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Leggett-Garg correlation functions from a noninvasive velocity measurement continuous in time
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In the Leggett-Garg approach to testing macrorealism, the two-time correlation functions, which are normally
obtained by sequential measurements of a dichotomic variable Q, need to be measured in a noninvasive
way in order to exclude certain types of alternative classical explanation. Here, it is shown, for a class of
macrorealistic theories, that the correlation functions are readily expressed in terms of a time integral of the
velocity corresponding to Q and that this expression can be determined from a single final-time measurement of
an auxiliary system in continual weak interaction with the primary system. The protocol has the form of a “waiting
detector,” which clicks only when Q changes sign. It shares features with both ideal negative measurements and
weak measurements and we argue that it is essentially noninvasive, under certain reasonable assumptions. We
show that the noninvasiveness persists to a quantum model of the process.
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I. INTRODUCTION

The Leggett-Garg (LG) inequalities were proposed in order
to test whether certain types of realist theories could explain
the observable data in the description of macroscopic systems
[1,2]. In this approach, sequential measurements are made on
a dichotomic variable Q at three or more times, from which
temporal correlation functions of the form

C12 = 〈Q(t1)Q(t2)〉 (1.1)

are obtained. Under the assumptions that these variables
take definite values (macrorealism per se), that they can be
measured without disturbing the future evolution of the system
(noninvasive measurability), and that future measurements
cannot affect the past, it can be shown that the correlation
functions obey the Leggett-Garg inequalities [1,2], which for
three times have the form

1 + C12 + C23 + C13 � 0, (1.2)

1 − C12 − C23 + C13 � 0, (1.3)

1 + C12 − C23 − C13 � 0, (1.4)

1 − C12 + C23 − C13 � 0. (1.5)

These inequalities are respected by certain interesting classes
of macrorealistic theories, when properly measured. (For a
discussion of the current status of this field, see the useful
review in Ref. [3] and the critique in Ref. [4]).

The Leggett-Garg inequalities can be violated by quantum
mechanics. Consider, for example, the commonly studied spin
system in which H = 1

2ωσx and Q = σz. The equations of
motion have solution

σz(t2) = cos ω(t2 − t1) σz(t1) + sin ω(t2 − t1) σy(t1). (1.6)

The correlation function is given by

C12 = 1
2 〈ψ |Q̂(t1)Q̂(t2) + Q̂(t2)Q̂(t1)|ψ〉 (1.7)

= 1
2 〈ψ |{σz(t1),σz(t2)}|ψ〉

= cos ω(t2 − t1), (1.8)

*j.halliwell@imperial.ac.uk

and is independent of the initial state. If we choose the time
intervals to be equally spaced, t1 − t2 = t = t3 − t2, we find
that the LG inequality Eq. (1.3), for example, reads

1 − 2 cos ωt + cos 2ωt � 0. (1.9)

This is violated for 0 < ωt < π/2, with a maximal violation
in which the left-hand side takes value − 1

2 at ωt = π/3.
Such violations have been confirmed in numerous ex-

perimental tests [5–9]. However, what is important in such
tests is the requirement of noninvasive measurability (NIM),
analogous to the locality requirement in Bell inequality tests.
This is crucial since if invasive one can argue that it is the
disturbance of the measurement that produced the particular
form of the correlation function [10] and indeed there are
specific models that show exactly how the quantum correlation
function can be classically replicated [11–14].

The NIM requirement is demanding to implement and not
many experiments have done so in a fully satisfactory way
[7–9,15,16]. Leggett and Garg in their original proposal
suggested that noninvasiveness is accomplished using an ideal
negative measurement, in which the detector measuring Q

at the first time couples to only one of its values, Q = +1
say, and if the detector does not register, it is deduced that the
system was in state Q = −1 at the first time. This is reasonable
for the macrorealistic theories being put to the test since they
are essentially classical in nature, but this procedure would in
general be invasive for a quantum mechanical system, since
the wave function still collapses [17]. Weak measurements
[18–20] have also been used to measure the correlation
functions, in an arguably minimally invasive way [5,6,21,22],
although it remains a matter of debate as to whether they fully
meet the NIM requirement [3,10]. Another approach to NIM
is the “stationarity” requirement [23], which has also met with
some criticism [3].

A significant feature of the NIM requirement is that many
experimental tests implementing it rely on an argument for
noninvasiveness that is appropriate to macrorealistic systems
but will not in general hold up in quantum mechanics. Since
we expect experimental devices to adhere to the laws of
quantum mechanics this means that noninvasiveness cannot be
checked experimentally in most protocols. There are, however,
recent attempts to address this [15,16], which brings NIM into
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the domain of experimental checks (and see also the earlier
discussions [2,10]) and it is clearly of interest to develop
this further. Indeed, we note that some protocols can be
made quantum-mechanically noninvasive for special choices
of initial state, for example, in an ideal negative measurement,
taking the state to be an eigenstate of Q̂ at the first time.

Although many experimental approaches to date can
reasonably claim success in implementing the LG program,
the difficulty in experimentally implementing some protocols
together with the question marks (in some cases) around
noninvasiveness indicates that it remains of interest to search
for alternative approaches which may be easier to implement
and have a clearer or at least different story in terms of NIM.
The purpose of this paper is to present a different type of
protocol.

We first note that what is perhaps common to most if not all
approaches to date is the focus on a pair of measurements
acting at two successive times and the origin of potential
invasiveness is the fact that the earlier measurement could
affect the result of the later one. Hence in the search for
different approaches which may give an alternative perspective
on NIM, it would be of interest to find a protocol which gets
away from this feature. To this end, note that the correlation
function we seek may be written

C12 = p(S) − p(D), (1.10)

where p(S) denotes the probability that Q(t) takes the same
value at t1 and t2 and p(D) denotes the probability that they
take different values. (This is spelled out in more detail in
Refs. [24,25]). Hence the correlation function depends only
on whether Q(t) has the same or opposite signs at the initial
and final times and not on the specific initial or final value
of Q(t). This suggests that the correlation function could be
determined by examining whether Q(t) changes sign in each
run, or not, during the given time interval. Of course it could
change sign more than once during the time interval, but this
is a question of time scales which can be addressed in specific
models, and we will in fact see that there is a regime in which
it is reasonable to assume no more than one sign change.

Given that only the sign changes are important, and not
the actual value of Q itself, we can then look for a detection
scheme which measures whether a change takes place at any
time during [t1,t2]. This involves a “waiting detector” that
clicks or not during the given time interval, depending on
whether Q changes sign at any time. (An analogous approach
is sometimes used in the arrival time problem [26]). In this
paper a simple protocol which has precisely this property is
presented. It will be argued that this protocol is essentially
noninvasive and furthermore the noninvasiveness persists to
the quantum level, which suggests the possibility of confirming
noninvasiveness through an experimental check.

The protocol bears some resemblance to a protocol pre-
sented in an earlier paper by the present author in which
the two-time histories of the system were measured directly
in two different ways: first, by an ancilla coupled to the
primary system with two controlled-NOT (CNOT) gates [25]
and, secondly, using a single final-time measurement that was
argued to be correlated with the two-time history. The protocol
in the present paper is simpler but similar in spirit in that it
again effectively measures the histories of the system.

To be clear, the protocol given here is a general theoretical
sketch of a possible experiment. The construction of specific
experimental tests along the lines presented here is beyond the
scope of this paper and no claims of experimental feasibility
are made. However, we note that the protocol considered here
bears some resemblance to the recent experiments described
in Refs. [7,8,15], in which measurements of simple systems
using an ancilla are considered.

II. PROTOCOL

A. Some observations

We start from the simple observation observation that

〈[Q(t2) − Q(t1)]2〉 = 2(1 − C12). (2.1)

This holds in both the classical and quantum theory, with cor-
relation functions given by Eqs. (1.1) and (1.7), respectively. It
suggests that the correlation function can be determined from
a measurement of the quantity Q(t2) − Q(t1).

Classically, Q(t2) − Q(t1) can take the values 0 or ±2.
By contrast, in the quantum theory, its possible values are
determined by looking at the spectrum of the corresponding
operator. In the case of the simple spin model above this is

Q̂(t2) − Q̂(t1) = [cos ω(t2 − t1) − 1] σz(t1)

+ sin ω(t2 − t1) σy(t1)

≡ a(t1,t2) · −→σ . (2.2)

Quantities of this type can be measured by measuring spin
along the direction specified by the vector a(t1,t2), and will
take values ±|a|, where a2 = 2(1 − C12). Such a measurement
would be different for different time intervals and involves
knowledge of the quantum dynamics to determine the vector
a so cannot obviously be expressed in terms a macrorealist
could work with. Note, however, that these properties have
the following consequence: if the system is in an eigenstate
of Q̂(t2) − Q̂(t1), measuring this quantity yields one of its
eigenvalues and does not disturb the state. This suggests
that the correlation function can be measured in a single
noninvasive measurement. Note also that there is no immediate
analog in the quantum case of the classical case in which
Q(t2) = Q(t1). The closest one can get, perhaps, is the case in
which 〈Q̂(t2)〉 = 〈Q̂(t1)〉, which is achieved in any eigenstate
of the operator b · −→σ , where b is any vector orthogonal to a.
For example, σx eigenstates do the job.

B. Macrorealistic formulation of the protocol

We now seek a way of carrying out a measurement of
Q(t2) − Q(t1) describable in more macrorealistic terms. The
discussion will be given for a general dichotomic variable Q,
with occasional reference to the simple spin model above.
Also, the underlying hidden variable theories we have in mind
here are of the GRW type [27], consistent with the critique of
Ref. [4].

It is normally assumed that the macrorealistic theory we are
testing has a variable Q which takes definite values at every
time and has some sort of dynamics, which in general will be
stochastic. However, in the present approach we will assume,
in addition, that the theory has a velocity variable v(t) such
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that Q̇(t) = v(t), which can be measured. If such a velocity
variable exists, it then follows that

Q(t2) − Q(t1) =
∫ t2

t1

dt v(t). (2.3)

The problem of measuring the correlation function is therefore
replaced with that of measuring the time-averaged velocity.

Clearly in the quantum case for spin variables, v exists and
will simply be a combination of Pauli matrices, just like Q. For
example, in the simple spin model above, the velocity operator
is σ̇z = ωσy . In a classical stochastic model, Q takes values
±1, and the definition of velocity is more subtle. For example,
in many hidden variable models for spin systems, Q has the
form

Q(t) = sgn[n · x(t)], (2.4)

where x(t) is a unit vector belong to a stochastic ensemble and
evolving in time under rotations on the sphere, and n is a fixed
unit vector [11]. Differentiating,

Q̇(t) = 2 n · ẋ(t) δ(n · x(t)). (2.5)

Suppose we now take n to lie in the z direction, so that Q is the
classical counterpart of σz in the quantum case. If the classical
evolution is that corresponding to the quantum evolution with
H proportional to σx , the vectors x(t) rotate on circles of
constant x,

x(t) = (x0,r0 cos ω(t − t0),r0 sin ω(t − t0)), (2.6)

where x2
0 + r2

0 = 1 and t0 labels the members of the stochastic
distribution of vectors. It is then easy to show that, when the
δ-function constraint of Eq. (2.5) holds,

n · ẋ(t) = ω sgn(m · x(t)), (2.7)

where m is a unit vector lying in the y direction. Assuming
a uniform distribution of stochastic vectors x(t), we can then
average the velocity over the ensemble with the result

〈Q̇(t)〉 = ω〈sgn(m · x(t))〉. (2.8)

This means that the classical model replicates the quantum
result σ̇z = ωσy in the average. At the level of individual
stochastic trajectories, it is natural to regularize the δ function
in Eq. (2.5), for example by discretizing the time, and this
equation then says that Q̇(t) is zero except when n · x(t) is
close to zero, in which case the velocity is proportional to
Eq. (2.7), so there is still a link to the quantum result, σ̇z = ωσy .
These arguments indicate that it is reasonable to suppose in a
typical hidden variable model that a velocity exists with the
requisite properties.

The time-averaged velocity can be measured quite easily
using a weak coupling to another system continuous in time.
To give a very simple example, suppose we couple the primary
system to a point particle with momentum p and position q,
using the total Hamiltonian

H = HS + λvp + p2

2m
, (2.9)

where λ is a small constant. The equation of motion of q is

q̇ = p

m
+ λv (2.10)

and p is constant, so the solution is

q(t2) = p(t2 − t1)

m
+ λ

∫ t2

t1

dt v(t), (2.11)

where, to leading order for small λ, v(t) is the time-evolved
velocity determined by the unperturbed system Hamiltonian
HS . Hence the time-averaged velocity is determined from the
shift in q at the final time. One can easily find other similar
models which effect a measurement of the time-averaged
velocity in this way, for example, a coupling to an auxiliary
system (ancilla) of the form vHA, where HA is the auxiliary
system Hamiltonian, so that the auxiliary system dynamics
simply switches on when v is nonzero. Furthermore, it is easy
to see how this works in quantum theory. The evolution of the
coupled system is determined by the S matrix,

S(t1,t2) = T exp

(
−iλ

∫ t2

t1

dt v̂(t) ⊗ ĤA

)
, (2.12)

where T is the usual time-ordering operator, from which we
see that the ancilla responds to the time average of the velocity,
to leading order in λ.

This measurement can be regarded as a weak measurement
continuous in time if λ is sufficiently small. It may therefore
be subject to some of the criticisms of the use of weak
measurements in this context [3,10]. However, we shall now
argue that the protocol does much better than standard weak
measurements in terms of meeting the NIM requirement.

In general, during a given time interval, Q(t) will jump
many times between the values ±1. There is an interaction
with the ancilla each time it changes sign but no interaction at
any other times. The object we are interested in, Q(t2) − Q(t1),
can take the three possible values ±2 or zero. If it is zero, this
in general means that either Q(t) did not change sign at all,
so there was no interaction, or that it jumped value any even
number of times. If it is nonzero, it means that Q(t) changed
sign an odd number of times.

However, let us suppose that the total time scale is
sufficiently short that Q(t) will only have time to make either
one jump in value, or no jumps. In particular, if it makes
no jumps, then the velocity is zero during the time interval,
there is no interaction, and the ancilla does not change at all
during that time. This is clearly promising in terms of finding a
noninvasive measurement. However, if we find that the ancilla
is unchanged from its initial state at the final time, it means that
either Q(t) did not change sign at all or that it did change sign
once (and thus interact with the ancilla), but the back action
of the ancilla on the primary system caused Q(t) to change
sign again, causing a further interaction with the ancilla. This
second possibility has small probability for small λ and can in
fact be estimated in a specific model (and can also be ruled out
using an irreversible ancilla, as we see shortly). This means
that the situations in which the ancilla is unchanged are, to a
good approximation for small λ, noninvasive determinations
of the probability of Q(t) not changing sign. This is therefore
a reasonably close analog of an ideal negative measurement,
extended to continual measurement over a time interval,
subject to the assumption of sufficiently short time scale and
weak interaction. Furthermore, if the ancilla is unchanged, a
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final measurement on the primary system can be made to check
if it has been disturbed or not during.

Consider now the situation regarding invasiveness in the
case where Q(t) changes sign just once. Here, there will be an
interaction with the ancilla at the moment when Q(t) change
sign (and only then), which could be at any time between
the initial and final time. The question then is whether this
interaction can possibly affect the future evolution of the
primary system. It could, as indicated above, through the back
action on the primary system which may cause Q(t) to change
sign again and hence influence the final ancilla state. As stated
we expect this effect to be small for small λ. However, there
is a more elaborate and interesting possibility, which is to
choose the ancilla to be effectively irreversible, for example,
by using a large system in a metastable state which undergoes
an irreversible change when triggered. This means that the
ancilla does not have the possibility of returning to its “no
detect” state. Of course, the future evolution of Q(t) after
detection is changed by the interaction but we are working
in a regime in which Q(t) undergoes only one (or no) sign
change, so having already been detected making that one sign
change, its future evolution is irrelevant. Hence this situation
is also noninvasive since there is no sense in which any future
measurements could be affected by the interaction.

In brief, this “waiting detector” protocol gives an approxi-
mately noninvasive account of the measurement of whether Q

changes sign or not, under an assumption of sufficiently short
time scale together with an assumption of sufficiently weak
interaction or an irreversible ancilla.

C. Short time scale assumption

The requirement of sufficiently short time scale is a
plausible one. As noted above, in the hidden variable model
above Q(t) is determined by the sign of an ensemble of
functions n · x(t), which behave like sin ω(t − t0), for a
distribution of initial times t0. If we choose Q = +1 initially,
this restricts to vectors x(t) in the hemisphere defined by n.
Under subsequent time evolution the x(t) vectors move into
the opposite hemisphere but none of them move back to the
original hemisphere as long as the total time interval is less than
π/ω. The largest time interval is set by the correlation function
C13 in the LG inequality Eq. (1.9), for example. This interval
is 2t , with the equal time spacing chosen above; hence there
will be only one sign change in this hidden variable model
if ωt � π/2. This is a sufficiently large time range to find
significant violations of the LG inequalities and in particular
include the maximal violation.

One could also contemplate carrying out experimental
checks of the typical number of sign changes made by Q.
We would fully expect such checks to conform to the laws
of quantum mechanics; hence it is of interest to estimate the
fraction of histories making two sign changes of Q using a
quantum model. If we take H = ωσx/2 and denote the Q = σz

eigenstates by |±〉, we have

e−iH t |+〉 = cos

(
ωt

2

)
|+〉 − i sin

(
ωt

2

)
|−〉, (2.13)

and similarly for the |−〉 state. The probability that Q takes
values +1, −1, +1 at times 0, t , and 2t is then

p(+, − ,+) = ∣∣〈+|e−iH t |−〉∣∣2 ∣∣〈−|e−iH t |+〉∣∣2

= sin4

(
ωt

2

)
. (2.14)

Similarly, for the probability that Q takes values +1 at all three
times, we have

p(+, + ,+) = cos4

(
ωt

2

)
. (2.15)

It is then useful to define the ratio of paths with two sign
changes to paths with none:

ξ = p(+, − ,+)

p(+, + ,+)

= tan4

(
ωt

2

)
. (2.16)

This quantity grows very slowly from zero for small t and at
the time ωt = π/3 where the LG inequality Eq. (1.9) has its
maximal violation of − 1

2 , we have ξ = 1/9. This is small, but
perhaps not insignificant. However, at the slightly earlier time
ωt = 4π/15, ξ drops down to ξ ≈ 0.04 but the LG violation
remains significant at −0.44.

These arguments show that the assumption of only one
sign change at sufficiently short-time intervals is a reasonable
one in both classical and quantum models. However, there
will in general be a small fraction of the ensemble which will
have two sign changes. This will mean that a “no-detection”
result in the auxiliary system includes some histories in
which the velocity was nonzero and so some interaction took
place thereby providing opportunity for alternative classical
explanations in that fraction of the histories. As long as the
parts of the correlation functions due to two sign changes in
Q are sufficiently small (and as long as those parts do not
make a significantly “adversarial” contribution) macrorealism
can still be tested by demanding that the violations of the
LG inequalities are sufficiently large to outstrip classical
explanation. Precise modeling of arguments along these lines
was given in Refs. [7,8,15,25].

D. Comments on weak measurements

Experimental measurements of the fraction of times Q

changes sign or not allow us to determine the correlation
function through the formulas

p(S) = 1
2 (1 + C12), (2.17)

p(D) = 1
2 (1 − C12). (2.18)

However, due to the weakness of the coupling to the detector,
the measurements will not in fact determine p(S) exactly, but
determine an expression modified by terms representing the
inefficiency of the detector (as we shall see in an explicit
model). This is because λ represents the rate of transition from
the undetected to detected state, but for weak couplings, only
a partial transition is made.
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Weak measurements of Q(t) continuous in time have been
used previously in LG inequality tests [21] and indeed the
first experimental test was of this type [5]. However, as noted
in Refs. [3,10], the weakness of the measurement alone does
not ensure noninvasiveness although it does allow the NIM
condition to be stated differently. Such a condition was given
in Ref. [21], although it has been noted that it will not in
general be satisfied in a quantum model [10].

The present protocol, although a continuous in time weak
measurement, is different in that there is an argument for
noninvasiveness, up to small back action effects, and one can
check experimentally, in the case of no sign changes of Q, that
the primary system state is unaffected by the measurement.
We will see that this noninvasiveness persists at the quantum
level with a suitable choice of initial state.

We also note that a weak measurement protocol for the
quasiprobability q(s1,s2) built from the correlation function
[and the two averages 〈Q(t1)〉, 〈Q(t2)〉] was proposed in
Ref. [24]. Here the NIM requirement consists of the no-
signaling in time condition [28], generalized to quasiproba-
bilities and this condition is in fact satisfied in the quantum
case.

E. Relation to quantum back flow

To close this section, and as an aside, we note that the
analogy with the arrival time problem together with the
relationship Eq. (2.3) suggests a comparison with the quantum-
mechanical current for a point particle and its relationship with
the probabilities for remaining in the positive or negative x

axis. Furthermore, it is known that this current can exhibit
“back flow,” in which the current has the opposite sign to the
momentum of the state [29]. One might speculate that this
nonclassical phenomenon, or at least its analog in the systems
considered here, is responsible for the quantum-mechanical
values of the correlation functions which violate the LG
inequalities. Back flow requires that the underlying Wigner
function is negative somewhere. By contrast, it was shown in
Ref. [25] that the properties of the systems considered here
at two times may be described by a quasiprobability which is
positive in some regimes, but the LG inequalities, which refer
to three or more times, can still be violated in those regimes.
This indicates that back flow and LG inequality violation are
two different types of quantum phenomena, the first apparent
at just two times and the second not apparent until three or
more times. Nevertheless it remains of interest to explore any
possible connections more thoroughly.

III. QUANTUM MODEL

We now consider the implementation of the protocol in a
specific quantum model, consisting of the simple spin system
described above, with its velocity ωσy coupled to a two-state
auxiliary system initially in the state |0〉, which switches to the
state |1〉 when interacted with. (We will not, however, attempt
to model an irreversible detector here, although such a model
for the analogous arrival time problem has been constructed
[30].) The total Hamiltonian is

H = ω

2
σx ⊗ 11 + λωσy ⊗ (|0〉〈1| + |1〉〈0|). (3.1)

We note that H 2 = (	2/4)11, where 	 = ω
√

1 + 4λ2, from
which it is easily shown that the unitary time evolution operator
is

e−iH t = cos

(
	t

2

)
11 − 2i

	
sin

(
	t

2

)
H. (3.2)

The total system state at time t is

|
t 〉 = e−iH t |ψ〉 ⊗ |0〉
= Â0(t)|ψ〉 ⊗ |0〉 + Â1(t)|ψ〉 ⊗ |1〉, (3.3)

where

Â0(t) = cos

(
	t

2

)
11 − iω

	
sin

(
	t

2

)
σx, (3.4)

Â1(t) = −2iλω

	
sin

(
	t

2

)
σy. (3.5)

Note that

Â
†
0(t)Â0(t) + Â

†
1(t)Â1(t) = 1 (3.6)

and also that each term in this expression is proportional to the
identity operator.

The probability of finding the ancilla in the detected state
is

p(1) = 〈ψ |Â2
1(t)|ψ〉

= 2λ2ω2

	2
(1 − cos 	t). (3.7)

For small λ, 	 ≈ ω and we find

p(1) ≈ 2λ2(1 − cos ωt). (3.8)

This therefore agrees with the result expected (from the S

matrix),

p(1) = λ2〈(Q̂(t2) − Q̂(t1))2〉
= 2λ2(1 − C12). (3.9)

Hence the correlation function C12 = cos ωt (for t1 = 0, t2 =
t) may be read off from the measured probability, assuming
that λ is known, explicitly

C12 = 1 − p(1)

2λ2
. (3.10)

Since λ is generally taken to be small, any imprecision in its
value could have a large effect on the resulting value of C12;
hence λ will need to be known quite precisely. (This feature
commonly arises in weak measurements of the correlation
function. See, for example Ref. [22].) Similarly we find that
the probability of no detection is

p(0) = 〈ψ |Â2
0(t)|ψ〉

≈ 1 − 2λ2(1 − cos ωt)

= 1 − 2λ2(1 − C12). (3.11)

Note that, as anticipated, these probabilities for the final ancilla
states do not give direct measurements of p(S) and p(D),
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Eqs. (2.17) and (2.18) (unlike the case in Ref. [25]). In fact,
the ancilla probabilities may be written

p(1) = 4λ2p(D), (3.12)

p(0) = p(S) + (1 − 4λ2)p(D). (3.13)

The reason for the difference between p(0),p(1) and
p(S),p(D) is that the detector only detects a fraction 4λ2

of histories in which Q changes sign, not all of them. Hence
p(0) may be interpreted as the probabilities for those histories
in which Q did not change sign, plus those that did change
sign but did not trigger the ancilla, although note that p(0)
still arguably corresponds to histories in which there is no
interaction (and we check this explicitly below).

Consider now the issue of the invasiveness of the mea-
surement. To what degree is the system state affected by the
interaction? Tracing out the ancilla, the system reduced density
operator is

ρ = Â0(t)|ψ〉〈ψ |Â0(t) + Â1(t)|ψ〉〈ψ |Â1(t). (3.14)

An interesting choice to make here is a maximally mixed
initial state for the system, so |ψ〉〈ψ | is replaced with ρ0 = 1

2 11
and we immediately see that ρt = ρ0, so the system density
operator is undisturbed by the interaction. However, this
is potentially misleading—it simply means that there is no
average disturbance (but this still leaves opportunity for hidden
variable explanations by classical models with disturbing
measurements, as noted in Refs. [24,28,31,32]).

The more relevant quantity is the disturbance to the
system conditional on a given ancilla state. This conditional
disturbance allows a natural comparison with an ideal negative
measurement, since there we expect no disturbance only for
certain detector outcomes but not for all outcomes. Consider
therefore the average of any system operator OS conditional
on the ancilla remaining in its initial state, i.e., conditional on
no detection,

〈OS〉|0〉 = 〈ψ |Â0(t)OSÂ0(t)|ψ〉
p(0)

. (3.15)

This clearly in general depends on the interaction so there is a
disturbance. However, at this point we note that we are free to
choose the initial system state, since the correlation function
we seek does not depend on it. In particular, we can choose
|ψ〉 to be an eigenstate of Â0(t), that is, of σx . We thus have

Â0(t)|ψ〉 = 〈Â0(t)〉|ψ〉, (3.16)

and also p(0) = 〈Â2
0(t)〉 = 〈Â0(t)〉2 and it immediately fol-

lows that

〈OS〉|0〉 = 〈ψ |OS |ψ〉. (3.17)

Hence there is no disturbance to the system at any time if the
ancilla is found in the |0〉 state. Differently put, the part of the
system state entangled with |0〉 in Eq. (3.3) is unchanged by
the interaction, except for multiplication by a c number. This
situation is clearly the quantum analog of the classical case
in which Q(t2) = Q(t1), i.e., the analog of an ideal negative
measurement, since we expect the system to be unchanged
in this case. As noted earlier, there are no quantum states in
which this holds exactly in the quantum case, but it does hold

in the average for some states, for example, a σx eigenstate,
the choice made here. In general, classical arguments for
noninvasiveness in LG tests do not persist to the quantum level,
but here we see that the corresponding quantum situation is in
fact noninvasive for a suitable choice of initial state.

Another possibility is to condition instead on the ancilla
state |1〉 and examine the conditional average,

〈OS〉|1〉 = 〈ψ |Â1(t)OSÂ1(t)|ψ〉
p(1)

. (3.18)

In this case, it is natural to choose the initial state to be an
eigenstate of Â1(t), that is, of σy , and we again get a result of
the form Eq. (3.17), so again the system state is undisturbed
by the measurement. This choice actually corresponds to the
classical situation with a definite but nonzero value of Q(t2) −
Q(t1). To see this, note that in Eq. (2.12), which shows that
the ancilla couples to Q̂(t2) − Q̂(t1), this expression refers to
the interaction picture, so when acting on states, we need to
consider the expression

e−iHS t (Q̂(t) − Q̂(0)) = Q̂e−iHS t − e−iHS t Q̂, (3.19)

where HS is the system Hamiltonian. With a little algebra
it is easily seen that the right-hand side is proportional to
σy . However, referring back to the classical argument for
noninvasiveness in this case, which relies on the fact that the
future evolution of the system is irrelevant once Q has changed
sign, there is no obvious need in this case to have an initial
state which is undisturbed by the interaction.

A perhaps more striking form of noninvasiveness was noted
in the similar model in Ref. [25], in which for certain system
initial states there was complete disentanglement of system
and ancilla, with no detectable effect on the system state. This
does not seem to be possible in this model.

Finally, we may use this quantum model to assess whether
the back reaction of the ancilla on the primary system may
cause the final value of the ancilla state to revert to the
undetected state |0〉, instead of remaining in the detected state
|1〉 after a sign change of Q. We have shown [see Eq. (2.16)]
that probability for the primary system alone to perform two
sign changes is small in general for short-time scales. Now,
armed with a particular measurement model, we may ask a
similar question about the behavior of the ancilla states. We
thus consider the total system amplitude for the ancilla to
follow the history |0〉 → |1〉 → |0〉 at times 0, t , 2t :

|
010〉 = 11 ⊗ |0〉〈0| e−iH t 11 ⊗ |1〉〈1| e−iH t |ψ〉 ⊗ |0〉,
(3.20)

where H denotes the total system Hamiltonian, Eq. (3.1).
Using Eq. (3.3) (and similar relations with initial state |1〉)
it is readily shown that

|
010〉 = Â1(t)2|ψ〉 ⊗ |0〉 (3.21)

and hence the probability is

p010 = 16λ4ω4

	4
sin4

(
	t

2

)
. (3.22)

For comparison the amplitude for the history |0〉 → |1〉 → |1〉
is

|
011〉 = Â0(t)Â1(t)|ψ〉 ⊗ |1〉, (3.23)
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with probability

p011 = 4λ2ω2

	2
sin2

(
	t

2

)[
cos2

(
	t

2

)
+ ω2

	2
sin2

(
	t

2

)]
.

(3.24)

Hence p010 is easily seen to be smaller than p011 by a factor of
λ2 for small λ. Thus for λ 	 1 the probability of an incorrect
final ancilla reading due to the back action of the ancilla on
the primary system is small.

The correlation function we seek arises in the measured
probabilities p(0) and p(1) as a small correction of order λ2

about the zero interaction result. However, the measurement
disturbance does not kick in until order λ4, so this is the precise
sense in which the measurement in the case of no sign changes
of Q is approximately noninvasive for small λ. This therefore
represents an improvement on the usual weak measurement
approach where the disturbance is very small but the small
bias about no disturbance from which the desired physical
result is obtained is of the same order.

IV. SUMMARY AND CONCLUSION

We have presented a protocol for noninvasive measurement
of the temporal correlation functions of the type appearing
in the LG inequalities. It is similar in spirit to the earlier
work of Ref. [25], in that it involves direct measurement
of the two types of histories for the system, in which Q

has either the same or different signs at the initial and final
times. It was shown that the correlation function can be simply

expressed in terms of the time average of the velocity v = Q̇

and that this average can be measured using a weak coupling
to an ancilla. Under the assumption that Q changes sign at
most once for reasonably short times, for which justification
was given, the interactions with the ancilla in each run are
then limited to a single interaction at the moment of time
when Q changes sign, or no interaction if there is no sign
change. We argued that these interactions have negligible
effect on the future behavior of the ancilla if the back action
is small, which is the case for sufficiently small λ as was
shown explicitly in a quantum model. We also noted that an
irreversible ancilla would have the same effect but this was
not treated in detail. Hence we found that the measurement
is noninvasive in the sense that the measurement disturbance
is a factor λ2 smaller than the (already small) effect being
measured, thereby improving on the situation with standard
weak measurements. Furthermore, for runs where Q does not
change sign, we noted that the noninvasiveness can be checked
experimentally by measuring the primary system final state and
we showed that this noninvasiveness can be maintained in a
quantum model with a suitable choice of initial state.
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