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Generalized continuity equations from two-field Schrödinger Lagrangians
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A variational scheme for the derivation of generalized, symmetry-induced continuity equations for Hermitian
and non-Hermitian quantum mechanical systems is developed. We introduce a Lagrangian which involves two
complex wave fields and whose global invariance under dilation and phase variations leads to a mixed continuity
equation for the two fields. In combination with discrete spatial symmetries of the underlying Hamiltonian, the
mixed continuity equation is shown to produce bilocal conservation laws for a single field. This leads to generalized
conserved charges for vanishing boundary currents and to divergenceless bilocal currents for stationary states.
The formalism reproduces the bilocal continuity equation obtained in the special case of PT -symmetric quantum
mechanics and paraxial optics.
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I. INTRODUCTION

The variational principle of stationary action provides a
generic path connecting a representation of a physical system
by a scalar function, the Lagrangian, with the equations of
motion (EOM) determining its time evolution. Although this
relation is not bijective (different Lagrangians may lead to
the same EOM), all Lagrangians representing a given physical
system have a common property: their actions remain invariant
under the same transformations of the involved variables. Sym-
metries of the Lagrangian under continuous transformations
then manifestly lead to corresponding conservation laws via
Noether’s theorem [1], which can be seen as operating in a
twofold way: It (i) provides the form of quantities obeying
symmetry-induced conservation laws and, conversely, (ii)
dictates the symmetric design of the Lagrangian of a system
under predefined conservation laws. A typical example of
the latter case is the U(1) symmetric Lagrangian constructed
to provide a variational formulation of quantum mechanics,
leading to the continuity equation for the probability current.

The symmetry of a system under discrete spatial trans-
formations also yields conserved quantities, though now by
commutation of the corresponding operator with the Hamilto-
nian rather than through Lagrangian variation. In the context
of non-Hermitian quantum systems with symmetry under
combined spatial (P) and temporal (T ) reflection, a symmetry-
induced nonlocal continuity equation can be derived from the
Schrödinger equation (SE) [2]. This alternative description
further necessitates the introduction of a suitably defined
nonlocal scalar product reflecting the PT transformation
in consistently obtained expectation values [3]. PT -induced
conservation laws were also obtained recently in the context of
nonlinear systems with self-induced PT symmetry by apply-
ing Noether’s theorem to the associated nonlocal Lagrangian
possessing a set of continuous symmetries [4], with the U(1)
symmetry also treated in paraxial optics [5].PT symmetry and
its spontaneous breaking [6] has received increased attention
since its realization in photonic heterostructures, featuring
phenomena such as anisotropic transmission resonances [7],
coherent perfect absorber laser points [8], unidirectional
invisibility [9], or absorption enhanced transmission [10], to

mention a few. The PT -adapted nonlocal current of stationary
states can here be employed as a natural order parameter
[11,12] for the symmetry-breaking transition.

Nonlocal conservation laws are, nevertheless, not exclu-
sively linked to PT -symmetric systems. Indeed, Ref. [13]
uses two different nonlocal currents to generalize the amplitude
mapping in parity and Bloch eigenstates from global to local
symmetries in finite domains. The spatial constancy of those
stationary currents, derived there from the stationary SE,
suggests their origin in suitably generalized conservation laws
applied to inversion and translation symmetry, respectively.
In view of the above, a natural question which arises
is whether such generalized conservation laws adapted to
discrete symmetries may arise from a common variational
principle.

In the present work we answer this question by introducing
a two-field Lagrangian whose invariance under global dilata-
tion and phase transformation leads to a mixed continuity
equation for the two fields. The treatment is inspired by
the method of phase-space extension for dissipative systems
[14], with the two states correlated in the Lagrangian here
being generally solutions to dual Schrödinger equations with
opposite imaginary potential terms modeling loss and gain.
Together with the symmetry of the Hamiltonian under a
discrete spatial transformation, potentially combined with
time reversal, the mixed continuity equation produces cor-
responding generalized nonlocal current conservation laws for
a single state. Those apply to any wave mechanical system
described effectively by a SE, such as optics in two or three
dimensions within the paraxial approximation. In particular,
the concept of optical quasipower, used in the literature in
the context of PT symmetry, is here generalized to, e. g.,
purely lossy systems with arbitrary discrete symmetries. In
one dimension, the spatially constant nonlocal currents of
Ref. [13] for stationary states are recovered. The formalism
addresses Hermitian and non-Hermitian systems on equal
footing in arbitrary dimensions, and its extension to symmetric
interacting Hamiltonians is straightforward. It thus provides a
unified theoretical framework for the variational extraction
of conservation laws for wave systems with discrete spatial
symmetries.
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The paper is organized as follows. In Sec. II we introduce
the two-field Lagrangian leading to two complementary SEs
with opposite imaginary potential via the variational principle.
In Sec. III Noether’s theorem is applied to derive a mixed
current-density continuity equation for the two fields. In
Sec. IV we consider the symmetry of the Hamiltonian under
discrete spatial transformations in combination with time
reversal, leading to different generalized conservation laws.
We conclude the work in Sec. V.

II. TWO-FIELD LAGRANGIAN

The aim is to construct a general Lagrangian involving wave
fields that obey Schrödinger equations of motion and which
at the same time produces generalized types of continuity
equations corresponding to different symmetries of the system.
We start by reviewing the variational derivation of the ordinary
continuity equation for the probability density ρ◦(x,t) =
|�(x,t)|2 of a single Schrödinger field � from the real
Lagrangian density

L◦ = Re[�∗(i∂t − H◦)�] (1)

= � i(∂t�
r − H◦� i) − �r(∂t�

i + H◦�r), (2)

where �r(� i) ∈ R is the real (imaginary) part of � = �r +
i� i. The spatial representation of the Hamilton operator is
H◦ = − 1

2∇2 + V with the real potential function V (x).
The Lagrangian is made real by construction to enable

unambiguous application of the extremal action principle,
treating �r and � i as independent variables. Imposing δS◦ for
the action S◦ = ∫

�

∫ tf
ti

dxdtL◦ under variation of �r and � i,
with vanishing variations δ�r and δ� i at the boundary of � for
any time t and at t = ti ,tf for all x ∈ �, produces the Euler-
Lagrange equations ∂t�

r = H◦� i and −∂t�
i = H◦�r, which

are combined into the SE i∂t� = H◦�. The invariance of
the L◦ under the global U(1) phase transformation �̃ = eiφ�

(φ ∈ R) can be used to derive the continuity equation ∂tρ◦ =
−∇ · J◦, with the usual current density J◦ = (�∗∇� −
�∇�∗)/2i, by Noether’s first theorem. Throughout, ∇ =∑

d=1,2,3 x̂d∂/∂xd denotes differentiation with respect to the
coordinate x = ∑

d xd x̂d .
This common approach clearly cannot be used to derive

continuity equations for nonlocal currents like the ones used
in Ref. [13]. It also fails to generate the equations of motion
for non-Hermitian Hamiltonians, widely used in effective
descriptions. Interestingly, both issues can be treated with a
single modification of the Lagrangian, by generalizing it to a
form which involves two different fields �± = �r

± + i� i
±,

L = Re[�∗
−(i∂t − H )�+] (3)

= � i
−(∂t�

r
+ − H◦� i

+ − W�r
+)

−�r
−(∂t�

i
+ + H◦�r

+ − W� i
+), (4)

where the Hamiltonian H = H◦ + iW generally includes an
additional imaginary term iW (x) representing a simple model
for spatially dependent gain (W > 0) or loss (W < 0) of
density.

Now, imposing δS = ∫
�

∫ tf
ti

dxdtδL = 0 under variation
of the four independent variables �r

± and � i
± leads to the

Euler-Lagrange equations

∂t�
r
± = H◦� i

± ± W�r
±, ∂t�

i
± = −H◦�r

± ± W� i
±. (5)

Recombining real and imaginary parts, those in turn yield the
two complementary SEs,

i∂t�± = H◦�± ± iW�±, (6)

with Hamiltonians H± ≡ H◦ ± iW for the two fields �±
which thus evolve under the opposite gain or loss rate profile
W (x). In this sense, the Lagrangian L correlates the two states
�± via the non-Hermitian part of the effective Hamiltonian.

III. GENERALIZED MIXED CONTINUITY EQUATION

We now use the introduced two-field Lagrangian to generate
a corresponding continuity equation which mixes the two
states �±. L is invariant under the transformation

�̃± = e±φ�±, φ = φr + iφi, (7)

with the real variables φr and φi parametrizing a dilatation and
a rotation in the complex plane, respectively,(

�̃r
±

�̃ i
±

)
= e±φr

(
cos φi − sin φi

sin φi cos φi

)(
�r

±
� i

±

)
. (8)

We can now exploit the invariance of L under the above
transformation to derive conservation laws for the �r

± and
� i

± via Noether’s theorem. To first order in infinitesimal
variations δφr and δφi, the field component variations are
δφ�r

± = ±�r
±δφr − � i

±δφi and δφ� i
± = ±� i

±δφr + �r
±δφi,

leading to a variation,

δφL = δφr[�r
−(∂t − W )� i

+ − � i
−(∂t − W )�r

+
+�r

−H◦�r
+ + � i

−H◦� i
+]

+ δφi[�r
−(∂t − W )�r

+ + � i
−(∂t − W )� i

+
−�r

−H◦� i
+ + � i

−H◦�r
+], (9)

in the Lagrangian. Solving the equations of motion (5) for the
terms W�r

− and W� i
− and substituting them in Eq. (9), the

condition δφL = 0 yields the following two equations:

∂t (�
r
−�r

+ + � i
−� i

+) = − 1
2∇ · [�r

+∇� i
− − � i

−∇�r
+

+�r
−∇� i

+ − � i
+∇�r

−], (10)

resulting from the invariance under phase transformation, and

∂t (�
r
−� i

+ − � i
−�r

+) = − 1
2∇[� i

+∇� i
− − � i

−∇� i
+

+�r
−∇�r

+ − �r
+∇�r

−], (11)

resulting from the invariance under dilatations. Those equa-
tions combine into a single continuity equation,

∂tρ(x,t) + ∇ · J(x,t) = 0, (12)

for the mixed two-state density and current,

ρ = �∗
−�+, J = 1

2i
(�∗

−∇�+ − �+∇�∗
−). (13)

As pointed out by Gottfried and Yan [15], such a conservation
law stems from the unitary evolution of any two solutions of
the SE, rendering their scalar product constant in time. We here
derive this conservation law from the variational principle on
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TABLE I. Generalized conservation laws for the currents (a) JT in the absence of F symmetry, (b) JF in the presence of F-symmetry,
and (c) JFT in the presence of FT symmetry, produced by the mixed continuity equation, Eq. (12), upon substitution of �− in terms of
�+ (subscript then omitted) for the non-Hermitian Hamiltonian H = H◦ + iW . The identity transformation F = I reproduces the ordinary
probability current conservation in case (c).

Symmetry Density ρ(x,t) Current J(x,t) × 2i

(a) FHF−1 �= H �(x,−t)�(x,t) �(x,−t)∇�(x,t) − �(x,t)∇�(x,−t)
(b) FHF−1 = H �(Fx,−t)�(x,t) �(Fx,−t)∇�(x,t) − �(x,t)∇�(Fx,−t)
(c) FHF−1 = H ∗ �∗(Fx,t)�(x,t) �∗(Fx,t)∇�(x,t) − �(x,t)∇�∗(Fx,t)

the two-field Lagrangian L and generalize it to non-Hermitian
Hamiltonians with W �= 0. If the net flux of J at the surface
of a domain � vanishes, like when �± obey von Neumann or
Dirichlet boundary conditions on �, then Eq. (12) leads to the
time-conserved charge C = ∫

�
ρ(x,t)dDx in D dimensions.

IV. SYMMETRIES AND GENERALIZED
CONSERVATION LAWS

With the mixed continuity equation, Eq. (12), holding
generally for the two arbitrary solutions �± to the SE with
±iW , derived by the continuous symmetry of L in φ, we now
use it to derive a set continuity equations for a single state.
Those are induced by symmetry of the Hamiltonian under a
given discrete spatial transformation,

F : x → y = F(x) ≡ Fx, (14)

potentially combined with the operation of time reversal
T : t → −t , which is here additionally expressed by simple
complex conjugation, T : i → −i. We consider transforma-
tions F that leave the Laplacian ∇2 invariant, that is, reflec-
tions, translations, and rotations (or combinations thereof) in
dimension D, so that the F symmetry of H is determined by
the potential functions V (x) and W (x).

For the Hermitian Hamiltonian H = H◦ = H †, the two SEs
(6) become identical (W = 0). Setting �− = �+ ≡ � then
reproduces the ordinary continuity equation for the probability
density ρ◦ and current J◦ (note that −i∇ is replaced by the
kinetic momentum in the presence of a vector potential).
If H is additionally F symmetric, FHF−1 = H , then also
�−(x,t) = �+(Fx,t) ≡ �(Fx,t) is a solution to the common
SE, leading through Eq. (12) to the conservation of a bilocal
(or two-point) current,

JF (x,t) = 1

2i
[�∗(Fx,t)∇�(x,t) − �(x,t)∇�∗(Fx,t)],

(15)

obeying the symmetry-induced continuity equation

∂tρF (x,t) + ∇ · JF (x,t) = 0, (16)

with corresponding density ρF (x,t) = �∗(Fx,t)�(x,t). No-
tably, such a bilocal picture has been used in an alterna-
tive interpretation of the double-slit experiment [16]. This
symmetry-induced conservation law carries over to the case
of a non-Hermitian H if W in Eq. (6) is F antisymmetric,
W (Fx) = −W (x), that is, if H is FT symmetric. The most
prominently studied case is that of PT -symmetric systems
mentioned in the Introduction. The associated continuity
equation [2] is thereby recovered here setting F = P .

The complementary SEs also produce an alternative conser-
vation law with respect to time reversal for arbitrary H : From
Eq. (6) the time-reversed state �∗

−(x,−t) ≡ �(x,t) solves the
SE with +iW , so that substituting �− into Eq. (12) produces
the continuity equation

∂tρT (x,t) + ∇ · JT (x,t) = 0 (17)

for the bitemporal (or two-time) current

JT (x,t) = 1

2i
[�(x,−t)∇�(x,t) − �(x,t)∇�(x,−t)]

(18)

corresponding to the generalized density ρT (x,t) = �(x, −
t)�(x,t). Combining this with F symmetry yields a conser-
vation law for the combined bilocal and bitemporal current,

JFT (x,t) = 1

2i
[�(Fx,−t)∇�(x,t)−�(x,t)∇�(Fx,−t)],

now obeying the continuity equation

∂tρFT (x,t) + ∇ · JFT (x,t) = 0, (19)

with density ρFT (x,t) = �(Fx,−t)�(x,t) for F-symmetric
H [with W (Fx) = W (x) in the non-Hermitian case] For
a stationary state �(x,t) = �(x)e−iEt with energy E, the
spatial parts of JF and JFT reproduce the domainwise spatial
invariants of Ref. [13]. The continuity equations for the above
bilocal and bitemporal currents can be interpreted as a self-
correlation of a single particle field at different locations and/or
times, resulting from the two-field “correlator” Lagrangian L.
The above generalized conservation laws are listed in Table I.

Note here that, in the general case of a non-
Hermitian Hamiltonian, its (mixed) expectation value H̄ =∫

�∗
−H�+dDx is not conserved, despite the functional form

ofL not depending explicitly on the time variable t . This can be
interpreted by the indirect presence of time in the description
via the in- or outflow (“source” or “sink,” respectively) of
current density in spatial regions with W (x) �= 0, which
changes temporally in general, so that the variational procedure
for continuous time translations is not expected to produce a
conserved associated Noether charge H̄ . Indeed, due to the
nonunitary evolution in a general non-Hermitian system, the
expectation value of any operator will generally change in
time, in accordance with a generalized Heisenberg equation
of motion [17]. Here, �± will generally have components
of exponentially increasing or decreasing magnitude in time
from the imaginary part of their complex energy eigenvalues.
For instance, exponential decay is commonly encountered
in resonance theory [18], and exponential increase in a
PT -symmetric system is discussed in Ref. [19], in terms
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of biorthogonal sets of (complex) energy eigenstates. In the
special case of the spatial transformationF = P , an alternative
(so-called CPT ) inner product [20] can be defined, by which
the characteristics of unitary evolution are retained [21,22] for
PT -symmetric potentials.

Finally we point out that, although derived here for a single-
particle Hamiltonian, the bilocal continuity equations above
apply equally to many-particle systems with F-symmetric
interaction between particles at positions {xn}, with ∇ in
Eq. (12) replaced by ∇n for the nth particle and with the
divergence of the resulting Jn summed over n; see also
Ref. [15]. Typical distance-dependent interaction potentials
in isolated systems indeed remain invariant under the global
distance-preserving transformations F considered. The above
variational framework thus unifies the extraction of gener-
alized conservation laws for systems with discrete spatial
symmetries.

V. CONCLUSIONS

We introduce a Lagrangian involving two wave fields which
depend on the same D + 1 spatiotemporal coordinates and
solve the Schrödinger equation with imaginary potentials of
opposite signs. The Lagrangian interconnects the variations in
time and space of a single field depending on its invariance

under discrete spatial F symmetries combined with time
reversal T , thereby acting as a spatiotemporal correlator.
Specifically, the phase and dilatation invariance of the two-field
Lagrangian is used to derive a mixed continuity equation for
the two fields. This is in turn used to generate conservation laws
for the generalized current in a single state, in dependence of
the Hamiltonian symmetry: a bitemporal current in absence
of symmetry, a bilocal current for F-symmetric Hamiltonians,
and the combination of these forFT symmetry. The Hermitian
case recovers the ordinary probability density current continu-
ity, and for stationary states the domainwise constant bilocal
currents of Ref. [13] for D = 1 dimension are reproduced
which were also recently measured experimentally [23]. Our
approach reveals the origin of symmetry-induced conservation
laws in a variational framework and opens up the perspective to
construct correlator Lagrangians as a tool to treat more general
field theoretical models.
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