and we present analytic and numerical investigations on this problem. After deriving an
exact Volterra-type integral equation, composed of an infinite sum of modes, we show that approximate formulas
with the lowest-frequency modes correctly capture the qualitative behavior of the wave function. If we take into
account hundreds of modes, our numerical calculation shows that the quantum adiabatic theorem actually gives
a very good approximation even if the barrier height diverges within finite time, as long as it is sufficiently longer
than the characteristic time scale of the particle. In particular, if the barrier is slowly inserted at an asymmetric
position, the particle is localized by the insertion itself, in accordance with a prediction of the adiabatic theorem.
On the other hand, when the barrier is inserted quickly, the wave function becomes rugged after the insertion
because of the energy transfer to the particle. Regardless of the position of the barrier, the fast insertion leaves the
particle unlocalized so that we can obtain meaningful information by a which-side measurement. Our numerical
procedure provides a precise way to calculate the wave function throughout the process, from which one can
estimate the amount of this information for an arbitrary insertion protocol.
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I. INTRODUCTION

The “particle in a box” problem describes a localized
particle in a deep potential well. It is one of the most basic
problems in textbooks of quantum mechanics, yet relevant
in many physical situations. In particular, the mathematical
simplicity makes it a useful starting point to study many
different phenomena, such as quantum dots [1], ideal gases [2],
and energy bands in a periodic crystal lattice [3]. An important
application of the particle in a box problem is the Szilard
engine [4–6], which has drawn attention in the context of
information thermodynamics [7–13]. The original Szilard
engine is illustrated as a classical particle in a box, in the
middle of which an impenetrable barrier is inserted to create
uncertainty of one bit [14]. The uncertainty is resolved by
measuring the position of the particle, and the resulting
information can be used to extract work from a single thermal
reservoir. After the work extraction, the barrier is removed
from the box, which completes one cycle. Since the criticism
on thermodynamics of the single-particle gas [15], however,
it has been argued that the Szilard engine requires quantum-
mechanical treatment [5]. Along this line, for example, one
can model the working substance of the engine as a particle
governed by the Schrödinger equation with a time-dependent
potential barrier.

If we are to take into account the time dependence,
one of the easiest ways would be to consider an infinitely
slow protocol for changing the barrier height in an isolated
system, to which the adiabatic theorem is applicable [16].
The occupation probabilities then remain unchanged while
the energy levels are shifted. Another extreme case is to insert
an infinitely high barrier all of sudden at time t = 0, which
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has been claimed to generate an unusual quantum state with
a fractal wave function [17]. These two protocols bring the
system out of equilibrium at the end of the process, at which
isothermal expansion gets started. To avoid abrupt transitions
at this moment, one may alternatively consider an isothermal
process, throughout which the system evolves quasistatically
in contact with a thermal reservoir [6,18]. If the reservoir
has very low temperature, however, this protocol runs into a
trouble: The thermal contact always brings the system to the
ground state. If the ground state is nondegenerate, it means
that the system has no uncertainty so that no work can be
extracted by the engine [18]. It happens when the barrier is
off the middle of the box, which should always be the case in
experiments.

Motivated by the quantum Szilard engine, we in this
work calculate the time evolution of a quantum particle in
an isolated box when the δ-function barrier is inserted with
a finite speed. This model deserves attention in its own
right as a generalization of the particle in a box problem,
because the Schrödinger equation is not explicitly solvable
in the presence of a time-dependent potential except a few
special cases [19–23]. It is also of experimental relevance in
the context of splitting matter waves such as Bose-Einstein
condensates [24–27]. This topic has been investigated over
the past decade since the experimental realization of a stable
double-well trap, which can be used for implementing an atom
interferometer [28] or a Josephson junction [29]. Researchers
have mostly considered deforming a harmonic trap to split a
wave function, but it would also be experimentally feasible
to localize a wave function inside a deep square potential
well and split it with a sharp laser beam. The solution for a
finite-speed protocol will be generally useful in the sense that
it describes an experimentally accessible situation, whereas
infinitely slow or fast protocols are only approximate to reality.
Furthermore, if we are interested in the power of an engine
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in evaluating the performance [30–32], we must definitely
consider a finite-speed protocol, and this work can provide a
starting point in this direction as well.

A strategy to solve the Schrödinger equation with a time-
dependent δ-function barrier is to convert it to a Volterra-
type integral equation, as suggested by Ref. [33]. We will
demonstrate how this equation can be studied in a systematic
way, in combination with analytic and numerical calculations.
This work is organized as follows. In the next section, we
derive the Volterra-type integral equation from the Schrödinger
equation. Some approximate expressions will also be given
there. In Sec. III, we present a numerical procedure to solve
the integral equations and discuss the results. We then conclude
this work in Sec. IV.

II. ANALYSIS

A. Formal solution

The Schrödinger equation is written in dimensionless units
as

−ψxx + 2c(t)δ(x − x0)ψ = iψt , (1)

where the subscripts mean partial derivatives. The strength of
the δ-function potential is controlled by c(t), which is called
a protocol in this work. Let us choose our initial condition
at t = 0 as the nth eigenstate φn(x) in the absence of the
δ-function potential,

ψ(x,0) = φn(x) =
⎧⎨
⎩

L−1/2 cos nkx if |x| < L and n is odd,

L−1/2 sin nkx if |x| < L and n is even,

0 otherwise,

(2)

where k ≡ π/(2L) and n = 1 corresponds to the ground state.
The particle is confined in a box ranging from x = −L to
x = +L, so that the boundary condition is given by ψ(x,t) = 0
at x = ±L. If −L < x < x0 or x0 < x < L, we are back to
the free space described by −ψxx = iψt . We restrict ourselves
to t > 0 and take the Laplace transform L to obtain

ψxx + isψ = iψ(x,0), (3)

where ψ(x,s) ≡ L[ψ(x,t)] = ∫ ∞
0 dte−stψ(x,t), with s > 0.

To solve the Schrödinger equation with a time-dependent
potential, we transform it to an integral equation, as suggested
in Ref. [33]. In Appendix A, we derive the following solution,

ψ(x,s) = φn(x)

s + in2k2
+ L[c(t)ψ(x0,t)]F (x,s), (4)

where

F (x,s) =
⎧⎨
⎩

(e2i
√

isL−e2i
√

isx )(e2i
√

is(L+x0)−1)
i
√

isei
√

is(x+x0)(e4i
√

isL−1)
for x0 � x < L,

(e2i
√

isL−e2i
√

isx0 )(e2i
√

is(L+x)−1)
i
√

isei
√

is(x+x0)(e4i
√

isL−1)
for − L < x < x0.

(5)

In Appendix B, we perform the inverse Laplace transform to
obtain

ψ(x,t) = φn(x)e−in2k2t

+
∞∑

ν=1

∫ t

0
dt ′c(t ′)ψ(x0,t

′)fν(x,t − t ′), (6)

where

fν(x,t) =
{

1
2iL

e−iν2k2t−iνk(x+x0)[(−1)ν − e2iνkx][e2iνk(L+x0) − 1] for x0 < x < L,

1
2iL

e−iν2k2t−iνk(x+x0)[(−1)ν − e2iνkx0 ][e2iνk(L+x) − 1] for − L < x < x0.
(7)

Equation (6) has to be solved in two steps. First, we solve
it for x = x0 to get ψ(x0,t). The next step is to substitute
ψ(x0,t) back into Eq. (6) to obtain ψ(x,t). Note that ψ(x0,t)
contains essential information of the full wave function in this
formulation.

B. Insertion at the origin

To proceed, it is more convenient to deal with a specific
situation. Suppose that the system is initially in the ground
state, i.e., ψ(x,0) = φ1(x). If we insert the δ-potential barrier
at the origin by setting x0 = 0, Eq. (6) reduces to

ψ(x,t) = L−1/2e−ik2t cos kx − 2iL−1
∞∑

μ=0

cos[(2μ + 1)kx]

×
∫ t

0
dt ′c(t ′)ψ(0,t ′)e−i(2μ+1)2k2(t−t ′). (8)

We may express Eq. (8) as the cosine series

ψ(x,t) = L−1/2
∞∑

μ=0

σμ(t) cos[(2μ + 1)kx], (9)

with σμ(t) ≡ e−ik2t δμ0 − 2iL−1/2
∫ t

0 dt ′ c(t ′) ψ (0,t ′)
e−i(2μ+1)2k2(t−t ′), where δαβ means the Kronecker δ. The
conservation of total probability implies that

∞∑
μ=0

|σμ(t)|2 = 1, (10)

because L−1
∫ L

−L
dx cos[(2μ+1)kx] cos[(2μ′+1)kx] = δμμ′

for integers μ and μ′. The total energy of the particle is
obtained as

E(t) =
∞∑

μ=0

(2μ + 1)2k2|σμ(t)|2 + 2c(t)

∣∣∣∣∣∣
∞∑

μ=0

σμ(t)

∣∣∣∣∣∣
2

, (11)

where the first and second terms represent the kinetic and
potential parts, respectively.
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1. Single-mode approximation

In our specific case described by Eq. (8), let us define

g(x,t ; μ) ≡ 2iL−1 cos[(2μ + 1)kx]

×
∫ t

0
dt ′c(t ′)ψ(0,t ′)e−i(2μ+1)2k2(t−t ′) (12)

to rewrite Eq. (8) as

ψ(x,t) = L−1/2e−ik2t cos kx −
∞∑

μ=0

g(x,t ; μ). (13)

It is straightforward to obtain the following equality for the
time derivative of g:

gt (x,t ; μ) = [−i(2μ + 1)2k2]g(x,t ; μ)

+ 2iL−1c(t)ψ(0,t) cos[(2μ + 1)kx]. (14)

If we assume that only the lowest-frequency mode with μ = 0
is dominant, Eq. (13) is simplified to

ψ(x,t) ≈ L−1/2e−ik2t cos kx − g(x,t ; 0). (15)

Taking the time derivative, we find that

ψt (x,t) ≈ L−1/2(−ik2)e−ik2t cos kx − (−ik2)g(x,t ; 0)

− 2iL−1c(t)ψ(0,t) cos kx

≈ L−1/2(−ik2)e−ik2t cos kx

− (−ik2)[L−1/2e−ik2t cos kx − ψ(x,t)]

− 2iL−1c(t)ψ(t) cos kx

= −ik2ψ(x,t) − 2iL−1c(t)ψ(0,t) cos kx, (16)

where we have used Eq. (15) to remove g(x,t ; 0). Rearranging
the terms, we obtain the equation(

∂

∂t
+ ik2

)
ψ(x,t) ≈ −2iL−1c(t)ψ(0,t) cos kx, (17)

where the right-hand side (RHS) represents a “driving”
term due to the δ-potential barrier. If we regard c(t)ψ(0,t)
on the RHS as an external parameter, we can write the
formal solution of the first-order ordinary differential equation
(ODE) [34], which is identical to Eq. (15). As mentioned
above, the evolution at the insertion point is most important
in determining the full wave function in our formulation. At
x = 0, we see from Eq. (16) that

ψt (0,t) ≈ −i[k2 + 2L−1c(t)]ψ(0,t), (18)

for which the solution is obtained as

ψ(0,t) ≈ ψ(0,0) exp

{
−i

[
k2t + 2L−1

∫ t

0
dt ′c(t ′)

]}
. (19)

The lowest-mode approximation thus describes an effect
of c(t) on the phase of ψ(0,t) without altering the
magnitude.

2. Two-mode approximation

If we additionally take into account the next mode with
μ = 1, we find the following set of equations by taking time
derivatives:

ψ(x,t) ≈ L−1/2e−ik2t cos kx − g(x,t ; 0) − g(x,t ; 1), (20)

ψt (x,t) ≈ L−1/2(−ik2)e−ik2t cos kx − [(−ik2)g(x,t ; 0) + 2iL−1c(t)ψ(0,t) cos kx]

−[(−9ik2)g(x,t ; 1) + 2iL−1c(t)ψ(0,t) cos 3kx], (21)

ψtt (x,t) ≈ L−1/2(−ik2)2e−ik2t cos kx − (−ik2)[(−ik2)g(x,t ; 0) + 2iL−1c(t)ψ(0,t) cos kx]

−2iL−1ct (t)ψ(0,t) cos kx − 2iL−1c(t)ψt (0,t) cos kx − (−9ik2)[(−9ik2)g(x,t ; 1) + 2iL−1c(t)ψ(0,t) cos 3kx]

−2iL−1ct (t)ψ(0,t) cos 3kx − 2iL−1c(t)ψt (0,t) cos 3kx. (22)

By using the first two equations, one can remove g(x,t ; 0)
and g(x,t ; 1) in the last one to derive a second-order ODE for
ψ(x,t):(

∂

∂t
+ ik2

)(
∂

∂t
+ 9ik2

)
ψ(x,t)

≈ −2iL−1

(
∂

∂t
+ ik2

)
[c(t)ψ(0,t)] cos kx

−2iL−1

(
∂

∂t
+ 9ik2

)
[c(t)ψ(0,t)] cos 3kx. (23)

The left-hand side (LHS) is related to the two lowest modes
at t = 0, whereas the RHS represents the effect of the barrier
interacting with the wave function at x = 0. Once again, the
formal solution of Eq. (23) for given c(t)ψ(0,t) should be
identical to Eq. (20). At the insertion point x = 0, it yields the

following equation with time-dependent coefficients:

πψtt (0,t) + [10iπk2 + 8ikc(t)]ψt (0,t)

+ [−9πk4 − 40k3c(t) + 8ikct (t)]ψ(0,t) ≈ 0. (24)

An advantage of this approximate formula is that ψ(0,t) can
be explicitly obtained in terms of the Hermite polynomial and
the hypergeometric function for a simple protocol such as
c(t) ∝ t . However, the solution is not very illuminating, and,
more importantly, such a linear protocol does not split the wave
function within a finite time. So we will numerically integrate
Eq. (24), by choosing the protocol as c(t) = tan(k2t/4), which
diverges to infinity at t∗ ≡ 2π/k2 = 8L2/π . Starting from
ground-state properties ψ(0,0) = 1 and ψt (0,0) = −ik2 as the
initial conditions, we see that Eq. (24) now describes amplitude
changes as well (Fig. 1). In particular, the approximation
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FIG. 1. Probability density at x = x0 = 0, when the particle
is assumed to be in the ground state at t = 0. The protocol is
chosen as c(t) = tan(k2t/4) with L ≡ 1. The vertical line represents
t∗ = 2π/k2 = 8/π ≈ 2.55, where the barrier height diverges to
infinity. The single-mode approximation [Eq. (16)] does not describe
the amplitude change, but the two-mode approximation is already
plausible, and the result is further improved in the three-mode
approximation. The Riemann sum means the calculation explained
in Sec. III. We use the second-order Runge-Kutta method [35]
to integrate the ODEs resulting from the two- and three-mode
approximations such as Eq. (24).

predicts that the probability density |ψ(0,t)|2 vanishes as t

approaches t∗, which is physically reasonable. It is also plau-
sible that the approximation can be improved systematically by
including more and more modes, and the number of included
modes will correspond to the order of the resulting ODE to
integrate. In the next section, we present a numerical method
based on the Riemann sum, by which one can carry out the
summation of Eq. (13) over μ � O(102). Figure 1 shows that
the results with a few lowest modes are not very far apart from
it. We have so far discussed one way to use Eq. (24), i.e.,
starting from c(t) to obtain ψ(0,t) and then proceed to ψ(x,t).
We may also consider the opposite direction; that is, let us
start from the desired evolution of ψ(x,t), from which ψ(0,t)
is obtained. If Eq. (24) is solved for c(t) with this ψ(0,t), the
result is the following (Appendix C):

c(t) ≈ iLe−5ik2t

4ψ(0,t)

∫ t

0
dt ′e5ik2t ′

(
∂

∂t ′
+ ik2

)

×
(

∂

∂t ′
+ 9ik2

)
ψ(0,t ′) + c(0)ψ(0,0)

ψ(0,t)
e−5ik2t . (25)

Equation (25) suggests that one can design the protocol c(t) to
guide the evolution of ψ(x,t) within the two-mode approxima-
tion. If ψ(0,t) stays at one of the two lowest eigenmodes, for
example, the first term of Eq. (25) identically vanishes and we
find that c(t) ≈ c(0)ψ(0,0)

ψ(0,t) e−5ik2t . If c(t) 	= 0, one might reach

a conclusion that ψ(0,t) ∝ e−5ik2t , considering that c(t) must
be real for any t . This is self-contradictory, however, because
no eigenmode has phase velocity −5k2. The only possibility
is to set c(t) = 0. As a more nontrivial example, let us write
ψ(0,t) = A(t)eiϕ(t) and suppose that the amplitude decays as
A(t) = A0e

−λt with real positive constants A0 and λ. The
phase ϕ(t) is a real number in (−∞, + ∞). Substituting this

ψ(0,t) into Eq. (24), we obtain the following set of equations:

πϕ2
t + [10πk2 + 8kc(t)]ϕt + 9πk4 + 40k3c(t) − πλ2 = 0,

(26)

πϕtt + 2πλϕt − 10πλk2 − 8λkc(t) + 8kct (t) = 0. (27)

Equation (26) is quadratic in ϕt and can be solved as

ϕt = 1

2π
{−[10πk2 + 8kc(t)]

±
√

64π2k4 + 64k2c2(t) + 4π2λ2}, (28)

where we will choose the plus sign to have limλ→0 ϕt = −k2

on the ground state. By plugging Eq. (28) into Eq. (27), one
derives a nonlinear differential equation for c(t). It can be
linearized by keeping only linear terms in λ and c(t), which
results in c(t) ≈ 3πk

4 (e4λt − 1) ≈ 3πkλt . To sum up, if we
choose how the amplitude changes over time, it determines the
evolution of the phase, due to the constraint that c(t) must real.
By combining these A(t) and ϕ(t), it is possible to construct
c(t). Note that the phase velocity ϕt in Eq. (28) converges
to −5k2 as c(t) → ∞. This value turns out to be an average
of −k2 and −9k2, which are for the first and second modes,
respectively, and a little different from the phase velocity of
the first excited state, −4k2, in this two-mode approximation.

III. NUMERICAL CALCULATION

Numerical calculation can be a useful tool to explore
Eq. (6), as we will show in this section. Throughout this
section, we will use the same protocol c(t) = tan(k2t/4) as in
the above example. Recall that the box is completely separated
into two subsystems at t = t∗ = 2π/k2, so that we have to
only consider t ∈ [0,t∗). Our numerical strategy is to divide
this time interval into M pieces to use the left Riemann sum
for the integral over t ′ in Eq. (8). It is convenient to define

Fμ(t) ≡
∫ t

0
dt ′c(t ′)ψ(0,t ′)ei(2μ+1)2k2t ′ (29)

and approximate it as

Fμ(T ε) ≈ ε

T −1∑
l=0

c(lε)ψ(0,lε)ei(2μ+1)2k2lε , (30)

where we have identified dt and t with ε and T ε, respectively,
by introducing an integer T ∈ (0,M) and ε ≡ t∗/M . At the
next time step, Fμ is updated as follows:

Fμ(T ε + ε) = Fμ(T ε) + εc(T ε)ψ(0,T ε)ei(2μ+1)2k2T ε. (31)

We obtain ψ(0,T ε) by calculating

ψ(0,T ε) ≈ L−1/2e−ik2T ε − 2i

L

N∑
μ=0

Fμ(T ε)e−i(2μ+1)2k2T ε,

(32)
with N � 1 to include a sufficiently large number of modes.
At the same time, it is worth noting that (2N + 1)2ε must
be small enough to perform the integration in Eq. (29). By
iterating Eqs. (31) and (32), we can get ψ(0,t) within the
time interval [0,t∗) [Fig. 2(a)]. Note that Fig. 1 has already
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FIG. 2. Numerical result of probability density |ψ(x,t)|2 from
an initial condition specified by Eq. (A7) with L ≡ 1. The δ

potential grows as c(t) = tan(k2t/4) at the origin and diverges as
t → t∗ = 2π/k2 = 8/π ≈ 2.55. (a) Probability density at the origin
as a function of time, together with c(t) for comparison. (b) Full shape
of |ψ(x,t)|2. (c) Probability density and phase at time t = 0.99 × t∗

(solid). The black dotted line shows the probability density of the first
excited state, sin2(πx), for comparison. (d) Energy of the particle. The
horizontal line indicates the energy of the first excited state.

shown the curve of |ψ(0,t)|2 obtained in this way to compare
it with the two- and three-mode approximations. We compute
ψ(x,T ε) for nonzero x in a similar manner, because Eq. (8) is
discretized as

ψ(x,T ε) ≈ L−1/2e−ik2T ε cos kx

−2i

L

N∑
μ=0

Fμ(T ε)e−i(2μ+1)2k2T ε cos[(2μ + 1)kx].

(33)

Although we have discussed x0 = 0 for brevity, the gener-
alization to x0 	= 0 is straightforward. An advantage of this
approach is that Eq. (33) can be computed in parallel for
many different x’s. In this way, one can get the full shape
of the probability density |ψ(x,t)|2 as depicted in Fig. 2(b).
Figure 2(c) shows |ψ(x,t)|2 at t = 0.99 × t∗ in comparison
with sin2(πx/L), the probability density of the first excited
state. We have assured ourselves that the normalization
condition [Eq. (10)] is satisfied within the accuracy of 10−3

throughout the calculation. Figure 2(d) shows the kinetic and
potential energies of the particle as functions of time [Eq. (11)].
As t approaches t∗, the total energy converges to 4k2, the
energy of the first excited state φ2(x). As can be seen from
Eq. (9), however, ψ(x,t) must be symmetric with respect to
the origin, so we conclude that ψ(x,t∗)∝| sin(2kx)| to a good
approximation.

Even if this is expected in the limit of the adiabatic
theorem [16], it is not obvious a priori when the barrier is
inserted within finite time. A qualitative explanation goes
as follows: The energy level spacing between the ground
and first excited states amounts to 3π2/4 ≈ 7.40 at t = 0
in our units. The characteristic time scale will thus be of
O(4/3π2) ∼ O(10−1), which is roughly 5% of the total time
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FIG. 3. Time evolution of |ψ(x,t)|2 when the barrier is inserted at
x0 = 0.3. (a) If the initial condition is the ground state, i.e., ψ(x,0) =
φ1(x) = cos kx, the particle will be localized on the left side of the
box in the end. (b) Energy levels in the two subsystems separated by
the barrier at x0 = 0.3, represented by the upward arrow. The ground
state of the total system is found on the left side.

t∗ ≈ 2.55 to insert the barrier. For this reason, we can still
say that the insertion is relatively slow. This argument can
be made more quantitative by approximating our particle as
a two-level system consisting of the ground state and the
first excited state. Such approximation is reasonable, because
other excited states are very far away from these two in the
energy spectrum. According to the Landau-Zener formula, if
the energy levels approach to each other with speed �̇, the
occupation probability P2 of the first excited state will be
estimated by ln(P2) ∝ −�̇−1 at the end of the protocol. If
�̇ � 1, therefore, the system will remain in the ground state
with high probability, which is the case when t is roughly
less than 0.8t∗ in Fig. 2(a). The rapid increase of the barrier
height for t � 0.8t∗ just gently pushes the particle out of the
origin, because the probability density at the origin has already
become low at t = 0.8t∗. As a result, the particle is mostly
preserved in the ground state.

If the wall is away from the origin, i.e., x0 	= 0, the particle
can be localized at t = t∗ on the wider side of the box [36,37].
For example, Fig. 3(a) shows the case of x0 = 0.3. This
is also easily explained by applying the adiabatic theorem:
Let L1 = L + x0 denote the size of this wider side, whereas
L2 = L − x0 denotes that of the other side. The ground state at
t = t∗ has nonzero probability only on the wider side of the box
with an energy level E1 = π2/L2

1 [Fig. 3(b)]. The energy on
the narrower side, E2 = π2/L2

2, is more than three times higher
than this ground-state energy. When the energy-level spacing
is so large, our protocol can preserve the most part of the
system in the ground state. We thus need only a single energy
eigenstate to confine the particle on one side of the box at t = t∗
if the barrier is slowly inserted at an asymmetric position. In
other words, the which-side measurement commutes with the
Hamiltonian of this system in the quasistatic limit. However,
when the protocol is fast enough compared with the energy
gap, we can no longer neglect excitation, and this creates
uncertainty to be resolved by a which-side measurement.

We have thus confirmed that our calculation produces
physically reasonable results as long as the process is slow
enough with respect to the characteristic time scale of the
system. Obviously, our numerical calculation is not restricted
to such a slow protocol, and we can also check what happens
if we speed up the insertion. It is clear that the wave function
will not converge to the ground state of the subsystem anymore
but occupy higher energy levels at the end of the process. Our
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FIG. 4. Insertion of the barrier at x0 = 0 in a box with L = 1. The wave function is initially in the ground state, i.e., ψ(x,0) = φ1(x) = cos kx.
(a) Probability densities for various insertion speeds, when the wave function is split into two parts. We have also plotted the initial probability
density function |ψ(x,0)2| = |φ1(x)|2 = cos2 kx for comparison. (b) Differences from the adiabatic limit (see text) near the end of the protocol.
On the horizontal axis, the unit length of the protocol is defined by 8/π ≈ 2.55. (c) The time evolution of |ψ(x,t)|2 in case of the fastest
insertion with t∗ = 0.08/π . The wave function for t > t∗ is obtained by using the spectral method [35].

calculation makes this guess more precise: Figure 4(a) shows
the probability densities at t ≈ t∗, and we have checked various
t∗ across two orders of magnitude. The case of t∗ = 0.08/π

describes a situation in which the insertion speed is much faster
in comparison to the characteristic time scale of the system
∼O(10−1). As a consequence, the overall shape at the end of
the protocol does not deviate much from the starting point,
|ψ(x,0)|2 = |φ1(x)|2 = L−1 cos2 kx. As mentioned above, we
expect ψ(x,t) → ψ‖(x) ≡ L−1/2|sin2kx| in the adiabatic limit
up to a phase factor. We thus decompose ψ(x,t) into parallel
and perpendicular components to ψ‖(x,t) as

ψ(x,t) = A‖ψ‖(x,t) + A⊥ψ⊥(x,t), (34)

where ψ⊥(x,t) is a normalized wave function perpendicular to
ψ‖(x,t). The normalization condition of ψ(x,t) requires that
|A‖|2 + |A⊥|2 = 1. In Fig. 4(b), we plot |A⊥|2 with varying
the length of the protocol, measured in units of 8/π . As we
slow down the insertion, the difference from the adiabatic
limit decreases drastically. This point is especially important
in splitting a wave function within a finite time [24–27]. In case
of a quick protocol, the excitation to higher-energy modes,
as manifested by the dip around the origin, makes the wave
function rugged in further time evolution [Fig. 4(c)]. We note
that this result is consistent with the predicted fractal wave
function [17]. Even if x0 	= 0, the excitation makes both sides

0
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x
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relative length of the protocol
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|A⊥|2 (x<0.1)
(x>0.1)

P(x<0.1)/P(x>0.1)

FIG. 5. Evolution of the wave function for various insertion
speeds when the barrier is inserted at x0 = 0.1. Except x0, the
other parameters are the same as in Fig. 4. (a) Probability densities
after the split, plotted with the initial probability density function
|ψ(x,0)2| = |φ1(x)|2 = cos2 kx for comparison. (b) Difference from
the adiabatic limit on the two sides of the box at t ≈ t∗. On the vertical
secondary axis, we have also shown the ratio of the probability to find
the particle at x < 0.1 to that of x > 0.1.

of the box occupied, creating uncertainty to be resolved by
a which-side measurement [Fig. 5(a)]. Differently from the
quasistatic protocol, therefore, we can still make use of the
information to extract work with a finite-time protocol. Our
numerical procedure provides a precise way to obtain the
wave function, from which the amount of uncertainty can
be estimated. Figure 5(b) depicts the trade-off between the
uncertainty and the excitation to other eigenmodes. This is
crucial in the context of splitting a matter wave, where it is
desirable to keep the uncertainty while minimizing excitation
at the same time. Figure 5(b) shows that the excitation can
be suppressed with |A⊥|2 � O(10−2), while the asymmetry
of probabilities are also kept less than O(10), if t∗ ≈ 8/π for
x0 = 0.1.

IV. DISCUSSION AND SUMMARY

In summary, we have investigated a quantum particle in an
isolated box with a time-dependent δ potential. We have found
an integral expression for the wave function [Eq. (6)] together
with an approximate formula [Eq. (24)]. The numerical
evaluation through the integral equation gives precise results
for the wave function during the barrier insertion, even if the
process is completed within finite time. The total duration of
the process, denoted by t∗, can be either short or long compared
to the characteristic time scale of the particle, and the insertion
point can be either symmetric or asymmetric. For all the cases
considered, our numerical calculation has produced physically
reasonable results in the light of the Landau-Zener formula.

In the context of splitting a wave function, we may consider
a Bose-Einstein condensate in an optical trap forming a
one-dimensional box [38–40]. The δ potential barrier can be
implemented experimentally by shining a sharp laser beam
onto the condensate. If the barrier height is increased with a
sufficiently slow rate compared to the internal time scale of
the system, the adiabatic limit can be reproduced with good
accuracy [Fig. 4(b)]. In addition, we have also considered how
to design the protocol within the two-mode approximation
[Eqs. (26) and (27)]. If the barrier is off the middle of the box,
its insertion localizes the wave function on one side of the box,
instead of splitting it, in the adiabatic limit. This trade-off has
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FIG. 6. (a) Probability density of Eq. (35) at t = 0.99t∗ when t0
is suitably chosen. (b) Time evolution of |�(x,t)|2 with the same t0.

been illustrated for x0 = 0.1 in Fig. 5(b) so that one can choose
the insertion speed based on the calculation.

If we return to the Szilard engine, the insertion of the
barrier is followed by measuring the position of the particle and
expanding this single-particle gas isothermally. Thereafter, the
barrier should be removed to complete one cycle. As long as
the engine can be treated as isolated from the environment,
the removal of the barrier can be studied in the same way as
in this work: It boils down to the derivation of an integral
equation similar to Eq. (6), beginning with a localized initial
condition due to the measurement. Instead of starting from
scratch, however, we point out that our results in the previous
section can be directly used to study the removal process in
certain cases. For example, suppose that the wave function is
described in the form

�(x,t) = 1√
2

[ψ(x,t) + φ2(x,t)], (35)

where ψ(x,t) is obtained from Eq. (9) and φ2(x,t) is the
first excited state including time dependence. We may write
it as φ2(x,t) = φ2(x)e−4ik2(t−t0) with certain reference time
t0. It is obvious that φ2(x,t) is not affected by the barrier,
because the barrier is located at a node of this wave function.
We also note that ψ(x,t) and φ2(x,t) are orthogonal to each
other, because one is even and the other is odd with respect
to x → −x. By choosing a suitable t0 for φ2(x,t), we can
induce destructive interference on the left side of the box at
t ≈ t∗, which effectively confines the particle to the right half
of the box [Fig. 6(a)]. With this t0, we can also obtain the full
time evolution of �(x,t) from t = 0 to t ≈ t∗ [Fig. 6(b)]. If
we define �T (x,t) ≡ �(x,t∗ − t), where the overbar means
complex conjugate, it satisfies the following equation:

−�T
xx + 2c(t∗ − t)δ(x − x0)�T = i�T

t . (36)

Comparing this with the original Schrödinger equation
[Eq. (1)], we see that �T (x,t) solves the case of time reversal.
Therefore, if we remove the barrier, the probability density
will evolve from the top to the bottom in Fig. 6(b), because
|�T (x,t)|2 = |�(x,t∗ − t)|2. We clearly observe tunneling of
the particle, resulting from a beat phenomenon between ψ(x,t)
and φ2(x,t) [41], as the height of the barrier decreases. Such
a beat phenomenon is weakened when the barrier is off the
origin, because a single eigenstate is enough to localize a
particle [Fig. 3(a)].

Considering that the quantum Szilard engine designed
in Ref. [6] always keeps the quantum gas isothermal, it
is fair to say that our computational framework can only
hint at low-temperature behavior at best, because it deals

with an isolated system. To understand the performance of
a quantum information engine working at a finite temperature,
we need to take into consideration a thermal reservoir in the
quantum-mechanical context. That is far beyond the scope of
the present work and will be undertaken in a future study.
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APPENDIX A: LAPLACE TRANSFORM OF THE
SCHRÖDINGER EQUATION

In the main text, we have written the Schrödinger equation
through the Laplace transform as follows:

ψxx + isψ = iψ(x,0). (A1)

The homogeneous equation in the absence of the RHS is solved
by

ψc(x,s) = a(s)y1(x) + b(s)y2(x), (A2)

where y1(x) ≡ ei
√

isx and y2(x) ≡ e−i
√

isx . The prefactors a(s)
and b(s) are determined by the boundary condition. The
particular solution can be found by the integral

ψp(x,s) = −y1(x)
∫

dx ′ y2(x ′)iψ(x ′,0)

W (x)

+y2(x)
∫

dx ′ y1(x ′)iψ(x ′,0)

W (x)
, (A3)

where W is the Wronskian of y1 and y2:

W =
∣∣∣∣y1 y2

y ′
1 y ′

2

∣∣∣∣ =
∣∣∣∣∣ ei

√
isx e−i

√
isx

i
√

isei
√

isx −i
√

ise−i
√

isx

∣∣∣∣∣
= −2i

√
is. (A4)

The solution of Eq. (3) is given as ψ(x,s) = ψc(x,s) +
ψp(x,s). More specifically, ψp(x,s) can be expressed as

ψp(x,s) =
∫ x

−∞
dx ′ e

i
√

is(x−x ′)

2
√

is
ψ(x ′,0)

−
∫ x

∞
dx ′ e

i
√

is(x ′−x)

2
√

is
ψ(x ′,0) (A5)

=
∫ ∞

−∞
dx ′ e

i
√

is|x−x ′ |

2
√

is
ψ(x ′,0). (A6)

For example, suppose that we choose the ground state as our
initial condition,

ψ(x,0) =
{

L−1/2 cos kx if |x| < L,

0 otherwise,
(A7)
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where k ≡ π/(2L). The particular solution is then explicitly
given as

ψp(x,s) =
√

ik2

sL
ei

√
isL cos(

√
isx) + L−1/2 cos kx

s + ik2
. (A8)

We can carry out a similar integral to get an explicit expression
for ψp(x,s) by choosing our initial condition as the nth
eigenstate φn(x) in the absence of the δ-function potential,

ψ(x,0) = φn(x)

=
⎧⎨
⎩

L−1/2 cos nkx if |x| < L and n is odd,

L−1/2 sin nkx if |x| < L and n is even,

0 otherwise,
(A9)

where n = 1 corresponds to the ground state. To sum up,
Eq. (3) has a solution of the following form:

ψ(x,s) =
{

a+ei
√

isx + b+e−i
√

isx + ψp(x,s) if x > x0,

a−ei
√

isx + b−e−i
√

isx + ψp(x,s) if x < x0.

(A10)
In addition, we have four conditions to determine the coeffi-
cients a± and b±:

lim
x→x+

0

ψ(x,s) = lim
x→x−

0

ψ(x,s), (A11)

ψ(+L,s) = 0, (A12)

ψ(−L,s) = 0, (A13)

lim
x→x+

0

ψx(x,s) − lim
x→x−

0

ψx(x,s) = 2c(t)ψ(x0,t). (A14)

Note that the existence of the barrier inside the box is mani-
fested by the last boundary condition at x = x0 [Eq. (A14)].
One technical remark is in order: When one solves the
Schrödinger equation with a time-varying potential, it is
also common to use the coupled-channel method, which is
perturbative expansion with the eigenmodes of the original
barrier-free system [36]. However, the singular property of the
δ function has led us to treat the time-varying potential as a
boundary condition, as expressed in Eq. (A14). After some
algebra, the solution is obtained as

ψ(x,s) = φn(x)

s + in2k2
+ L[c(t)ψ(x0,t)]F (x,s), (A15)

where

F (x,s)=

⎧⎪⎨
⎪⎩

(e2i
√

isL−e2i
√

isx )(e2i
√

is(L+x0)−1)
i
√

isei
√

is(x+x0)(e4i
√

isL−1)
for x0 � x < L,

(e2i
√

isL−e2i
√

isx0 )(e2i
√

is(L+x)−1)
i
√

isei
√

is(x+x0)(e4i
√

isL−1)
for − L < x < x0,

(A16)
which is the result in the main text.

If we choose a linear protocol such as c(t) = c0t with a
real constant c0, the second term on the RHS of Eq. (4) has
an explicit form because L[t × ψ(x0,t)] = − d

ds
ψ(x0,s) [33].

For x = x0, therefore, we get a first-order ODE,

ψ(x0,s) = φn(x0)

s + in2k2
− c0

d

ds
ψ(x0,s)F (x0,s), (A17)

whose formal solution is always available [34]. For example,
suppose that the particle occupies the ground state at t = 0,

i.e., n = 1. If the barrier is inserted at x0 = 0, we find that

d

ds
ψ(0,s) − c−1

0

√
is cot(

√
isL)ψ(0,s)

= −c−1
0

L−1/2
√

is cot(
√

isL)

s + in2k2
. (A18)

The formal solution is thus written as

ψ(0,s) = −c−1
0 e−I (s)

∫ s

0

L−1/2
√

is ′ cot(
√

is ′L)

s ′ + in2k2
eI (s ′)ds ′

+ψ(0,0)e−I (s), (A19)

where

I (s) ≡ −c−1
0

∫ s

0

√
is ′ cot(

√
is ′L)ds ′

= 2

3
(is)3/2 + 2sL−1ln(1 − e−2i

√
isL)

+2L−2
√

isLi2(e−2i
√

isL)

−iL−3Li3(e−2i
√

isL) + iL−3ζ (3). (A20)

Note that Lin is the polylogarithm function of order n, and
ζ is the Riemann ζ function. The next step would be to use
the solution ψ(x0,s) to derive the full wave function ψ(x,s).
Although the above procedure is formally exact, it is too
complicated to obtain the wave function in the (x,t) space. In
addition, we are more interested in a general protocol, which
may go up to infinity within finite time. For this reason, we do
not take this direction but directly apply the inverse Laplace
transform to Eq. (4) as shown in the main text.

APPENDIX B: INVERSE LAPLACE TRANSFORM
OF EQ. (4)

Here, we consider the inverse Laplace transform of Eq. (4).
It is elementary to transform the first term on the RHS of
Eq. (4), because L[e−in2k2t ] = 1

s+in2k2 . To use the convolution
theorem for the second term, we need the inverse Laplace
transform of F (x,s) through the Bromwich integral [34]

L−1[F (x,s)] = 1

2πi

∫ h+i∞

h−i∞
F (x,z)eztdz, (B1)

where t > 0.
Equation (5) has simple poles on the imaginary axis at

z = −iν2k2 with ν = 1,2, . . ., which implies that h can be an
arbitrary positive constant. Let us consider a keyhole contour,
as depicted in Fig. 7, with taking the negative real axis as a
branch cut. The first path C1 goes from h − iR to h + iR. If R

grows to infinity while h is kept constant, the integral along C1

is directly related to Eq. (B1). In such a limiting process, the
length of C2 remains constant, whereas the integrand decreases
as R−1/2. Therefore, we conclude that the integral along C2

vanishes as R → ∞, and the same conclusion holds for C8.
Both C3 and C7 are ghost contours, because |ezt | = |eRt cos θ |
and cos θ is negative for θ ∈ (−π,π ). One can also readily
see that the integral along C5 can be made arbitrarily small by
taking the radius r → 0. The remaining parts are C4 and C6.
Let us assume x0 < x < L, because there is little difference for
−L < x < x0. Let X denote Re(z). We have z = eiπX = −X

052124-8



PARTICLE IN A BOX WITH A TIME-DEPENDENT . . . PHYSICAL REVIEW A 94, 052124 (2016)

r

R

h

Im
(z

)

Re(z)

C1

C2
C3

C4

C5C6

C7
C8

FIG. 7. Keyhole contour to carry out the Bromwich integral
[Eq. (B1)]. The crosses on the imaginary axis represent the poles
of the integrand. The parameter h is a positive number, which is kept
constant even when the radius R of C3 and C7 grows to infinity. At
the same time, the radius of C5, denoted as r , approaches zero.

and
√

z = ei π
2

√
X = i

√
X along C4, whereas z = e−iπX = X

and
√

z = e−i π
2

√
X = −i

√
X along C6. Then Eq. (5) gives us

the integrands

F (x,z)|C4
= (e−2

√
iXL − e−2

√
iXx)(e−2

√
iX(L+x0) − 1)

−√
iXe−√

iX(x+x0)(e−4
√

iXL − 1)
, (B2)

and

F (x,z)|C6
= (e2

√
iXL − e2

√
iXx)(e2

√
iX(L+x0) − 1)√

iXe
√

iX(x+x0)(e4
√

iXL − 1)
. (B3)

A little algebra shows that Eqs. (B2) and (B3) are actually
identical. The integrals along C4 and C6 are in the opposite
directions, and therefore cancel out each other. Now we have
evaluated the integral around the whole keyhole contour, and
the residue theorem gives us fν(x,t) for each pole as follows:

fν(x,t) =
{

1
2iL

e−iν2k2t−iνk(x+x0)[(−1)ν − e2iνkx][e2iνk(L+x0) − 1] for x0 < x < L,

1
2iL

e−iν2k2t−iνk(x+x0)[(−1)ν − e2iνkx0 ][e2iνk(L+x) − 1] for − L < x < x0.
(B4)

One might therefore conclude that L−1[F (x,s)] =∑∞
ν=1 fν(x,t), but the summation should be understood

as a formal expansion, whose convergence is not guaranteed.
Based on the existence of the wave function, we conjecture
that the summation over ν will be generally convergent after
integrated over t in Eq. (6). Unfortunately, it is difficult
to prove this statement, because the integral of Eq. (6) is
also involved in ψ(x0,t), which is unknown as yet. Still, we
suggest that sin νt could be an illustrative example: It does
not converge when summed over ν = 1,2, . . .. However, if
we first integrate it over t and then carry out the summation,
the result can converge to a well-defined value.

APPENDIX C: SOLVING EQ. (24) FOR c(t)

Let us rearrange the terms of Eq. (24) as follows:

8ikψ(0,t)ct (t) + [8ikψt (0,t) − 40k3ψ(0,t)]c(t)

+π [ψtt (0,t) + 10ik2ψt (0,t) − 9k4ψ(0,t)] ≈ 0. (C1)

Dividing both sides by 8ikψ(0,t), we get

ct (t) +
[
ψt (0,t)

ψ(0,t)
+ 5ik2

]
c(t)

≈ iL

4ψ(0,t)
[ψtt (0,t) + 10ik2ψt (0,t) − 9k4ψ(0,t)],

(C2)

which is a linear first-order ODE for c(t). Its formal solution
takes the form [34]

c(t) = e−I (t)
∫ t

0
dt ′Q(t ′)eI (t ′) + c(0)e−I (t), (C3)

where

I (t) ≡
∫ t

0
dt ′

[
ψt (0,t)

ψ(0,t)
+ 5ik2

]

=
∫ t

0
dt ′

{
d

dt ′
[ln ψ(0,t ′)] + 5ik2

}

= ln ψ(0,t) − ln ψ(0,0) + 5ik2t, (C4)

and Q(t) ≡ iL
4ψ(0,t) [ψtt (0,t) + 10ik2ψt (0,t) − 9k4ψ(0,t)]. If

we plug Eq. (C4) into Eq. (C3), the first term on the RHS
of Eq. (C3) is evaluated as

e−I (t)
∫ t

0
dt ′Q(t ′)eI (t ′) = iLe−5ik2t

4ψ(0,t)

∫ t

0
dt ′e5ik2t ′

(
∂

∂t ′
+ ik2

)

×
(

∂

∂t ′
+ 9ik2

)
ψ(0,t ′), (C5)

and the second term gives

c(0)e−I (t) = c(0)ψ(0,0)

ψ(0,t)
e−5ik2t . (C6)
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