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We apply the method of direct perturbation theory for the Foldy-Wouthuysen (FW) transformation upon the
Dirac-Pauli Hamiltonian subject to external electromagnetic fields. The exact FW transformations exist and agree
with those obtained by Eriksen’s method for two special cases. In the weak-field limit of static and homogeneous
electromagnetic fields, by mathematical induction on the orders of 1/c in the power series, we rigorously prove
the long-held speculation: the FW transformed Dirac-Pauli Hamiltonian is in full agreement with the classical
counterpart, which is the sum of the orbital Hamiltonian for the Lorentz force equation and the spin Hamiltonian
for the Thomas-Bargmann-Michel-Telegdi equation.
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I. INTRODUCTION

The relativistic quantum theory for a spin-1/2 particle is
described by the Dirac equation [1,2], which, in the rigorous
sense, is self-consistent only in the context of quantum
field theory as particle-antiparticle pairs can be created and
annihilated. The question that naturally arises is whether
in the low-energy limit the particle and antiparticle can be
treated separately without taking into account the field-theory
interaction between them on the grounds that the probability of
particle-antiparticle pair creation and annihilation is negligi-
ble. It turns out that such separation is possible and indeed gives
an adequate description of the relativistic quantum dynamics
whenever the relevant energy (the particle’s energy interacting
with external, e.g., electromagnetic, fields) is much smaller
than the Dirac energy gap 2mc2 (m is the particle’s mass).

The Foldy-Wouthuysen (FW) transformation is the method
devised to achieve the particle-antiparticle separation via a
series of successive unitary transformations, each of which
block diagonalizes the Dirac Hamiltonian to a certain order of
1/m [3] (see [4] for a review). In the same spirit of the standard
FW method, many different approaches have been developed
for various advantages [5–25] (also see [26] for a review in
the context of relativistic quantum chemistry). Particularly, the
works by Rutkowski [11–13] and Heully [14] proposed and
exploited a self-consistent equation that allows one to obtain
the block-diagonalized Dirac Hamiltonian without explicitly
evoking decomposition of even and odd Dirac matrices; the
perturbation approach developed by Rutkowski is now known
as direct perturbation theory (DPT).

Furthermore, to phenomenologically account for any pres-
ence of the anomalous magnetic moment, the Dirac equa-
tion, augmented with extra terms explicitly dependent on
electromagnetic field strength, is extended to the Dirac-Pauli
equation to describe the relativistic quantum dynamics of a
spin-1/2 particle of which the gyromagnetic ratio is different
from q/(mc) (q is the particle’s charge) [27]. The FW

*dwchiou@gmail.com
†twchen@mail.nsysu.edu.tw

methods for the Dirac equation can be straightforwardly
carried over to the Dirac-Pauli equation without much
difficulty [24].

On the other hand, the classical (nonquantum) dynamics for
a relativistic point particle endowed with charge and intrinsic
spin in electromagnetic fields is well understood. The orbital
motion is governed by the Lorentz force equation and the
precession of spin by the Thomas-Bargmann-Michel-Telegdi
(TBMT) equation [28,29] (see Chap. 11 of [30] for a review).
The orbital Hamiltonian for the Lorentz force equation plus
the spin Hamiltonian for the TBMT equation provides a
low-energy description of the relativistic spinor dynamics. It
is natural to conjecture that, in the weak-field limit of external
electromagnetic fields, the Dirac or, more generically, the
Dirac-Pauli Hamiltonian, after block diagonalization, should
correspond to the sum of the classical orbital and spin
Hamiltonians.

This quantum-classical correspondence between the Dirac
equation and the Lorentz force equation along with the
TBMT equation is crucial to the problem of finding and
interpreting spin operators for the Dirac equation—a problem
which has been discussed in the literature for a long time
but remains challenging and unsolved in the presence of
external fields (see Sec. 2.4 of [31] and references therein for
more discussions). Validity of the correspondence has been
investigated from different aspects with various degrees of
rigor [24,32–35] and explicated in [36]. In the case of static and
homogeneous electromagnetic fields, it has been shown that
the FW transformed Dirac-Pauli Hamiltonian is in agreement
with the classical Hamiltonian up to the order of 1/m8, if
nonlinear terms of electromagnetic fields are neglected in the
weak-field limit [37]. Recently, the work of [37] was extended
to the order of 1/m14 by applying the method of DPT, cast in
the style of Kutzelnigg’s implementation [15] with a further
simplification scheme introduced [38].

Although the result of [38] is very impressive, the long
sought-after proof for the full agreement to any arbitrary order
is still missing. Thanks to the result obtained in [38] up to
the high order of 1/m14, we are now able to conjecture the
generic expression for terms of any given order in the DPT
method and then give a proof by mathematical induction
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on the orders of power series expansion.1 In this paper, we
elaborate on Kutzelnigg’s implementation of DPT and present
the rigorous proof of the quantum-classical correspondence.
As a secondary result, we also show that the exact FW
transformations by the DPT method exist and agree with those
obtained by Eriksen’s method [7] for two special cases of
arbitrary magnetostatic field and arbitrary electrostatic field.
Various conceptual issues of the FW transformation are also
addressed and clarified.2

This paper is organized as follows. After briefly reviewing
the classical and Dirac-Pauli spinors in Sec. II and Sec. III,
respectively, we look into the FW transformation with the
emphasis on Kutzelnigg’s method of DPT in Sec. IV.3 We
then present the proof for the exact quantum-classical corre-
spondence in the weak-field limit for the Dirac Hamiltonian in
Sec. V and then for the Dirac-Pauli Hamiltonian in Sec. VI.4

Conclusions are summarized and discussed in Sec. VII.

II. CLASSICAL RELATIVISTIC SPINOR

In this section, we briefly review the classical dynamics
of a classical relativistic spinor, which is detailed in [36].

For a relativistic point particle endowed with electric charge
q and intrinsic spin s subject to external electromagnetic
fields E and B [the corresponding four-potential is denoted
as Aμ = (φ,A) and the electromagnetic tensor by Fμν], the
orbital motion, which is governed by the Lorentz force
equation, and the spin precession, which is governed by the
TBMT equation, are simultaneously described by the total
Hamiltonian

H (x,p,s; t) = Horbit(x,p; t) + Hspin(s,x,p; t) + O(F 2
μν,�

2),

(2.1)

with the orbital Hamiltonian given by

Horbit(x,p; t) =
√

m2c4 + c2π2 + qφ(x,t) (2.2)

and the spin Hamiltonian given by

Hspin(s,x,p; t) = −s ·
[(

γ ′
m + q

mc

1

γπ

)
B(x) − γ ′

m

1

γπ (1 + γπ )

( π

mc
· B(x)

) π

mc
−

(
γ ′

m

1

γπ

+ q

mc

1

γπ (1 + γπ )

)( π

mc
× E(x)

)]
,

(2.3)

where the kinematic momentum π is defined as

π := p − q

c
A(x,t), (2.4)

the Lorentz factor associated with π is defined as

γπ :=
√

1 +
( π

mc

)2
, (2.5)

and γ ′
m is the anomalous gyromagnetic ratio

γ ′
m := γm − q

mc
(2.6)

with γm being the total gyromagnetic ratio.

1Various prior works in different approaches have provided algo-
rithms of automated generation of arbitrarily high order terms in the
order-by-order expansion (e.g., see [19,20]). The method adopted
in [38] can be programed as an automated algorithm as well, but
automation is not very necessary for our purpose because in the end
the proof of mathematical induction will ascertain the analytical form
of terms in any orders.

2It should be emphasized that the main purpose of this paper is
to provide a rigorous proof of the quantum-classical correspondence.
Although some other conceptual issues are also addressed, it is not our
intent to take part in the debate on mathematical rigor and legitimacy
of the FW transformation (see Sec. IV E for more comments).

3These parts deliberately contain some of the same review materials
in [36].

4The proof is schematically summarized in a separate article [39],
which is much shorter and may be more readable for those who do
not intend to know the details.

It should be remarked that the classical theory described
by (2.1) respects Lorentz invariance only within a high degree
of accuracy, unless the terms of O(F 2

μν,�
2) are appropriately

supplemented by a more fundamental quantum theory such as
the Dirac-Pauli theory. In the weak-field limit, the nonlinear
electromagnetic corrections of O(F 2

μν) can be neglected, and
the particle’s velocity is given by

v ≡ dx
dt

= ∇pHorbit + ∇pHspin ≈ π

mγπ

(2.7)

provided

Hspin � mc2, (2.8)

which is true in the weak-field limit. Consequently, π remains
to be the kinematic momentum associated with v, i.e.,

π ≈ mU ≡ γmv, (2.9)

and γπ is to be identified with the ordinary Lorentz boost
factor, i.e.,

γπ ≈ γ := 1√
1 − v2/c2

. (2.10)

Furthermore, the Dirac-Pauli theory also gives rise to the
Darwin term of O(�2), which has no classical (nonquantum)
correspondence and does not show up in the case of homoge-
neous fields.

III. DIRAC-PAULI SPINOR

The relativistic quantum theory of a spin-1/2 particle
subject to external electromagnetic fields is described by the
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Dirac equation [1,2]

γ̃ μDμ|ψ〉 + i
mc

�
|ψ〉 = 0, (3.1)

where the Dirac bispinor |ψ〉 = (χ,ϕ)T is composed of two
two-component Weyl spinors χ and ϕ, the covariant derivative
Dμ is given by

Dμ := ∂μ + iq

�c
Aμ ≡ − i

�
πμ := − i

�

(
pμ − q

c
Aμ

)

=
(

1

c

∂

∂t
+ iq

�c
φ,∇ − iq

�c
A

)

≡ − i

�

(
E − q φ

c
, −

(
p − q

c
A

))
, (3.2)

with pμ = (E/c,p) being the four-vector of canonical energy
and momentum and πμ = (W/c,π ) being the four-vector of

kinematic energy and momentum, and γ̃ μ are 4 × 4 matrices5

that satisfy

γ̃ μγ̃ ν + γ̃ ν γ̃ μ = 2gμν. (3.3)

The Dirac equation gives rise to the magnetic moment with
γm = q/(mc) (i.e., the g factor is given by g = 2). To incor-
porate any anomalous magnetic moment μ′ = γ ′

m�/2, one can
modify the Dirac equation to the Dirac-Pauli equation with
augmentation of explicit dependence on field strength [24,27]:

γ̃ μDμ|ψ〉 + i
mc

�
|ψ〉 + iμ′

2c
γ̃ μγ̃ νFμν |ψ〉 = 0. (3.4)

The Pauli-Dirac equation can be cast in the Hamiltonian
formalism as

i�
∂

∂t
|ψ〉 = H̃|ψ〉 (3.5)

with the Dirac Hamiltonian H̃ and the Dirac-Pauli Hamiltonian
H̃ defined as

H̃ = mc2β̃ + c α̃ ·
(

p − q

c
A

)
+ qφ ≡

(
mc2 + qφ c σ · π

c σ · π −mc2 + qφ

)
, (3.6a)

H̃ = H̃ + μ′(−β̃σ̃ · B + iβ̃α̃ · E
) ≡

(
mc2 + qφ − μ′σ · B c σ · π + iμ′σ · E
c σ · π − iμ′σ · E −mc2 + qφ + μ′σ · B

)
, (3.6b)

where the 4 × 4 matrices are given explicitly by

β̃ =
(
1 0
0 −1

)
, α̃=

(
0 σ

σ 0

)
, σ̃ =

(
σ 0
0 σ

)
, (3.7)

and σ = (σx,σy,σz) are the 2 × 2 Pauli matrices. Accordingly,
the γ̃ matrices are given by

γ̃ 0 = β̃, γ̃ i = β̃α̃i =
(

0 σi

−σi 0

)
. (3.8)

IV. FOLDY-WOUTHUYSEN TRANSFORMATION

The Dirac or Dirac-Pauli Hamiltonians (3.6) (or, more
generally, with other corrections) can be schematically put
in the form

H̃ = β̃mc2 + Õ + Ẽ, (4.1)

where Ẽ is the “even” part that commutes with β̃, i.e.,
β̃Ẽ β̃ = Ẽ , while Õ is the “odd” part that anticommutes with
β̃, i.e., β̃Õβ̃ = −Õ. Because of the presence of the odd
part, the Hamiltonian in the Dirac bispinor representation is
not block diagonalized, and thus the particle and antiparticle
components are entangled in each of the Weyl spinors χ

and ϕ. The question that naturally arises is whether we can
find a representation in which the particle and antiparticle
are separated, or equivalently, the Hamiltonian is block
diagonalized. Foldy and Wouthuysen have shown that such a
representation is possible [3,4]. The Foldy-Wouthuysen (FW)
transformation is a unitary and nonexplicitly time-dependent

transformation on the Dirac bispinor

|ψ〉 → |ψFW〉 = Ũ |ψ〉, (4.2a)

H̃ → H̃FW = ŨH̃Ũ †, (4.2b)

which leaves (3.5) in the form

i�
∂

∂t
|ψFW〉 = H̃FW|ψFW〉 (4.3)

and block diagonalizes the Hamiltonian, i.e., [β̃,H̃FW] = 0. As
the FW transformation separates the particle and antiparticle
components, the two diagonal blocks of H̃FW are adequate
to describe the relativistic quantum dynamics of the spin-1/2
particle and antiparticle respectively.6

However, it should be remarked that, rigorously, the Dirac
equation is self-consistent only in the context of quantum
field theory, in which the particle-antiparticle pairs can
be created and annihilated. On this account, it might not
be legitimate to block diagonalize the Dirac Hamiltonian
or its phenomenological extension such as the Dirac-Pauli
Hamiltonian. In fact, some doubts have been thrown on the
mathematical rigor of the FW transformation [41,42] (but
also see [43] for discussion on its validity). If the unitary
FW transformation does not exist after all, the power series
used in any order-by-order methods does not converge and

5Throughout this paper, a tilde is attached to denote a 4 × 4 matrix.
6If Ũ is explicitly time dependent, instead of (4.2b), the diagonal-

ized Hamiltonian is given by H̃FW = ŨH̃Ũ † − i� Ũ ∂

∂t
Ũ †, which is

beyond the scope of the standard FW scenario. Throughout this paper,
we consider only the case in static fields. For the nonstandard FW
transformation involving nonstatic fields, see [40] for more details.
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high-order terms might be misleading and disagree with those
obtained by different methods.7 However, as will be shown in
Secs. IV B and IV C, the exact FW transformation does exist at
least for two special cases, suggesting that particle-antiparticle
separation is consistent and does not lead to any disagreement
in these special situations.8 For more special cases, see [44],
which gives a wide class of external electromagnetic fields that
admit the exact FW transformation.

Furthermore, in the regime of weak fields such that
the energy interacting with electromagnetic fields does not
exceed the Dirac energy gap 2mc2, we expect that the
probability of pair creation and annihilation is negligible, and
accordingly the FW transformation remains sensible and the
block-diagonalized Hamiltonian is adequate to describe the
relativistic quantum dynamics of the spin-1/2 particle and
antiparticle separately without taking into account the field-
theory interaction with each other. Starting from Sec. IV D,
this paper is mainly devoted to this topic.

It should be noted that even if the unitary FW trans-
formation exists, it is far from unique, as one can easily
perform further unitary transformations that preserve the block
decomposition upon the block-diagonalized Hamiltonian. The
nonuniqueness does not lead to any ambiguity, as different
block-diagonalization transformations are unitarily equivalent
to one another and thus yield the same physics. While the
physics is the same, however, the pertinent operators σ , x,
and p may represent very different physical quantities in
different representations. To figure out the operators’ physical
interpretations, it is crucial to compare the resulting FW
transformed Hamiltonian with the classical counterpart in a
certain classical limit via the correspondence principle. The
comparison will be carried out explicitly in the weak-field
limit for Kutzelnigg’s method of DPT; it turns out that, in

Kutzelnigg’s method (and in fact in most FW methods in the
literature), σ , x, and p simply represent the spin, position,
and conjugate momentum of the particle (as decoupled from
the antiparticle) in the resulting FW representation. In other
words, the method is “minimalist” in the sense that it does not
give rise to further transformations that obscure the operators’
interpretations other than block diagonalization.

There are various methods for the FW transformation with
different advantages. In this paper, we adopt Kutzelnigg’s
implementation [15] of DPT [11–14] improved with a further
simplification scheme [38].

A. Method of direct perturbation theory

In Kutzelnigg’s implementation [15] of DPT [11–14], the
FW unitary transformation is assumed to take the form

Ũ =
(

Y YX†

−ZX Z

)
, Ũ † =

(
Y −X†Z
XY Z

)
, (4.4)

where the 2 × 2 Hermitian operators Y and Z are defined as

Y = Y† = 1√
1 + X†X

, Z = Z† = 1√
1 + XX†

(4.5)

for some operator X to be determined. It is easy to show that

Ũ Ũ † =
(
Y

(
1 + X†X

)
Y 0

0 Z
(
1 + XX†)Z

)
= 1. (4.6)

Generically, we assume the Hamiltonian operator H̃ takes
the form

H̃ =
(

H+ H0

H
†
0 H−

)
, with H

†
+ = H+, H

†
− = H−, (4.7)

and the FW transformed Hamiltonian is then given by

H̃FW ≡
(
HFW 0

0 H̄FW

)
= ŨH̃Ũ †

=
(
Y(H+ + H0X + X†H †

0 + X†H−X )Y Y(H0 − H+X† + X†H− − X†H †
0X†)Z

Z(H †
0 − XH+ + H−X − XH0X )Y Z(H− − H

†
0X† − XH0 + XH

†
+X†)Z

)
. (4.8)

The requirement that the off-diagonal blocks of H̃FW vanish
demands X to satisfy

H
†
0 − XH+ + H−X − XH0X = 0, (4.9a)

H0 − H+X† + X†H− − X†H †
0X† = 0, (4.9b)

7For example, for the Dirac theory in the presence of both electric
and magnetic fields, the term of order F 2

μν in the method of DPT is

given by − q2
�

2

8m3c4 B2, while it is given by q2
�

2

8m3c4 (E2 − B2) in the standard
FW method (see [38]). (Nevertheless, these two methods agree with
each other on the terms linear in Fμν).

8As we will see shortly, the method of DPT yields exactly the same
results of Eriksen’s method for these two cases.

and meanwhile the diagonal blocks read as

HFW = Y(H+ + H0X + X†H †
0 + X†H−X )Y, (4.10a)

H̄FW = Z(H− − H
†
0X† − XH0 + XH

†
+X†)Z, (4.10b)

which are manifestly Hermitian. Under the condition of (4.9),
Eq. (4.10) can be further simplified as

HFW = Y[H+ + H0X + X†(XH+ + XH0X )]Y
= Y[(1 + X†X )(H+ + H0X )]Y
= Y−1(H+ + H0X )Y, (4.11a)

H̄FW = Z[H− − H
†
0X† + X (X†H− − X†H †

0X†)]Z

= Z[(1 + XX†)(H− − H
†
0X†)]

= Z−1(H− − H
†
0X†)Z. (4.11b)
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In the Dirac or Dirac-Pauli theory, the Hamiltonian (4.7) is
explicitly given by (3.6). Consider the formal replacement:

p,π ,σ ,q,μ′,i → −p, − π , − σ , − q, − μ′, − i, (4.12)

which corresponds to

H+ → −H−, H0 → H
†
0 , (4.13)

and accordingly, by (4.9),

X → X†. (4.14)

Comparison between (4.11a) and (4.11b) by reference to (4.13)
and (4.14) then implies

H̄FW(x,π ,σ ; q,μ′) = −HFW(x, − π , − σ ; −q, − μ′).
(4.15)

That is, H̄FW takes the form of HFW by formally replacing
π ,σ ,q,μ′ with −π , − σ , − q, − μ′ (which accounts for the
charge conjugation) in addition to an overall minus sign
(which account for the negative frequency).9 (Also see [36]
for comments on the CPT symmetries.)

For the Dirac-Pauli theory, Eqs. (4.9) and (4.11) read
explicitly as

2mc2X = −X c σ · π X + c σ · π + q[φ,X ]

− iμ′σ · E − iμ′Xσ · EX + μ′{X ,σ · B}
(4.16)

and

HFW = mc2 +
√

1 + X†X (qφ + c σ · πX − μ′σ · B

+ iμ′σ · EX )
1√

1 + X†X
. (4.17)

Particularly, for the Dirac theory, Eqs. (4.16) and (4.17) reduce
to (by simply setting μ′ = 0)

2mc2X = −Xc σ · πX + c σ · π + q[φ,X] (4.18)

and

HFW = mc2 +
√

1 + X†X (qφ + c σ · πX)
1√

1 + X†X
,

(4.19)

where we have used the notations X and HFW in place of X
and HFW when the Dirac-Pauli theory is reduced to the Dirac
theory.

As caveated previously, the Hamiltonian H̃ might not
be block diagonalizable at all and on this account there is
no guarantee that the operator X satisfying (4.16) or X

satisfying (4.18) exists. However, as we will see, X or X

does exist in two special cases as well as in the case of
homogeneous fields in the weak-field limit; accordingly H̃
is block diagonalizable in these situations.

9Since H̄FW can be easily obtained by (4.15) once HFW is found,
we focus only on the part of HFW in the rest of this paper. When
HFW and H̄FW are combined to form H̃FW, the matrix β̃ will appear
accordingly in the expression of H̃FW as can be seen in Eqs. (3.14),
(3.23), and (3.29) in [36].

B. Special case I

As the first special case, let us consider a Dirac spinor
(μ′ = 0) with charge q subject to a static magnetic field
(∂tB = 0,∂tA = 0) but with no electric field (E = 0,φ = 0).
The condition (4.18) becomes a quadratic equation in X:

2mc2X = −Xc σ · πX + c σ · π , (4.20)

which admits an exact solution

X = X† = c σ · π

mc2 +
√

m2c4 + c2(σ · π)2
. (4.21)

Equation (4.19) with φ = 0 then yields

HFW = mc2 + c σ · πX =
√

m2c4 + c2(σ · π )2

=
√

m2c4 + c2π2 − q� cσ · B (4.22)

by (A3). The resulting FW transformed Hamiltonian in (4.22)
is exactly the same as that obtained by Eriksen’s method [7,36].

The fact that the Dirac Hamiltonian in a static magnetic
field can be block diagonalized suggests that it is legitimate
to ignore creation or annihilation of particle-antiparticle pairs.
In fact, it has been shown that, in the context of QED, the
charged particle-antiparticle pairs are not produced by any
static magnetic field no matter how strong the field strength is,
since the instanton actions for tunneling probability for pair
production are infinite [45,46].10

If we turn off both electric and magnetic fields, Eq. (4.22)
reduces to

HFW =
√

m2c4 + c2p2 , (4.23)

which is the FW transformed Hamiltonian of a free particle.
Another interesting case is of a massless spinor. When it is

subject only to a static magnetic field or it carries no charge
(q = 0, such as a massless neutrino), Eq. (4.21) with m = 0
yields X = X† = 1, which follows from (4.4) that

Ũ = 1√
2

(
1 1

−1 1

)
. (4.24)

The trivial FW transformation (4.24) is nothing but the unitary
transformation that transforms the Dirac basis to the Weyl
basis.11

Also see [44] and references therein for more discussions
on the exact FW transformation.

C. Special case II

As the second special case, let us consider a Dirac-Pauli
spinor with zero charge (q = 0) but nonzero magnetic moment
(μ′ 	= 0) subject to a static electric field (∂tE = 0,∂tφ = 0) but

10However, when the magnetic field changes in time, particle-
antiparticle pairs can be produced [47], but this situation is beyond
the scope of the standard FW scenario, in which Ũ is assumed to be
nonexplicitly time dependent.

11In the Weyl basis, it is well known that the upper two components
are decoupled from the lower two components for an uncharged
massless spinor.
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with no magnetic field (B = 0,A = 0).12 The condition (4.16)
now reads as

2mc2X = −XX + †, (4.25)

where we define the operators

 := c σ · p + iμ′σ · E, (4.26a)

† := c σ · p − iμ′σ · E. (4.26b)

Multiplying  on (4.25) from the left yields a quadratic
equation in X :

(X )2 + 2mc2(X ) − † = 0. (4.27)

This admits an exact solution

X = −mc2 +
√

m2c4 + †, (4.28)

which is manifestly Hermitian, i.e.,

X = (X )† ≡ X††. (4.29)

Meanwhile, multiplying X† on (4.25) from the left and
applying (4.29), we have

(2mc2 + X )X†X = X†† = X , (4.30)

which follows

X†X = X
2mc2 + X . (4.31)

As X†X is a function of X , X†X commutes with X . As
a result, Eq. (4.17) gives

HFW = mc2 +
√

1 + X†X (X )
1√

1 + X†X
= mc2 + X =

√
m2c4 + †

= [m2c4 + c2p2 − μ′
� c ∇ · E

+μ′c(p × E − E × p) · σ + μ′2E2]1/2, (4.32)

where we have used (A1) and (A3) to compute †.
Like the first special case, the resulting FW transformed

Hamiltonian in (4.32) is exactly the same as that obtained
by Eriksen’s method [7,36]. Unlike the first special case,
however, the physical interpretation and relevance of the fact
that the Hamiltonian can be exactly block diagonalized is not
well understood, as the second special case is rather artificial.
Closer investigations into the mathematical structure of QED
for further insight are needed.

D. Weak-field limit

When the external electromagnetic field is weak enough,
we expect that the FW transformed Hamiltonian exists and
agrees with the classical Hamiltonian given by (2.1)–(2.3)
except for some quantum corrections that have no classical

12A Dirac-Pauli spinor with q = 0 but μ′ 	= 0 can be used to
describe spin-1/2 uncharged baryons such as protons. However, this
description only gives an effective theory as Pauli’s prescription for
inclusion of anomalous magnetic moment is only phenomenological.

correspondence. By denoting the Dirac or Dirac-Pauli Hamil-
tonian as H̃(φ,A,E,B), the rigorous mathematical statement
reads as follows. The 4 × 4 unitary matrix Ũ exists such that
the formal linear-field limit defined as

lim
λ→0

Ũ H̃(λφ,λA,λE,λB)Ũ †

λ
(4.33)

is block diagonal and in agreement with the classical counter-
part, even though H̃ itself might not be exactly diagonalizable.
Physically, this means the particle-antiparticle separation
remains legitimate when the electromagnetic field is weak
enough so that the energy interacting with electromagnetic
fields does not exceed the Dirac energy gap. It should be
noted that while the FW transformed Hamiltonian is only
approximate from the physical point of view, it is exact in
the formal limit (4.33) from the mathematical point of view.

As detailed in [36], the two special cases in Secs. IV B
and IV C in conjunction suggest that, in the weak-field limit,
the FW transformed Dirac-Pauli Hamiltonian takes the form

HFW(x,p,σ ) =
√

c2π2 + m2c4 + qφ

− �

2
σ ·

[(
γ ′

m + q

mc

1

γπ

)
B

− γ ′
m

1

γπ (1 + γπ )

(π · B)π

m2c2

−
(

γ ′
m

1

γπ

+ q

mc

1

γπ (1 + γπ )

)
π × E

mc

]
Weyl

+ �
2

4mc

( q

2mc
− γ ′

m

)(∇ · E
γπ

)
Weyl

, (4.34)

where (· · · ) and (· · · )Weyl denote specific symmetrization for
operator orderings defined in [36]. HFW in (4.34) is in full
agreement with the classical counterpart given by (2.1)–(2.3)
with s = �σ/2 except for the operator orderings and the
Darwin term involving �

2, both of which have no classical
correspondence.

The form of (4.34) is conjectured from the two special cases,
which are complementary to each other, and still requires
further confirmation for the cases in the presence of both E
and B. Its validity has been confirmed in [38] by Kutzelnigg’s
method of DPT up to the order of ( π

mc
)14 for the case

of static and homogeneous electromagnetic fields, whereby
the Darwin term vanishes and there are no complications
arising from operator orderings thanks to homogeneity, and
the FW transformation remains explicitly time independent
and thus in conformity with the standard FW scenario thanks
to staticity [36]. Based on the results obtained in [38], we
are able to prove by mathematical induction that, in static
and homogeneous electromagnetic fields, the FW transformed
Hamiltonian in the weak-field limit is completely in agreement
with the classical counterpart. We present the proof first for
the Dirac Hamiltonian in Sec. V and then for the Dirac-Pauli
Hamiltonian in Sec. VI.

E. Remarks on the FW transformation

The main purpose of this paper is to prove the corre-
spondence between classical and Dirac-Pauli spinors via the
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FW transformation. We do not intend to settle the disputed
issues about the mathematical rigor and legitimacy of the FW
transformation but only briefly remark on some of them.

First of all, it should be emphasized again that, for
generic settings, the Dirac equation is not self-consistent
without second quantization (i.e., quantization in quantum
field theory). The inconsistency can be seen from the fact
that the Dirac equation gives rise to the Klein paradox (as the
Klein-Gordon equation does), rendering the first quantization
formalism nonunitary (see Sec. 5.6 of [4] for more details).
This implies that the exact FW transformation does not exist
except for some special settings (such as the special cases
presented above and those discussed in [44]), or otherwise
it would exactly decouple the particle from the antiparticle
and thus remove the Klein paradox without appealing to
second quantization. Apart from some special conditions that
admit the exact FW transformation, the FW transformation
exists exactly only in some formal limit (i.e., when some
regularization is properly prescribed) such as the weak-field
limit prescribed in (4.33).

In the literature of relativistic quantum mechanics, many
exact-decoupling methods of the FW transformation have
been constructed and used for various applications (e.g.,
see [19,20]). Rigorously speaking, exactness of these methods
should be understood in the sense that some regularization
has been prescribed although usually the prescription is
not explicitly specified and might seem obscure. That said,
existence of the exact FW transformation is often taken for
granted before a method is formulated, and only when the
method is used in actual applications is some regularization
then tacitly prescribed. For example, in the work of [20],
when the Douglas-Kroll-Hess method [8,10] is applied to
one-electron atoms, calculations have been performed with an
even-tempered universal Gaussian basis set, the employment
of which can be viewed as a prescription of regularization
imposed to suppress infinitely long-range effects of the
Coulomb potential. (Also see [25] for more discussions on
other theoretical aspects of exact-decoupling methods.)

The FW methods can be classified into two types: the one-
step (direct) approach and the order-by-order (step-by-step)
approach (see [16] for a comparative analysis of these two
approaches). Many methods give a closed form of the one-
step solution but the closed form so obtained usually remains
formal (see [25] for more comments) except for some special
cases (as presented above). In order to reveal the relevant
physics, one has to adopt an order-by-order approach in the first
place or to further perform order-by-order expansion upon the
one-step solution. In the order-by-order approach, it is crucial
to know whether the power series converges or not. The issue
of convergence has been carefully investigated in [19,20] (also
see [26] for a detailed review). In the series expansion in terms
of 1/c, the radius of convergence (in the complex plane of
momentum space) is finite. In this regard, the expansion in
1/c is deemed inadequate on the grounds that it is divergent
for large momenta. On the other hand, the series expansion in
terms of the scalar potential φ, known as the Douglas-Kroll-
Hess method [8,10], is convergent on a sliced complex plane
of momentum space that covers the whole real axis. Therefore,
the Douglas-Kroll-Hess method is adequate for any value of
momenta.

It should be noted that the aforementioned pathology of
the expansion in 1/c simply means that, at some point when
the momentum is large enough, it will stop being a good
approximation to the exact FW transformed Hamiltonian if the
series expansion is truncated to a finite series. This, however,
does not invalidate the closed-form solution obtained from
the infinite series as a whole. If the whole infinite series
converges to a closed form of an analytic function within
the radius of convergence, the analytic function can then
be extended beyond the radius of convergence via analytic
continuation.13,14 Therefore, as long as the closed form of
the infinite power series is attainable, the order-by-order
method in terms of 1/c is as valid as the Douglas-Kroll-
Hess method and, furthermore, the closed-form solutions are
unique (more precisely, unitarily equivalent to one another)
whatever approaches are taken (provided they are regularized
in equivalent ways). This is exactly what happens in the rest
of this paper for the proof of the correspondence between
classical and Dirac-Pauli spinors.15

To sum up, despite some doubts about the legitimacy of the
FW transformation in general and of the approach we adopt in
particular, our proof remains sound on account of the two facts:
first, regularization is properly prescribed for the weak-field
limit as in (4.33); second, the exact solution is obtained in a
closed form as in (6.29).

V. DIRAC HAMILTONIAN

For the Dirac theory, we first solve the operator X by the
power series expansion and then obtain the FW transformed
Hamiltonian HFW. As we assume the applied electromagnetic
fields to be static and homogeneous, we have [πi,Ej ] =
[πi,Bj ] = 0. Moreover, because we focus on the weak-field
limit, we neglect all the terms nonlinear in Fμν .

A. Operators Xn

The operator X used in Kutzelnigg’s method of DPT
satisfies the condition (4.18) for the Dirac theory. Consider
the power series of X

13For example, (1 − z)−1 admits the power series
∑∞

n=0 zn for |z| <

1. This does not imply that (1 − z)−1 is well defined only for |z| < 1;
on the contrary, it is well defined and analytic everywhere in the
complex plane except z = 1.

14Also see the last paragraph in Sec. VI C, especially (6.31), for a
formal implementation of the analytic continuation used for our proof
of the quantum-classical correspondence.

15We could have used the Douglas-Kroll-Hess method for our
purpose if it is accordingly modified to incorporate the vector potential
A in addition to the scalar potential φ. If the modification is formulated
in a fashion that the series expansion is in terms of φ and A, then
our desired linear-field limit can be readily obtained as the first-order
result. However, this modification does not seem straightforward at
all. Furthermore, even in the ordinary Douglas-Kroll-Hess method
(i.e., in the absence of A), the first-order result cannot be directly
compared to the conjectured form (4.34), but further series expansion
has to be performed. It turns out the Douglas-Kroll-Hess method
is less suitable for our purpose and instead we adopt Kutzelnigg’s
method of DPT.
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in powers of c−1:

X =
∞∑

j=1

Xj

cj
. (5.1)

For the orders of 1/c and 1/c2, Eq. (4.18) yields

2mX1 = σ · π , (5.2a)

2mX2 = 0. (5.2b)

According to (4.18), the higher-order terms in the power series of X can be determined by the following recursion relations
(for j � 1):

2mX2j = −
∑

k1+k2=2j−1

Xk1σ · πXk2 + q[φ,X2j−2], (5.3a)

2mX2j+1 = −
∑

k1+k2=2j

Xk1σ · πXk2 + q[φ,X2j−1]. (5.3b)

Explicitly, the leading terms Xj read as

X1 = σ · π

2m
, (5.4a)

X3 = −1

8

(σ · π)3

m3
− 1

4

iq�

m2
σ · E, (5.4b)

X5 = 1

16

(σ · π)5

m5
+ 3

16

iq�

m4
π2(σ · E) + 1

8

iq�

m4
(σ · π )(E · π ), (5.4c)

X7 = − 5

128

(σ · π)7

m7
− 5

32

iq�

m6
π4(σ · E) − 3

16

iq�

m6
π2(σ · π )(E · π ), (5.4d)

X9 = 7

256

(σ · π )9

m9
+ 35

256

iq�

m8
π6(σ · E) + 29

128

iq�

m8
π4(σ · π)(E · π), (5.4e)

X11 = − 21

1024

(σ · π )11

m11
− 63

1024

iq�

m10
π8(σ · E) − 65

256

iq�

m10
π6 (σ · π )(E · π ), (5.4f)

X13 = 33

2048

(σ · π)13

m13
+ 231

2048

iq�

m12
π10(σ · E) + 281

1024

iq�

m12
π8(σ · π)(E · π), (5.4g)

and X2j = 0 for all j . (These were laboriously calculated in [38].)
Based on the result of (5.4), we can conjecture the following theorem and provide its proof by mathematical induction.
Theorem 1. In the weak-field limit, we neglect nonlinear terms in E and B. If the electromagnetic field is homogeneous (thus

[πi,Ej ] = [πi,Bj ] = 0), the generic expression for Xn�0 is given by

X2j = 0, (5.5a)

X2j+1 = aj

(−1)j

(2m)2j+1
(σ · π)2j+1 + bj

iq�(−1)j

(2m)2j
π2j−2(σ · E) + cj

iq�(−1)j

(2m)2j
π2j−4(σ · π)(E · π), (5.5b)

where the coefficients are defined as

aj�0 = (2j )!

j !(j + 1)!
, (5.6a)

bj�1 = (2j − 1)!

j !(j − 1)!
≡ (2j − 1)aj−1, bj=0 = 0, (5.6b)

cj�0 = 2
∑

j1+j2=j

bj1bj2 (particularly, cj=0,1 = 0). (5.6c)

Proof (by induction). It is trivial to prove (5.5a) by applying (5.3a) on (5.2b) inductively. To prove (5.5b), we first note that
it is valid for j = 1 by (5.4b). Suppose (5.5b) is true for all X2k+1 with k < j . Since X2k = 0, the recursive relation (5.3b)
reads as

2mX2j+1 = −
∑

j1+j2=j−1

X2j1+1(σ · π)X2j2+1 + q[φ,X2j−1], (5.7)
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which, by applying the inductive hypothesis for k < j , yields

2mX2j+1 = −
∑

j1+j2=j−1

X2j1+1(σ · π )X2j2+1 + q

[
φ, aj−1

(−1)j−1

(2m)2j−1
(σ · π )2j−1

]
(5.8a)

= −
∑

j1+j2=j−1

aj1aj2

(−1)j1+j2

(2m)2(j1+j2)+2
(σ · π)2(j1+j2)+3 − 2iq�

∑
j1+j2=j−1

aj1bj2

(−1)j1+j2

(2m)2(j1+j2)+1
(σ · π)2j1+2π2j2−2(σ · E)

− 2iq�

∑
j1+j2=j−1

aj1cj2

(−1)j1+j2

(2m)2(j1+j2)+1
(σ · π )2j1+2π2j2−4(σ · π )(E · π ) + q aj−1

(−1)j−1

(2m)2j−1
[φ, (σ · π )2j−1], (5.8b)

where in (5.8a) we have neglected nonlinear terms in E and in (5.8b) adopted [πi,Ej ] = 0. Next, applying (A3) and (A6b) and
dropping out the second term in (A3) whenever it is accompanied by E, we then have

2mX2j+1 = −
∑

j1+j2=j−1

aj1aj2

(−1)j1+j2

(2m)2(j1+j2)+2
(σ · π )2(j1+j2)+3 − 2iq�

∑
j1+j2=j−1

aj1bj2

(−1)j1+j2

(2m)2(j1+j2)+1
π2(j1+j2)(σ · E)

− 2iq�

∑
j1+j2=j−1

aj1cj2

(−1)j1+j2

(2m)2(j1+j2)+1
π2(j1+j2)−2(σ · π)(E · π) − iq� aj−1

(−1)j−1

(2m)2j−1
π2j−2(σ · E)

− 2iq� aj−1(j − 1)
(−1)j−1

(2m)2j−1
π2j−4(σ · π)(E · π ). (5.9)

Consequently, we have

X2j+1 =
⎛
⎝ ∑

j1+j2=j−1

aj1aj2

⎞
⎠ (−1)j

(2m)2j+1
(σ · π)2j+1 + iq�

⎛
⎝2

∑
j1+j2=j−1

aj1bj2 + aj−1

⎞
⎠ (−1)j

(2m)2j
π2j−2(σ · E)

+ iq�

⎛
⎝2

∑
j1+j2=j−1

aj1cj2 + 2(j − 1)aj−1

⎞
⎠ (−1)j

(2m)2j
π2j−4(σ · π )(E · π ), (5.10)

which can be shown to take the form of (5.5b) by the combinatorial identities (their proofs will be provided shortly):

for j � 1 :
∑

j1+j2=j−1

aj1aj2 = aj , (5.11a)

2
∑

j1+j2=j−1

aj1bj2 = bj − aj−1 ≡ 2(j − 1)aj−1, (5.11b)

2
∑

j1+j2=j−1

aj1cj2 ≡ 4
∑

j1+j2+j3=j−1

aj1bj2bj3

= cj − bj + aj ≡ cj − 2(j − 1)aj−1. (5.11c)

We therefore have proved the theorem by mathematical induction. �

B. Operators X and X†

We have the Taylor series with the radius of convergence |x| < 1:

∞∑
j=0

aj

(−1)j

22j+1
x2j+1 = x

1 + √
1 + x2

≡ x−1(
√

1 + x2 − 1), (5.12a)

∞∑
j=1

bj

(−1)j

22j
x2j−2 = 1

2

(
1

1 + √
1 + x2

− 1√
1 + x2

)
, (5.12b)

∞∑
j=2

cj

(−1)j

22j
x2j−4 = 1

8

(
1

1 + √
1 + x2

− 1√
1 + x2

)2

, (5.12c)
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where (5.12a) and (5.12b) are obtained by the binomial series: (1 + x)±1/2 = ∑∞
n=0(±1/2

n )xn.16 Meanwhile, with cj defined
by (5.6c), taking squares on both sides of (5.12b) immediately yields (5.12c).

The combinatorial identities (5.11) can be proven by the above Taylor series. Taking squares on both sides of (5.12a) gives
∞∑

j1,j2=0

aj1aj2

(−1)j1+j2

22(j1+j2)+2
x2(j1+j2)+1 =

∞∑
j=0

∑
j1+j2=j

aj1aj2

(−1)j

22j+2
x2j+1 =

∞∑
j=1

∑
j1+j2=j−1

aj1aj2

(−1)j−1

22j+2
x2j+2

= 1 − 2

x

∞∑
j=0

∑
j1+j2=j−1

aj1aj2

(−1)j

22j+1
x2j+1 =

(
x

1 + √
1 + x2

)2

, (5.14)

which leads to
∞∑

j=0

∑
j1+j2=j−1

aj1aj2

(−1)j

22j+1
x2j+1 = −x

2

((
x

1 + √
1 + x2

)2

− 1

)
= x

1 + √
1 + x2

. (5.15)

By (5.12a) again, we obtain (5.11a). The identity (5.11b) can be proved similarly, and (5.11c) follows immediately from (5.11b)
with the definition (5.6c). Additionally, exploiting (5.12) in a similar way enables us to prove one more combinatorial identity:

for j � 0 : bj+1 + cj+1 = 4bj + 4cj + aj , (5.16)

which will be useful later.
By (5.5), we obtain the Taylor series of the X operator:

X =
∞∑

k=1

Xk

ck
=

∞∑
j=0

X2j+1

c2j+1
=

∞∑
j=0

aj

(−1)j

(2mc)2j+1
(σ · π )2j+1 + iq�

c

∞∑
j=1

bj

(−1)j

(2mc)2j
π2j−2(σ · E)

+ iq�

c

∞∑
j=2

cj

(−1)j

(2mc)2j
π2j−4(σ · π)(E · π). (5.17)

Adopting [πi,Ej ] = 0, we have

X† =
∞∑

j=0

aj

(−1)j

(2mc)2j+1
(σ · π )2j+1 − iq�

c

∞∑
j=1

bj

(−1)j

(2mc)2j
π2j−2(σ · E) − iq�

c

∞∑
j=2

cj

(−1)j

(2mc)2j
π2j−4(σ · π )(E · π ). (5.18)

By (5.12), the Taylor series of the operator X given in (5.17) converges to a closed form provided that

∣∣(σ · π )2
∣∣ =

∣∣∣∣π2 − q�

c
σ · B

∣∣∣∣ < m2c2. (5.19)

We will discuss the condition for convergence in the end of Sec. VI C.
Adopting [πi,Ej ] = 0 again and neglecting nonlinear terms in E, Eqs. (5.17) and (5.18) then give

X†X =
∞∑

j1,j2=0

aj1aj2

(−1)j+j2

(2mc)2(j1+j2)+2
(σ · π )2(j1+j2)+2 + iq�

c

∞∑
j1=0,j2=1

aj1bj2

(−1)j1+j2

(2mc)2(j1+j2)+1
π2(j1+j2)−2[σ · π ,σ · E]

=
∞∑

j=0

∑
j1+j2=j

aj1aj2

(−1)j

(2mc)2j+2
(σ · π)2j+2 + 2

q�

c

∞∑
j=1

∞∑
j1+j2=j

aj1bj2

(−1)j

(2mc)2j+1
π2j−2(E × π ) · σ

=
∞∑

j=0

aj+1
(−1)j

(2mc)2j+2
(σ · π )2j+2 + q�

c

∞∑
j=1

(bj+1 − aj )
(−1)j

(2mc)2j+1
π2j−2(E × π ) · σ , (5.20)

where (A1), (A3), and (5.11) have been used.

16Conversely, we have

√
1 + x2 = 1 +

∞∑
j=0

aj

(−1)j x2(j+1)

22j+1
, (5.13a)

1√
1 + x2

=
∞∑

j=0

(aj + bj+1)
(−1)j x2j

22j+1
=

∞∑
j=0

(j + 1)aj

(−1)j x2j

22j
. (5.13b)
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C. Operator HFW

Before we calculate HFW, let us investigate the operators [qφ,(X†X)] and [c σ · πX,(X†X)n] beforehand.
First, by (5.20) and (A6a), we have

[qφ,X†X] =
∞∑

j=0

aj+1
(−1)j

(2mc)2j+2
[qφ,(σ · π )2j+2] = iq�

∞∑
j=0

2(j + 1)aj+1
(−1)j

(2mc)2j+2
π2j (E · π ). (5.21)

Note that [X†X,π2j (E · π )] = 0 if we neglect nonlinear terms in Fμν and adopt [πi,Ej ] = 0. Consequently, by induction, we
have

[qφ,(X†X)n] = n[qφ,X†X](X†X)n−1, (5.22)

for n � 1. Expanding (1 + x)1/2 = ∑∞
n=0(1/2

n )xn ≡ ∑∞
n=0 enx

n, we can then compute

√
1 + X†X (qφ) ≡

∞∑
n=0

en(X†X)n(qφ) =
∞∑

n=0

en(qφ)(X†X)n −
∞∑

n=1

nen[qφ,X†X](X†X)n−1

= (qφ)
√

1 + X†X − [qφ,X†X]
1

2
√

(1 + X†X)
, (5.23)

where we have used d
dx

(1 + x)1/2 = 1
2 (1 + x)−1/2 = ∑∞

n=1 nenx
n−1.

Second, from (5.17), we get

c(σ · π )X = c

∞∑
j=0

aj

(−1)j

(2mc)2j+1
(σ · π )2j+2 + q�

∞∑
j=1

bj

(−1)j

(2mc)2j
π2j−2(E × π ) · σ

+ iq�

∞∑
j=1

(bj + cj )
(−1)j

(2mc)2j
π2j−2(E · π ), (5.24)

where (A1) and (A3) have been used and the superfluous term involving cj=1 = 0 is added for bookkeeping convenience. Note
that, up to the linear terms in Fμν , the σ · B piece of (A3) can be dropped out for the factors (σ · π)2j+2 in both (5.20) and (5.24)
when we compute [c σ · πX,X†X]. Consequently we have

[c σ · πX,X†X] = 0. (5.25)

We are now ready to calculate HFW. With (5.23) and (5.25), Eq. (4.19) leads to

HFW = mc2 +
√

1 + X†X (qφ + c σ · πX)
1√

1 + X†X
(5.26a)

= mc2 + qφ − [qφ,X†X]
1

2(1 + X†X)
+ c σ · πX. (5.26b)

Substituting (5.21) and (5.24) into (5.26) gives

HFW = mc2 + qφ + c

∞∑
j=0

aj

(−1)j

(2mc)2j+1
(σ · π)2j+2 + q�

∞∑
j=1

bj

(−1)j

(2mc)2j
π2j−2(E × π) · σ

+ iq�

∞∑
j=1

(bj + cj )
(−1)j

(2mc)2j
π2j−2(E · π) − iq�

⎛
⎝ ∞∑

j=0

(j + 1)aj+1
(−1)j

(2mc)2j+2
π2j (E · π )

⎞
⎠ 1

1 + X†X
. (5.27)

Because HFW is Hermitian, the last two terms in (5.27), which give the anti-Hermitian part, are expected to cancel each other
exactly. This can be seen explicitly by checking vanishing of the following composition of operators:⎛

⎝ ∞∑
j=1

(bj + cj )
(−1)j

(2mc)2j
π2j−2

⎞
⎠(1 + X†X) +

∞∑
j=0

(j + 1)aj+1
(−1)j

(2mc)2j+2
π2j

=
⎛
⎝ ∞∑

j=1

(bj + cj )
(−1)j

(2mc)2j
π2j−2

⎞
⎠

⎛
⎝1 +

∞∑
j=0

aj+1
(−1)j

(2mc)2j+2
π2j+2

⎞
⎠ −

∞∑
j=1

jaj

(−1)j

(2mc)2j
π2j−2
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=
∞∑

j=1

(bj + cj )
(−1)j

(2mc)2j
π2j−2 +

∞∑
j1,j2=1

(aj1bj2 + aj1cj2 )
(−1)j1+j2+1

(2mc)2(j1+j2)
π2(j1+j2)−2 −

∞∑
j=1

jaj

(−1)j

(2mc)2j
π2j−2

=
∞∑

j=1

(bj + cj )
(−1)j

(2mc)2j
π2j−2 +

∞∑
j=2

∞∑
j1+j2=j

j1 ,j2 	=0

(aj1bj2 + aj1cj2 )
(−1)j+1

(2mc)2j
π2j−2 −

∞∑
j=1

jaj

(−1)j

(2mc)2j
π2j−2

= a1 − b1 − c1

(2mc)2
+

∞∑
j=2

⎛
⎜⎝bj + cj − jaj −

∞∑
j1+j2=j

j1 ,j2 	=0

(aj1bj2 + aj1cj2 )

⎞
⎟⎠ (−1)j

(2mc)2j
π2j−2, (5.28)

where in the second line we have dropped out the σ · B piece of (A3) for the factors (σ · π )2j+2 in (5.20). For each coefficient
factor of the summand, we have

bj + cj − jaj −
∞∑

j1+j2=j

j1 ,j2 	=0

(aj1bj2 + aj1cj2 ) ≡ 2bj + 2cj − jaj −
∞∑

j1+j2=j

(aj1bj2 + aj1cj2 ) = 2bj + 2cj − 1

2
(bj+1 + cj+1 − aj )

(5.29)

by (5.11), and it vanishes identically by (5.16). Also note that a1 − b1 − c1 = 0. We thus show that (5.28) vanishes, thereby
affirming Hermiticity of HFW.

As the anti-Hermitian part vanishes, Eq. (5.27) leads to

HFW = mc2 + qφ + c

∞∑
j=0

aj

(−1)j

(2mc)2j+1
(σ · π )2j+2 + q�

∞∑
j=1

bj

(−1)j

(2mc)2j
π2j−2(E × π ) · σ

= mc2 + qφ + mc2
∞∑

j=0

aj

(−1)j

22j+1

(σ · π

mc

)2j+2
+ q�

(mc)2

∞∑
j=1

bj

(−1)j

22j

( π

mc

)2j−2
(E × π ) · σ

= mc2 + qφ + mc2

(√
1 +

(σ · π

mc

)2
− 1

)
+ q�

2(mc)2

⎛
⎝ 1

1 +
√

1 + (
π
mc

)2
− 1√

1 + (
π
mc

)2

⎞
⎠σ · (E × π ), (5.30)

where the Taylor series (5.12a) and (5.12b) are used. Note that, up to the linear order in B, we have

√
1 +

(σ · π

mc

)2
=

√
1 +

( π

mc

)2
− q�

m2c3
σ · B =

√
1 +

( π

mc

)2
(

1 − 1

2

q�

m2c3

σ · B(
1 + (

π
mc

)2) + · · ·
)

. (5.31)

Taking this back into (5.30), we obtain

HFW = qφ +
√

m2c4 + c2π2 − q�

2mc

1

γπ

σ · B + q�

2mc

(
1

γπ

− 1

1 + γπ

)
σ ·

(
π

mc
× E

)
, (5.32)

where the Lorentz factor associated with the kinematic momentum π is defined as

γπ :=
√

1 +
( π

mc

)2
≡

∞∑
n=0

(
1/2

n

)( π

mc

)2n

(5.33)

in accordance with the classical counterpart (2.5). The FW transform of the Dirac Hamiltonian given in (5.32) fully agrees with
the classical counterpart (2.1)–(2.3) with s = �

2 σ and γ ′
m = 0 (or γm = q

mc
).

VI. DIRAC-PAULI HAMILTONIAN

As we have proved the exact correspondence between the Dirac Hamiltonian and the classical counterpart in the weak-field
limit, we now extend the result to the Dirac-Pauli theory. Again, we first solve the operator X by the power series expansion
and then obtain the FW transformed Hamiltonian HFW. We again assume [πi,Ej ] = [πi,Bj ] = 0 for homogeneous fields and
neglect all the terms nonlinear in Fμν in the weak-field limit.
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A. Operators X ′
n

For the Dirac-Pauli theory, the operator X used in Kutzelnigg’s method satisfies the condition (4.16), which reads as

2mc2X = −X c σ · π X + c σ · π + q[φ,X ] − i
μ′′

c
σ · E − i

μ′′

c
Xσ · EX + μ′′

c
{X ,σ · B}, (6.1)

where we define
μ′′ := cμ′, (6.2)

as it is more convenient to factor out the dimensionality of c−1 in μ′ for the power series method in powers of c−1.
Consider the power series of X in powers of c−1:

X := X + X′ =
∞∑

j=1

Xj

cj
=

∞∑
j=1

Xj

cj
+

∞∑
j=1

X′
j

cj
, (6.3)

where X and Xj have been detailed in Sec. V. For the orders of 1/c, 1/c2, and 1/c3, we have

2mX1 = σ · π , ⇒ X1 = (5.4a), X′
1 = 0, (6.4a)

2mX2 = 0, ⇒ X2 = 0, X′
2 = 0 (6.4b)

2mX3 = −X1σ · πX1 + q[φ,X1] − iμ′′σ · E, ⇒ X3 = (5.4b), X′
3 = − iμ′′

2m
σ · E. (6.4c)

The higher-order terms in the power series of X can be determined by the following recursion relations (j � 2):

2mX2j = −
∑

k1+k2=2j−1

Xk1σ · π Xk2 + q[φ,X2j−2] − iμ′′ ∑
k1+k2=2j−3

Xk1σ · EXk2 + μ′′{X2j−3,σ · B}, (6.5a)

2mX2j+1 = −
∑

k1+k2=2j

Xk1σ · π Xk2 + q[φ,X2j−1] − iμ′′ ∑
k1+k2=2j−2

Xk1σ · EXk2 + μ′′{X2j−2,σ · B}, (6.5b)

which together with (5.3) lead to the recursion relation for X′
n (j � 2):

2mX′
2j = −

∑
k1+k2=2j−1

(
Xk1σ · πX′

k2
+ X′

k1
σ · πXk2 + X′

k1
σ · πX′

k2

)

− iμ′′ ∑
k1+k2=2j−3

(
Xk1σ · E Xk2 + Xk1σ · E X′

k2
+ X′

k1
σ · E Xk2 + X′

k1
σ · πX′

k2

)
+ q[φ,X′

2j−2] + μ′′{X2j−3 + X′
2j−3,σ · B}, (6.6a)

2mX′
2j+1 = −

∑
k1+k2=2j

(
Xk1σ · πX′

k2
+ X′

k1
σ · πXk2 + X′

k1
σ · πX′

k2

)

− iμ′′ ∑
k1+k2=2j−2

(
Xk1σ · E Xk2 + Xk1σ · E X′

k2
+ X′

k1
σ · E Xk2 + X′

k1
σ · πX′

k2

)
+ q[φ,X′

2j−1] + μ′′{X2j−2 + X′
2j−2,σ · B}. (6.6b)

Neglecting nonlinear terms in E and B, the leading terms X′
j read as

X′
1 = 0, X′

2 = 0, (6.7a)

X′
3 = − iμ′′

2m
σ · E, X′

4 = μ′′

2m2
B · π , (6.7b)

X′
5 = 3

8

iμ′′

m3
π2(σ · E) − iμ′′

4m3
(σ · π )(E · π ), X′

6 = −3

8

μ′′

m4
π2(B · π ), (6.7c)

X′
7 = − 5

16

iμ′′

m5
π4(σ · E) + 1

4

iμ′′

m5
π2(σ · π)(E · π ), X′

8 = 5

16

μ′′

m6
π4(B · π ), (6.7d)

X′
9 = 35

128

iμ′′

m7
π6(σ · E) − 15

64

iμ′′

m7
π4(σ · π )(E · π ), X′

10 = − 35

128

μ′′

m8
π6(B · π ), (6.7e)

X′
11 = − 63

256

iμ′′

m9
π8(σ · E) + 7

32

iμ′′

m9
π6(σ · π)(E · π ), X′

12 = 63

256

μ′′

m10
π8(B · π). (6.7f)

(These were laboriously calculated in [38].)
Based on the result of (6.7), we can conjecture the following theorem and provide its proof by mathematical induction.
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Theorem 2. In the weak-field limit, we neglect nonlinear terms in E and B. If the electromagnetic field is homogeneous (thus
[πi,Ej ] = [πi,Bj ] = 0), the generic expression for X′

n�2 is given by

X′
2j = 2bj−1

μ′′(−1)j

(2m)2j−2
π2j−4(B · π ), (6.8a)

X′
2j+1 = bj

iμ′′(−1)j

(2m)2j−1
π2j−2(σ · E) + dj

iμ′′(−1)j+1

(2m)2j−1
π2j−4(σ · π)(E · π ), (6.8b)

where the coefficients bj are given by (5.6b) and dj are defined as

dj�2 =
∑

j1+j2+j3=j−2

2(j1 + 1)aj1aj2aj3 , dj=0 = dj=1 = 0. (6.9)

Proof (by induction). Note that (6.8) is valid for j = 1 and j = 2 by (6.7). Suppose (6.8) is true for all X2k and X2k+1 with
k < j ; we will prove X′

2j and X′
2j+1 to be true for j � 2 by induction.

First, we prove (6.8a) for j � 2. With the inductive hypothesis and (5.5), the recursive relation (6.6a) yields

2mX′
2j = −

∑
j1+j2=j−1

(X2j1+1(σ · π)X′
2j2

+ X′
2j2

(σ · π)X2j1+1) + μ′′{X2j−3, σ · B}, (6.10)

where we have neglected nonlinear terms in E and B. Applying the inductive hypothesis for k < j and (5.5b), we have

2mX′
2j = −μ′′ ∑

j1+j2=j−1

2aj1bj2−1
(−1)j1+j2

(2m)2(j1+j2)−1
[(σ · π)2j1+2π2j2−4(B · π) + π2j2−4(B · π)(σ · π )2j1+2]

+μ′′aj−2
(−1)j−2

(2m)2j−3
[(σ · π )2j−3(σ · B) + (σ · B)(σ · π)2j−3]

= −2μ′′ ∑
j1+j2=j−2

2aj1bj2

(−1)j1+j2+1

(2m)2(j1+j2)+1
π2(j1+j2)(B · π)

+μ′′aj−2
(−1)j−2

(2m)2j−3
(σ · π)2j−4[(σ · π )(σ · B) + (σ · B)(σ · π)](σ · π)2j−4

= 2μ′′

⎛
⎝2

∑
j1+j2=j−2

aj1bj2 + aj−2

⎞
⎠ (−1)j

(2m)2j−3
π2j−4(B · π ), (6.11)

where we have used (A3) to throw away nonlinear terms in B and used (A1) with [πi,Bj ] = 0 to get

(σ · π )(σ · B) + (σ · B)(σ · π) = π · B + B · π + i(π × B + B × π ) · σ = 2(B · π ). (6.12)

By the combinatorial identity (5.11b), it follows from (6.11) that X′
2j for j � 2 takes the form of (6.8a).

Next, we prove (6.8b) for j � 2. With the inductive hypothesis and (5.5) again, the recursive relation (6.6b) yields

2mX′
2j+1 = −

∑
j1+j2=j−1

(X2j1+1(σ · π)X′
2j2+1 + X′

2j2+1(σ · π )X2j1+1) − iμ′′ ∑
j1+j2=j−2

X2j+1(σ · E)X2j+1, (6.13)

where we have neglected nonlinear terms in E and B. Applying the inductive hypothesis for k < j and (5.5b), we have

2mX′
2j+1 = − iμ′′ ∑

j1+j2=j−1

aj1bj2

(−1)j1+j2

(2m)2(j1+j2)
(σ · π)2j1+2π2j2−2(σ · E)

− iμ′′ ∑
j1+j2=j−1

aj1dj2

(−1)j1+j2+1

(2m)2(j1+j2)
(σ · π )2j1+2π2j2−4(σ · π )(σ · E)

− iμ′′ ∑
j1+j2=j−1

aj1bj2

(−1)j1+j2

(2m)2(j1+j2)
π2j2−2(σ · E)(σ · π)(σ · π )2j1+1

− iμ′′ ∑
j1+j2=j−1

aj1dj2

(−1)j1+j2+1

(2m)2(j1+j2)
π2j2−4(σ · π)(E · π )(σ · π )(σ · π)2j1+1

− iμ′′ ∑
j1+j2=j−2

aj1aj2

(−1)j1+j2

(2m)2(j1+j2)+2
(σ · π)2j1+1(σ · E)(σ · π )2j2+1. (6.14)
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By using (A3) to throw away nonlinear terms in B and using (A1) with [πi,Bj ] = 0 to get

(σ · π )(σ · E)(σ · π ) = ((π · E) + i(π × E) · σ )(σ · π ) = (π · E)(σ · π ) + i(π × E) · π − ((π × E) × π ) · σ

= (π · E)(σ · π ) + ((π · E)π − π2E) · σ = 2(σ · π)(E · π) − π2(σ · E), (6.15)

Eq. (6.14) then leads to

2mX′
2j+1 = − iμ′′ ∑

j1+j2=j−1

aj1bj2

(−1)j1+j2

(2m)2(j1+j2)
π2(j1+j2)(σ · E) − iμ′′ ∑

j1+j2=j−1

aj1dj2

(−1)j1+j2+1

(2m)2(j1+j2)
π2(j1+j2)−2(σ · π)(σ · E)

− iμ′′ ∑
j1+j2=j−1

aj1bj2

(−1)j1+j2

(2m)2(j1+j2)
π2(j1+j2)(σ · E) − iμ′′ ∑

j1+j2=j−1

aj1dj2

(−1)j1+j2+1

(2m)2(j1+j2)
π2(j1+j2)−2(σ · π)(E · π )

− 2iμ′′ ∑
j1+j2=j−2

aj1aj2

(−1)j1+j2

(2m)2(j1+j2)+2
π2(j1+j2)(σ · π )(E · π )+iμ′′ ∑

j1+j2=j−2

aj1aj2

(−1)j1+j2

(2m)2(j1+j2)+2
π2(j1+j2)+2(σ · E),

(6.16)

and consequently

X′
2j+1 = iμ′′

⎛
⎝ ∑

j1+j2=j−1

2aj1bj2 +
∑

j1+j2=j−1

aj1aj2

⎞
⎠ (−1)j

(2m)2j−2
π2j−2(σ · E)

+ 2iμ′′

⎛
⎝ ∑

j1+j2=j−1

aj1dj2 +
∑

j1+j2=j−1

aj1aj2

⎞
⎠ (−1)j+1

(2m)2j−2
π2(j1+j2)−2(σ · π )(σ · E). (6.17)

The combinatorial identities (5.11a) and (5.11b) immediately imply that the summations inside the first pair of parentheses
in (6.17) are equal to bj . Furthermore, by (5.11a) and the new combinatorial identity (its proof will be provided shortly)

for j � 2 : 2
∑

j1+j2=j−1

aj1dj2 + 2aj−1 = dj , (6.18)

the summations inside the second pair of parentheses in (6.17) are equal to dj . Consequently, it follows from (6.17) that X′
2j+1

for j � 2 takes the form of (6.8b).
We have proved both (6.8a) and (6.8b) by mathematical induction. �

B. Operators X ′ and X ′†

We have the Taylor series with the radius of convergence |x| < 1:

∞∑
j=2

dj

(−1)j

22j−1
x2j−4 = 1√

1 + x2

(
1

1 + √
1 + x2

)2

, (6.19)

which, with dj defined by (6.9), can be proven by taking squares on both sides of (5.12a) and then multiplying both sides
by (5.13b). Similarly, exploiting (5.12) and (6.19) also enables us to prove the combinatorial identities (6.18) and

for j � 0 : bj+1 + aj = dj+1. (6.20)

By (6.8), we obtain the Taylor series of the X′ operator:

X′ =
∞∑

j=1

X′
j

cj
=

∞∑
j=1

X′
2j

c2j
+

∞∑
j=1

X′
2j+1

c2j+1
= −2μ′′

∞∑
j=1

bj

(−1)j

(2mc)2j
π2j−2(B · π ) + iμ′′

∞∑
j=1

bj

(−1)j

(2mc)2j−1
π2j−2(σ · E)

− iμ′′
∞∑

j=2

dj

(−1)j

(2mc)2j−1
π2j−4(σ · π)(E · π). (6.21)

Adopting [πi,Ej ] = [πi,Bj ] = 0, we have

X′† = −2μ′′
∞∑

j=1

bj

(−1)j

(2mc)2j
π2j−2(B · π) − iμ′′

∞∑
j=1

bj

(−1)j

(2mc)2j−1
π2j−2(σ · E) + iμ′′

∞∑
j=2

dj

(−1)j

(2mc)2j−1
π2j−4(σ · π )(E · π ).

(6.22)
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By (5.12b) and (6.19), the Taylor series of the operator X′ given in (6.21) converges to a closed form provided that

|π2| < m2c2. (6.23)

We will discuss the condition for convergence in the end of Sec. VI C.

C. Operator HFW

We have (4.17) with

X = X + X′. (6.24)

Because X′ is of the order O(Fμν) as shown in (6.21), up to O(Fμν), Eq. (4.17) leads to

HFW = mc2 +
√

1 + X†X(qφ + c σ · πX)
1√

1 + X†X
+ (c σ · πX′ − μ′σ · B + iμ′σ · E X) =: HFW + H ′

FW, (6.25)

where the first half part is identified as HFW by (5.26a), and the second half is called H ′
FW.

By (5.17) and (6.21), we have

H ′
FW = c σ · πX′ − μ′σ · B + iμ′σ · E X = −2μ′

∞∑
j=1

bj

(−1)j

(2mc)2j
π2j−2(σ · π)(B · π )

+ iμ′
∞∑

j=1

bj

(−1)j

(2mc)2j−1
π2j−2(E · π) + μ′

∞∑
j=1

bj

(−1)j

(2mc)2j−1
π2j−2(E × π ) · σ

− iμ′
∞∑

j=2

dj

(−1)j

(2mc)2j−1
π2j−2(E · π ) − μ′σ · B

− iμ′
∞∑

j=0

aj

(−1)j

(2mc)2j+1
π2j (E · π) − μ′

∞∑
j=0

aj

(−1)j

(2mc)2j+1
π2j (E × π) · σ , (6.26)

where we have used (A1) and (A3) and neglected nonlinear terms in Fμν . Equation (6.26) leads to

H ′
FW = −2μ′

∞∑
j=1

bj

(−1)j

(2mc)2j
π2j−2(σ · π )(B · π ) + μ′

⎛
⎝ ∞∑

j=1

bj

(−1)j

(2mc)2j−1
π2j−2 −

∞∑
j=0

aj

(−1)j

(2mc)2j+1
π2j

⎞
⎠(E × π) · σ−μ′σ · B

− iμ′
∞∑

j=0

(
bj+1 − dj+1 + aj

) (−1)j

(2mc)2j+1
π2j (E · π). (6.27)

By (6.20), we find that the anti-Hermitian part in (6.27) vanishes identically. Furthermore, by (5.12a) and (5.12b), we have

H ′
FW = −μ′

⎛
⎝ 1

1 +
√

1 + (
π
mc

)2
− 1√

1 + (
π
mc

)2

⎞
⎠ (σ · π )(B · π )

(mc)2
− μ′

⎛
⎝ 1√

1 + (
π
mc

)2

⎞
⎠ (E × π ) · σ

mc
− μ′σ · B

= μ′
(

1

γπ

− 1

1 + γπ

)
σ · π

mc

(
π

mc
· B

)
+ μ′ 1

γπ

σ ·
(

π

mc
× E

)
− μ′σ · B, (6.28)

where γπ is defined in (5.33).
With (5.32) and (6.28), we have

HFW(x,p,σ ) = HFW + H ′
FW =

√
m2c4 + c2π2 + qφ(x)

− σ ·
[(

μ′ + q�

2mc

1

γπ

)
B − μ′ 1

γπ (1 + γπ )

( π

mc
· B

) π

mc
−

(
μ′ 1

γπ

+ q�

2mc

1

γπ (1 + γπ )

)( π

mc
× E

)]
, (6.29)

which is exactly the same as (4.34) except that the Darwin term vanishes and the operator orderings are superfluous. This
proves that, in the weak-field limit, the FW transform of the Dirac-Pauli Hamiltonian is in complete agreement with the classical
counterpart (2.1)–(2.3) with s = �

2 σ and μ′ = �

2 γ ′
m.

Note that, by applying the Taylor series (5.12) and (6.19), the functions of the operator  = σ · π/(mc) or  = π/(mc) are
understood via the Taylor series as

f (1 + 2) =
∞∑

n=0

f (n)(1)

n!
2n, (6.30)
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which produces convergent results provided that the spectrum of  satisfies |2| < 1. This requires the conditions of (5.19)
and (6.23) to be satisfied. In comparison with the classical theory in the weak-field regime, in which π remains as the kinematic
momentum associated with v as indicated by (2.9) and (2.10), the conditions (5.19) and (6.23) correspond to |v| < c/

√
2 (which

is well beyond the low-speed limit). Once the operators X and X′ converge to closed forms for |v| < c/
√

2, their closed forms
are in fact upheld even beyond the conditions of (5.19) and (6.23). This is because, instead of the Taylor series (5.12) and (6.19),
the pertinent function 1/

√
1 + 2 can be alternatively understood in terms of the integral

1√
1 + 2

= lim
N→∞

∫ N

−N

dη e−πη2(1+2), (6.31)

where the exponential operator is defined by means of its Taylor expansion. The form of (6.31) gives convergent results for all
.17 Therefore, even though the Taylor series (5.12) and (6.19) break down when (5.19) and (6.23) do not hold, the resulting
HFW in (6.29) as a closed form nevertheless remains valid (as long as the applied electromagnetic field is weak enough so that
nonlinear terms in Fμν can be neglected).

VII. SUMMARY AND DISCUSSION

In Kutzelnigg’s implementation of DPT improved with a further simplification scheme, the FW transform of the Dirac-Pauli
Hamiltonian is given by (4.17) withX satisfying (4.16), which reduces to (4.19) with X satisfying (4.18) for the Dirac Hamiltonian.
For the two special cases studied in Sec. IV B and Sec. IV C, the exact FW transformed Hamiltonians exist and agree with those
obtained by Eriksen’s method [7]. Existence of the exact FW transformation in the first special case is accordant with the fact
that charged particle-antiparticle pairs are not produced by any static magnetic field no matter how strong the field strength
is [45,46]. On the other hand, the physical relevance of the exact FW transformation in the second case is unclear and requires
further research.

The conditions for the operators X and X ≡ X + X′ give rise to the recursion relations (5.3), (6.5), and (6.6) for their power
series. When the applied electromagnetic field is static and homogeneous, in the weak-field limit in which nonlinear terms in Fμν

are neglected, we have Theorem 1 and Theorem 2, which are proven by mathematical induction via the recursion relations and
various combinatorial identities. Consequently, the resulting FW transformed Dirac-Pauli Hamiltonian in the weak-field limit is
given by (6.29), which is in full agreement with the classical counterpart (2.1)–(2.3) with s = �

2 σ and μ′ = �

2 γ ′
m.

If the applied electromagnetic field is inhomogeneous, it is suggested in [36] that the FW transform in the weak-field limit
takes the form of (4.34), which is an extension of (6.29) with corrections of the Darwin term and operator orderings. A rigorous
proof of (4.34) in the style of this paper is however much more difficult, as it is very cumbersome to keep track of operator
orderings in an order-by-order scenario. Instead, applying the alternative block-diagonalization method via the expansion in
powers of the Planck constant � [18,21–23] might provide a better route to investigate the quantum corrections arising from
zitterbewegung (which is responsible for the Darwin term) and operator orderings. Furthermore, as we have remarked that it
might not be legitimate to block diagonalize the Dirac or Dirac-Pauli Hamiltonian in strong fields except for special cases, the
method of expansion in � [24] may help to elucidate the breakdown of particle-antiparticle separation in strong fields (also
see [43]).
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APPENDIX: USEFUL FORMULAS AND LEMMAS

The Pauli matrices satisfy the identity

(σ · a)(σ · b) = a · b + i(a × b) · σ (A1)

for arbitrary vectors a and b. Meanwhile, we have

(∇ × a + a × ∇)ψ = (∇ × a)ψ. (A2)

By (A1) and (A2), we have

(σ · π)2 = π2 − q�

c
σ · B. (A3)

17Here, we have adopted the idea propounded in [7].
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Consider the commutator between φ and σ · π . We have

[φ, σ · π ] = i�(σ · ∇)φ = i�(σ · E), (A4)

and consequently

[φ, (σ · π )2] = σ · π [φ,σ · π ] + [φ,σ · π]σ · π = i�[(σ · π ) · (σ · E) + (σ · E) · (σ · π )]

= i�

[
π · E + E · π + i

((
�

i
∇ − q

c
A

)
× E + E ×

(
�

i
∇ − q

c
A

))
· σ

]
= i�(π · E + E · π ) = 2i�(E · π ),

(A5)

where we have applied the identities (A1) and (A2) and assumed E is homogeneous.
As we consider only the terms linear in E and B, we neglect the second term in (A3) whenever it is multiplied by the terms

containing E or B. Consequently, by induction, we have

[φ, (σ · π )2n] = (2n)i� π2(n−1)(E · π ), (A6a)

[φ, (σ · π )2n+1] = i� π2n(σ · E) + (2n)i� π2n−2(σ · π )(E · π ). (A6b)
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